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ON THE COHOMOLOGY AND GEOMETRY
OF PRINCIPAL SHEAVES

Abstract. We study the cohomological classification of principal sheaves, the latter
being defined in a slightly different way than in [6], a fact allowing to consider on them
geometrical objects like connections. The classification of vector sheaves (studied in [10])
is now a corollary of the classification of their principal sheaves of frames. In particular,
principal sheaves with an abelian structural sheaf, equipped (the former) with a connec-
tion, admit a hypercohomological classification generalizing that of Mazwell fields given
in [10].

Introduction

The present note is placed within the framework of Abstract Differential
Geometry expounded in [10], in combination with certain ideas from {20].

In this framework, we start with algebraized spaces, i.e., spaces not bear-
ing any smooth structure in the ordinary sense, and apply purely sheaf-
theoretic methods, without recurrence to any kind of calculus. Such spaces
include the smooth manifolds, the differential spaces in the sense of [16],
and other generalized structures, such as those of [14], [15], [17] etc. They
are also the base space of principal and vector sheaves, over which one can
extend a great part of the classical geometry of fiber bundles, in particular
the theory of connections and related topics.

This point of view seems to be advantageous especially for theoretical
physics, where the spaces involved are far from being smooth and often admit
singularities. Therefore, algebraic methods are most welcome. For relevant
comments we refer to [7] (see also [8]), as well as to [12], [13], and [11] for
recent applications of Abstract Differential Geometry in this direction.

Here we are mainly concerned with the cohomological classification of
principal and vector sheaves. Principal sheaves are meant in a slightly dif-
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ferent way than in the original definition of [6], i.e., locally they look like
sheaves of groups. This slight deviation allows one to define connections and
related geometrical objects (see [20]), a fact not considered in the fundamen-
tal work of A. Grothendieck. The main Theorem 2.9, in conjunction with
Theorem 2.6, gives a detailed account of the classification of these principal
sheaves.

On the other hand, vector sheaves and their classification have been stud-
ied by A. Mallios in [10]. However, using the (principal) sheaves of frames
associated with vector sheaves, we derive the cohomological classification
of vector sheaves from that of principal sheaves. This is the content of the
other main Theorem 3.5.

Finally, we examine the particular case of principal sheaves with abelian
structural sheaf, the former being equipped also with a connection. As we
show in Theorem 4.6, sheaves of this category admit a hypercohomologi-
cal classification with coefficients in a two-term complex, determined by an
appropriate operator of (abstract) logarithmic differential. A by-product of
this result is the classification of Mazwell fields (i.e., line sheaves equipped
with connections), also obtained straightforwardly in {10, Chap. VI, Theo-
rem 18.2]).

1. Preliminaries

For the basic theory of sheaves and their cohomology, we refer to [3], [5]
and [10, Vol. I], whose main notations and terminology are followed here.

Given a sheaf S = (S, X, ) and an open U C X, we denote by S(U)
the set of (continuous) sections of S over U. A morphism of sheaves f :
S — &' induces the corresponding morphism of presheaves (of sections)
{fv:8(U) — §'(U)}, for all open U C X.

It is often convenient to identify a sheaf with the sheaf of germs of
its sections. Similarly, a morphism f can be identified with the morphism
generated by the presheaf morphism (fy7). For simplicity, we usually write
f(s), instead of fy(s), for any section s € S(U). In this case, the difference
between the original morphism f and the induced morphism of sections will
be understood by the context or by an explicit mention of the range of the
morphism at hand.

As mentioned in the Introduction, we start with an algebraized space
(X, A), where X is a topological space and A a sheaf of associative, com-
mutative, and unital K-algebras (K = R, C) over X.

To an (X,.A), we associate a differential triad (A,d, ), where Q! is
an A-module over X, and d : A — Q! a K-linear morphism satisfying the
Leibniz condition d(a-b) = a-d(b)+b-d(a), for every (a,b) € Ax x.A. Given an
algebraized space (X,.A), we obtain a differential triad by the sheafification
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of Kahler’s theory of differentials (see [10, Chap. XI, Section 5}, [2, Chap.
3]). For many examples and other details we refer to [10, Sections V1.1, V1.2,
and Chap. X].

2. Classification of principal sheaves

In this section X is assumed to be just a topological space. It will be
completed with a differential triad in Section 4, where we introduce connec-
tions.

Fixing a sheaf of groups (G, X, mq), we give the following basic definition,
which is a slight variant of A. Grothendieck’s original one (see [6, p. 32]).

DEFINITION 2.1. A principal sheaf of structure type G and with structural
sheaf G is a sheaf of sets (P, X, w) such that:

i) G acts on the right of P.

ii) There exists a coordinatizing open covering U = {Uy, C X |a € I}
of X and corresponding isomorphisms (: coordinates) ¢ : Plu, — Glu.,
satisfying the equivariance property ¢a(s - g) = ¢a(s) - g, for every (s,g) €
(P xx G)|Ua-

For brevity, a principal sheaf as before is called a G-principal sheaf, de-
noted by P = (P, G, X, ).

The local structure of a principal sheaf implies that G acts freely on P
and freely transitively on its stalks. As a result, we obtain

LEMMA 2.2. The map k : PxxP — G, given by q = p-k(p, q), is a morphism
of sheaves satisfying equalities

k(p-9,9) =9 k(p,9); k(p,q-9)=Fk{p,q)-g-
Proof. Clearly, k is well defined by the properties of the action of G on P
mentioned before the statement. On the other hand, the set

(2.1) (P xx Plv, = 7 HUs) xu, 7~ HUsy)

is open in P xx P, for every U, € U. Then, for any p,q € (P xx P)|v.,,
we check that k(p,q) = ¢a(p)~! - da(q), thus proving the continuity of k
on (2.1), from which follows that k is a morphism. The equalities of the
statement are routinely checked. =

A coordinatizing open covering U induces the family of (local) natural
sections of P

sa=¢atolly, € PUs), ac€l,
if 1 : X — G is the unit section of G (: 1(x) := e, the neutral element of the

stalk G,). Equivalently, s, = ¢5%(1|y,) with ¢, denoting now the induced
morphism of sections.
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The same local structure induces also the I-cocycle (gag) € Z*(U,G) of
P, given by gos(z) := (¢a © ¢El)(ez), for every z € Uy := Ua NUg. It is
immediate that
(2.2) S8 = Sa * Gap-
DEFINITION 2.3. A morphism of principal sheaves (over the same base X)
(f7 é, 7'dX) : (Pa g, X) 7|') — (PI1 gla X) ﬂJ)

is determined by an ordinary morphism of sheaves of sets f : P — P’
and a morphism of sheaves of groups ¢ : G — G, related together by the
equivariance property f(p-g) = f(p) - ¢(g), for every (p,g) € P xx G.
An isomorphism is a morphism where f and ¢ are isomorphisms in their
categories.

Restricting ourselves to the category of G-principal sheaves over the same
base X, we say that two such sheaves are equivalent if they are (f, idg,idx)-
isomorphic. We obtain an equivalence relation the quotient space of which
is denoted by
(2.3) Pg(X).

LEMMA 2.4. Every morphism of the form (f,idg,idx) is an isomorphism.

Proof. Since f is a local homeomorphism, it suffices to show that f is a
bijection. First assume that f(p) = f(q), for any p,q € P. Since n(p) =
w(q) := z, there is a (unique) g € G, such that ¢ = p - g. Applying f we
see that f(p) = f(¢q) = f(p) - g, which implies that g = e, and proves the
injectivity of f.

To show that f is onto, we take an arbitrary ¢ € P’ with n'(q) = z. If
z € Uy, we consider the natural section s, € P(U,) and the element

p = $a(z) - k' (f(54(2)), 9) € P,
where k' is the analog of k for P’. Clearly f(p) =¢q. =
The following result describes the relationship between isomorphisms of

principal sheaves and cocycles, a fact which is crucial for the subsequent
(cohomological) classification of principal sheaves.

PROPOSITION 2.5. Let P, P’ be two G-principal sheaves over the same coor-
dinatizing open covering U = (Uy)aer of X. Let (sqa), (s,) be their respective
natural sections and (gog), (g'aﬁ) the corresponding cocycles. Then, for every
isomorphism of P onto P’, there exists a unique 0-cochain (hy) € CO(U,G)
satisfying equalities

(24) f(sa) = 8g * hay

(2.5) glaﬂ = ho * gop - hal,
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on Uy and Uyg respectively (a, B € I). Conversely, any 0-cochain satisfying
(2.4) determines a unique isomorphism f satisfying also (2.5).

Proof. For any = € Uy, there is a unique hq(z) € G, such that f(sa)(z) =
f(sa(z)) = s,(z) - ha(z). This determines a section hy € G(U,) satisfying
(2.4). Its continuity is a consequence of equality ho = k'0 (s, f(sa)). Apply-
ing f on both sides of (2.2), we have that f(sg) = f(sa) - gag- Substituting
f(sa) and f(sg) with their expressions given by (2.4), and using the analog
of (2.2) for P, we get (2.5).

Conversely, for each a € I, we define the map f, : Ply, — P'|u, with

(2.6) fa(p) := 54(2) - ha(2) - galz),
where z := w(p) and
2.7) 9a(z) = k(sa(z), ).

It is clear that ' 0 ¢ = 7 and fo = (s, 0 7) - (ha 0 ) - (k0 (8o 0 7,1id)),
with 7 and id now restricted on P|y,. Hence, f, is a continuous morphism
of sheaves over U,, which is also G|y, -equivariant by Lemma 2.2. Therefore,
Lemma 2.4 implies that f, is an isomorphism of principal sheaves.

On the other hand, for any p € P with 7(p) = = € U,p, we have also
the analogs of (2.6) and (2.7)

(2.6') fa(p) = sp(x) - hp(z) - gp(2),
(2.7) p = sp(z) - ga(x).
Then, (2.7) and (2.7’), along with (2.2), yield go(z) = gag(z) - ga(x). There-
fore, the last equality, the analog of (2.2) for 7/, and (2.5) imply that
$3(@) - hy () - 95(a)
= 4(2) - 0hp () - ho(®) - 99a(2) - a(2)
= 54(2) - (ha(2) - 9ap(2) - h5'(2)) - k() - gpa() - ga(2)

= 50(2) - ha(z) - ga(z),

which shows that (2.6) and (2.6") coincide on the overlapping. We obtain an
isomorphism f by gluing together all the f,’s.

Equality (2.4) is trivially satisfied. Finally, assume that there is also
another isomorphism f’ satisfying (2.4). Then, for any p as before,

f'(p) = f' (sa(z) - ga(@)) = f'(5a(2)) - ga(x)
= f(sa(2)) - ga(z) = f(3a(2) - ga(z)) = f(P);

that is, f = f’. This completes the proof. =

THEOREM 2.6. Let U be an open covering of the topological space X, which
is a basis of its topology. Then, a I-cocycle (gap) € Z1(U,G) determines a
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unique, up to isomorphism, principal sheaf (P,G, X, ) with corresponding
cocycle the given (gog)-

Proof. Let (G(Ua),{ap) be the presheaf of sections of G, with restriction
maps the group morphisms (g : G(Ua) — G(Up) : 0 — alu,, if Ug C Ul.
We consider the maps

Oaf ‘= 9Ba * (aﬂ . g(Ua) — g(Up), Uﬂ C U,.
Then, for any U, C Ug C U, and o € G(U,),

(287 © 0a8)(9) = 08y (9pex - Cap(?)) = 9v8 - Sy (98  Cap(9))
= 948 - 9B v (Cap(9)) = Gya * Car(0) = 0y (),

from which follows that go, = 0y © 0ary- Therefore, in virtue of phe hypoth-
esis about the covering, the association Uy +— G(U,) and the maps (gq3)
determine a presheaf (G(Us), 0op) Which, in turn, generates a sheaf of sets
denoted by (P, X, 7). We show that this is the sought principal sheaf.

i) There is a right action § : P x x G — P obtained as follows: for each
o € I, we define the map 84 : G(Ua) XG(Us) — G(Ua), with (0, g) :=0-g.
Each d,, is an action such that g,50080 = 850 (0as X {ap), for every Ug C Us,.
Then, § is generated by the presheaf morphism (d,).

ii) To find the local structure of P, we fix an open set U, € U. Then, all
the Upg’s, with Ug C U, form a basis of the topology of U,. For any such
Up, we define the map

(28) 'Qba,Uﬁ : g(Uﬂ) — g(Uﬂ) 10 Gap O,

whose domain is the group of sections of the presheaf (G(Uy,), pag), gener-
ating P, while its range is the group of sections of (G(Usx), {g3), generating
the group G.

It is straightforward that (2.8) is a G(Ug)-equivariant bijection, with
inverse given by 1/:;}]‘, (1) = gga " 7, for every T € G(Up). Moreover, for every
U,, with U, C Ug C U,, and any o € G(Ug),

(CBy © Ya,us) (@) = (9ap * O)lUy, = Gay - (945 - OlU,)
= 1/)oz,U—y (g'yﬂ : UIU‘Y) = (wa,U., o Qﬂv)(a)-

This shows that the family (¥a,0,) : (G(Up), 08y) — (G(Up), (py), for all Ug’s
running in Uy, is a (G(Ug))-equivariant presheaf isomorphism, generating
thus a G|y, -equivariant sheaf isomorphism ¥, : Ply, — Glv,. Therefore,
(¥a)aer is a family of coordinates of P with respect to U.

ili) Let us denote by (gos) the cocycle of P, with respect to & and the
local structure just defined. For an z € U,g, by definition, we have that
Gap(z) = (Ya 0 wgl)(ez). Since G can be identified with the sheaf of germs
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of its (continuous) sections, we may write
€r = [llu'y] = llU‘y(m)

for some U, C Uy with z € U, (which, of course, always exists). Thus,
(2.8) implies that

ap(z) = (Yo 0 P53 ) (ex) = Ya(¥5 ' (Lly, (2)))
= Ya(¥51, (v, (2)) = Ya(918(2)) = Yales) - 948(x)
= Ya(1|r,()) - g18(2) = gay(2) - 948(2) = gap(2)
Hence, (§apg) = (9ap)-
Finally, assume that there is also another principal sheaf (P',G, X, ')

with the same cocycle (gag). Since (2.5) is trivially satisfied, Proposition 2.5
implies that P and P’ are isomorphic. The proof is now complete. =

COROLLARY 2.7. Let P = (P, G, X, ) be a principal sheaf with coordinatiz-
ing covering U and cocycle (gog) € Z'(U,G). Assume that V = {V;|i € J}
is an open refinement of U, which is also a basis of the topology of X. Then
P is isomorphic to a principal sheaf P = (P,G, X, ) with coordinatizing
covering V and corresponding cocycle (gi;) € Z1(V,G), obtained by an ap-
propriate restriction of (gog)-

Proof. For arefining map 7 : J — I (: V; C U,y)), we set gij := g-i)r(5) Vi
for all 4,5 € J. We obtain a cocycle (gi;) € Z 1(V, G) inducing, by Theorem
2.6, a principal sheaf P as in the statement.

_ Let us denote by (¢:) the coordinates and by (5;) the natural sections of
P, with respect to V. For each ¢ € J, we define the isomorphism

fi = ¢75 0 6i: Plv, — Plv;
where ¢>:(1i) is, in fact, restricted on the subsheaf Glv; C Glu,,-

We shall show that f; = f; on Ply, ;- Indeed, for any p in the previous
overlapping, with 7(p) = z, there are unique a;, a; € G; such that 5;(z)-a; =
p = §j(z) - a;. Since a; = gji(z) - a;, we check that

Fi(®) = (87 0 $5)(5(2) - aj) = 6}y (Gsi(x) - as)
= $7() (@is(e) -ai = f’;&)((@u) o $7iy)(ez)) - ai
= ¢;(1i) (a;) = (4’:(1) o #;)(p) = fi(p),
as claimed. Gluing together the isomorphisms (f;) we obtain the isomor-
phism of the statement. =

A direct combination of Proposition 2.5 and Corollary 2.7 proves also
the following isomorphism criterion for principal sheaves with different co-
ordinatizing coverings.



206 E. Vassiliou

CoROLLARY 2.8. Let (P,G,X,w) be a principal sheaf with cocycle (gop)
over a coordinatizing open covering U = (Uy)aer, which is also a basis of
the topology of X. Let (Q,G, X, n') be another principal sheaf with cocycle
(Yarpr) overU' = (Uy)oer, also a basis of the topology of X. If V = (V;)iey
is a common refinement of U and U', we denote by P and Q the principal
sheaves obtained from P and Q, respectively, by restricting their cocycles on
V. Then the following conditions are equivalent:

i) P and Q are isomorphic.

il) P and Q are isomorphic.

i) Ifr:J —1Iand v :J — I are refining maps for the previous
coverings, and (3i5) = (g-a)r(5)), (Fis) = (Yr(i)r(j)) are the cocycles of P
and Q respectively, then there exists a 0-cochain (h;) € C°(V,G) such that
¥ij = hi - gij - hj_l, for everyi,j € J.

Recalling the notation (2.4), we are now in a position to prove the main
THEOREM 2.9 (Classification of principal sheaves).

Pg(X) = HY(X,G).

For details concerning the 1st cohomology set we refer to [6, Chap. V],
[9, Chap. 1], [10, Chap. III]. However, for the reader’s convenience, we recall
the following facts needed in the proof.

Let X be a topological space, U = {U, | @ € I} an open covering of it, and
G a sheaf of (not necessarily abelian) groups. Two cocycles (fag), (fo5) €
ZY(U,G) are said to be cohomologous if there is a O-cochain h = (h,) €
C°(U,G) such that fc'!B = ha - fag - h,El holds over Uyg, for all o, € I.
The equivalence class of (fqg) is denoted by [(fag)]u and the corresponding
quotient space by H(U, G).

If V = (Vi)ies is an open refinement of U, any refining map 7:J — I
induces the map

& : H'(U,G) — H'(V,9) : [(Fap)lu = [(Fryr) Iy, I
which is independent of the choice of 7. As is known,
(29 H'(X,0) := lim H'(U, ),
Uu

with U is running the set of all proper open coverings of X. For every U,
there is a canonical injection ty : H'(U,G) — H*(X,G). Then, we set

(2.10) (fep)) = tu([(fap)lur)-

Proof of Theorem 2.9. We define the map & : Pg(X) — HY(X,G) as
follows: for a class [P] € Pg(X), we set ®([P]) := [(gop)}, if U = (Ua)aer
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is an arbitrary coordinatizing open covering with corresponding cocycle
(9ap) € Z1(U,G) for the representative sheaf P.

We show that ® is well defined, i.e., independent of the choice of the
representative and its cocycle. To this end let Q@ be any principal sheaf with
[P] = [Q], whose cocycle (Yo/g) is defined over a coordinatizing covering
U = (Uy')arerr- We choose an arbitrary common refinement V CUNU', V =
(Vi)ies, forming also a basis of the topology of X . Considering any refining
maps 7:J — I and 7 : J — I’, Corollary 2.7 implies that P is isomorphic
to a principal sheaf P with corresponding cocycle (gi;) € Z*(V, G) given by

(211) 9ij = gT(i)T(j)lvij; i,j€J.

Similarly, Q is isomorphic to Q with cocycle (%;;) € Z(V,G) given by
(2.12) Yii = Yr@r@lvgs LI €T

Since, by the assumption, P = P = Q = @, Corollary 2.8 implies that
(2.13) [(i)lv = {(Fis)lv-

On the other hand, condition ¢y = ty o t“v and its analog for U’ (cf., for
instance, [1, p. 89]), along with equalities (2.9)—(2.10), imply that

(2.14) [(98)) = tu ([(9a8)lu) = (tv © &) ([(90p)}u)
=ty ([(g‘r(i)r(j)IV.'j)]V) =ty ([(G5)]v)
= tv ((35)V) = tv ([ lv))

= (tvo ) ((vs)v) = tur (Vo) et')
= [(va)l;
which proves the previous assertion.

Here it is worthy to note that, since all the cocycles used above are
taken over open coordinatizing coverings, the direct limit (2.9) should be
taken with respect to all proper (open) coordinatizing coverings U of X.
This is possible because the latter form a cofinal subset of the set of all
proper (open) coverings of X. For relevant details we refer, e.g., to [9] and
(10, Vol. I, p. 127].

To show that & is injective, assume that ®([P]) = ®([Q]), for any
[P],[Q] € Pg(X). If (gap) and (yup) are the cocycles over any open co-
ordinatizing coverings of the representatives P and Q, respectively, then
[(9a8)] = [(7ap’)]. Hence, as in the preceding part of the proof,

tv ([(grrilvis)v) = v ([ lvi)v) »
or, in virtue of (2.11) and (2.9),
tv ((@)v) = tv ((3:)lv) € H'(X, ),
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and, by the injectivity of tv, [(§i;)]lv = [(Fi;)]v. Consequently (see Corollary
2.8), PP = Q= Q, thus proving the injectivity of ®.

Finally, let [(gos)] € H'(X,G) be an arbitrarily chosen cohomology class
with the representative cocycle (g,g) defined over some open covering U
of X. If U is a basis of the topology of X, then Proposition 2.5 ensures
the existence of a principal sheaf P with ®([P]) = [(gag)]- If U is not
necessarily a basis of the topology, then we can always find a refinement V
of Y with this property. Then, taking the restriction (g;;) of (gos) on V and
the corresponding sheaf P, as in (2.11), we have that

([P)) = [(35)] = tv ([(Griayrilvis)Iv)
= (tv o ) ([(9op)lt) = tu ([(9ap)lu) = [(9ap))s
which completes the surjectivity of ® and the proof. m

3. Vector sheaves

In this section we obtain the classification of vector sheaves by applying
Theorem 2.9 to their sheaves of frames.

DEFINITION 3.1. Let (X, .A) be an algebraized space. A vector sheaf £ =
(€, X, p) of rank n is a locally free .A-module; that is, there is an open coordi-
natizing covering U = (Uy)aer of X and Ay, -isomorphisms (: coordinates)

'l,ba : 8|Ua - AnIUa = (‘A|Ua)n'

For a coordinatizing covering as before, the transformations of coordi-
nates (actually A|y, ;-isomorphisms of modules) gqs = 94 © zp[}'l define the

cocycle (gap) € Z1 (U,GL(n, A)) of £, where GL(n, A) is the general linear
group sheaf generated by the complete presheaf

X 2U — GL(n, AU)) 2 Ts0 4(A™ v, A”|0)-

Hence, gop € ISOAIuaB (A™Uag) A™Uap) = GL(n, A(Uap)) = GL(n, A)(Usp)-
Working as in the proof of Theorem 2.6, we can show that a cocycle (gog) €
GL(n, A) determines both a GL(n, A)-principal sheaf and a vector sheaf of
rank n (see also [10, Vol. 1, p. 359]). The link between these two sheaves is
provided by the sheaves of frames defined right below.

Given a vector sheaf £ (of rank n), with coordinatizing covering U, we
consider the presheaf

(3.1) Ur— ISOA|U(A"|U,£|U),

where U is running now the basis of topology B of X, consisting of the open
sets V C X such that V C U,, for some U, € U.
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We have already proved (see [18]) the following

PROPOSITION 3.2. The sheaf P(E) generated by the presheaf (3.1) is a
GL(n, A)-principal sheaf whose cocycle over U coincides with the cocycle
(9ap) of E. We call P(E) the sheaf of frames of .

COROLLARY 3.3. For any principal sheaf of the form (P,GL(n,A), X, x),
there is a vector sheaf £ such that P = P(€).

Proof. Let P be a principal sheaf as in the statement, with cocycle (gag) €
GL(n, A). Then, the same cocycle determines a vector sheaf and the sheaf
of frames P(€), both of them having as cocycle the given (gog). The result
now follows from Proposition 2.5. =

A morphism f = (f,idx) between two vector sheaves (£, X,p) and
(€', X,p') is a morphism of .A-modules. The definition of an isomorphism
between vector sheaves of rank n, over the same base X, is obvious. Analo-
gously to (2.3), we denote by
3.2) &7(X)
the set of the resulting isomorphism classes.

For an isomorphism f : £ — £’ we can prove the analog of Proposition
2.5; that is, f is completely known by a 0-cochain (hs) € C°(U,GL(n, A))
such that f|€y, = ¥, o hq 0% and g;ﬁ = ha©0gap© hEl. As a consequence,
we obtain
LEMMA 3.4. Two vector sheaves £ and &' are isomorphic if and only if their
corresponding sheaves of frames are isomorphic.

Proof. This is a result of the fact that the cocycles involved in both cases
are cohomologous via the same cochain (hy). =

We can prove now the analog of Theorem 2.9, namely the classification
of vector sheaves

THEOREM 3.5. With the notation (3.2),
&7 (X) = HY(X,GL(n, A)).
Proof. In virtue of Theorem 2.9, it suffices to show that
PU(X) = Pgrin,a)(X).

This is a consequence of Corollary 3.3 and Lemma 3.4, along with the vector
sheaf analog of Proposition 2.5. =

REMARK 3.6. A straightforward proof of Theorem 3.5, without use of prin-
cipal sheaves, is given in [10, Chap. V, Theorem 2.1]. Our approach shows
that the study of vector sheaves and their geometry can be reduced to that
of principal sheaves (see also the next section, as well as [18]).
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4. Sheaves with connections

As in Section 3, we fix an algebraized space (X,.A) together with a
differential triad (A, d,Q!). In order to define connections on a principal
sheaf P = (P,G, X, n), we need to enrich the structure of G. Thus, we
assume that the following properties are satisfied:

LSG 1. G admits a representation in an .A-module of Lie algebras L, i.e.,
there is a morphism of sheaves of groups ¢ : G — Aut(L).

LSG 2. There is a logarithmic differential 8 : G — Q! ® 4 L satisfying
(g -h)=eo(h™")-8(g9) +8(h), (9,h) €G xxG.

The first term in the right side member of the last equality denotes the
natural action of G on (the right of) Q! ® 4 £ (see [20] for details). Also,
Aut(L) is the sheaf of groups generated by the complete presheaf

U — Aut(L|y) := End(L|v),
the upper dot denoting the set of invertible endomorphisms.

DEFINITION 4.1. A sheaf of groups satisfying (LSG 1) and (LSG 2) is called
a Lie sheaf of groups. It is denoted by G = (G, p, £, 9)

A typical example is provided by the general linear group sheaf
GL(n, A) = (GL(n, A), Ad, M (A),d),

partially defined in Section 3. The matriz algebra sheaf My(.A) is generated
by the (complete) presheaf of nxn matrices U — M, (A(U)), with U running
in the topology of X. Thus, for every open U C X

GL(n, A)(U) = GL(n, A(V)) = Mn(A(U))" = Mn(A) (V)

whence, GL(n, A) = M,(A)".

The logarithmic differential 8 : GL(n, A) — Q! ®4 Mp(A) is defined
by 8(a) := a~! - d(a), where d(a) := (daij) € M,(QL(U)), for every matrix
a = (aij) € Mo(A(U)) and U C X open.

Finally, Ad : GL(n, A) — Aut(My(A)) is determined by the family of
group morphisms Ady : GL(n, A(U)) — End(M,(A)|v)" (for all open
U C X), each one of which is defined, in turn, as follows: for any a €
GL(n, A(U)), the isomorphism Ady(a) : Mp(A)ly — Mn(A)|v is given
(section-wise) by Ady(a)(b) :=a-b-a~1, for every b € M, (A(V)) and every
open V CU.

DEFINITION 4.2. An abelian Lie sheaf of groups is a Lie sheaf of groups
(G, p, L, 0), where G is a sheaf of abelian groups and p the trivial represen-
tation.
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An illustrating example is provided by the group sheaf of units A" =
(A',p', A, 0). In this case, A" = GL(1,A), p is the trivial representation,

and the logarithmic differential reduces to 8 : A" — Q! ® 4 A = Q! with
9(s) := s71 - d(s), for every s € A’ (U) and every open U C X.

e From now on we consider G-principal sheaves with G a Lie sheaf of
groups. Also, in order to facilitate our notations, we set Q!(£) :== Q' ®4 L.

DEFINITION 4.3. A connection on (P,G, X, w) is a morphism (of sheaves of
sets) D : P — Q!(L), such that D(p- g) = o(¢™!) - D(p) + 8(g), for every
(p,9) € P xxG.

Equivalently, a connection D is determined by the family of local sec-
tions, called (after the classical terminology) local connection forms, given by
wa = D(s4) € Q(L)(Ua), @ € I, and satisfying the compatibility condition
(viz. local gauge transform) wg = p(g;[;).wa + 9(gap), over each Uyg # 0.
In particular, for an abelian Lie sheaf of groups G, the previous condition
reduces to

(4.1) wg = wa + 9(gag)-

For the existence of connections on principal sheaves, various examples and
other details, we refer to [20].

On the other hand, according to [10, Vol. II}, an A-connection on a vector
sheaf £ is a K-morphism V : £ — £ ®4 Q! satisfying the Leibniz-Koszul
condition V(a - s) = a- Vs + s @ da, for every (a,s) € Axx €.

The relationship between connections on principal and vector (or, more
general, associated) sheaves has been studied in [18], [21]. In particular, we
have shown that there exists a bijection

(%) {A-connections V on £} — {connections D on P(€)}

DEFINITION 4.4. Let P and P’ be two principal sheaves with the same struc-
tural sheaf G = (G, p, £, 0) and base X, equipped with the connections D
and D' respectively. We say that (P, D) and (P’, D’) are (gauge) equiva-
lent if there is an isomorphism of principal sheaves f : P — P’ such that
D=Dof.

Over a common coordinatizing covering U for both P and P’, we have
already proved (see {19, Theorem 3.9]) the following criterion of equivalence.
In case of different coordinatizing coverings, we may take a common refine-
ment and consider the equivalent principal sheaves of Corollaries 2.7 and
2.8.

LEMMA 4.5. (P, D) and (P',D’) are equivalent if and only if there erists a
0-cochain (ha) € CO(U, G) such that equalities
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(4.2) . 9hp = ho - Gap - B3

(4.3) ‘ wa = p(hg") W + 8(ha)
hold on Uyg and U, respectively, for every o, 3 € I.

Similarly to (2.3), we denote by Pg(X)P the set of equivalence classes
derived from Definition 4.4. On the other hand,
H(X,6 -2l

stands for the (Cech) 1-dimensional hypercohomology group with coefficients
in the 2-term complex 8 : G — QI(L) (see [4, p. 21], {10, Vol. I, p. 224)).
Hence, based on the mechanism of [10, Chap. VI, Theorem 18.2], we are in
a position to prove the following

THEOREM 4.6. If G is an abelian Lie sheaf of groups, then
Py(X)P = EH'(X,6 -5 l(L)).

Proof. Since we consider only the 1-dimensional hypercohomology with
coefficients in the complex 8 : G — Q!(L), we may consider the following
diagram, where the rectangle (I) is commutative

0 0
0 0
0,1 1,1
CO (u’ Ql(ﬁ)) L Cl (U, Ql(ﬁ)) ]
dO,OT= o (I) a0 =9
I 50’0 | 510
c°W,9) cY(U,G) CU,G) — -

The horizontal morphisms are the usual coboundary operators and the ver-
tical ones are those induced by . As a result, we obtain the (total) complex

1] 1 2
SO LD, g1 D g2 D7,

with §° = COWU,G), St = CY(U,G) ® C° (U, QL(L)), S = C(U,G) @
C! (U,9(L)), D° = %0+ 9 and D* = (610 — 8) + 6%. By an easy compu-
tation we verify that

(4-4) Ker(D!) = Ker(6'° — 8) @ Ker(61),
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(4.5) Im(D°) = Im(5°°) @ Im(d).
Therefore,
1,0 _ T 0,1
101,62 01(2) = Ker(D1) () = KOO ZD) G Ker(6%),

We choose now a pair (P, D). The principal sheaf P determines a cocycle
(9ag) € ZYU,G) € C*(U,G), while D defines the local connection forms
(wa) € CO(U, QY(L)), satisfying (4.1). The same equality implies that

(4.6) 9((9ap)) = 8" (wa)) -

Hence, applying D! on the pair ((gos), (Wa)), and taking into account (4.4)
and (4.6) along with the cocycle condition of (gag), We see that

D' ((gap)s (wa)) = (67 ((908)) = 8 ((9a8))) + 8" (wa))
= 6"°((9ap)) = 9ap - 9y * Gva = 0,
which shows that ((gag), (wa)) € Ker(D?), thus determining the class
(908, (wa))ly € H'U,G = QN(L)
and the corresponding class [((gag), (wa))] € HY(X,G -2, Q!(£)). This

allows one to define the map
& : Pg(X)P 3 (P, D)] — [((9ap), (wa))] € HY(X, G -2 QH(L)).

i) ® is well defined. Assume that (P, D) and (P’,D’) are equivalent.
Taking a common coordinatizing covering for both principal sheaves, Propo-
sition 2.5 implies that g3 = ha - gap - h3' = (hoa - h3") - gap, thus

(47) (94s) - (925) = 8 ((h3H)) -
The same Proposition, in conjunction with the definition of 0, yields
(4.8) (wh — wa) = (=8(ha)) = B ((h31)) -

Hence, to prove our claim, it suffices to show that

[((9ap), ()l = [((ghg); (Wh))],, € Ker(D!)/Im(DO),

or, equivalently, ((g)), (w4)) = ((dag)s (wa)) = ((ghs — 9a)s (s — wa) €
Im(DY). This is indeed the case, since (4.7), (4.8) and (4.5) (or the definition
of DY), along with the commutativity of G (whence the equivalent use of
multiplicative and additive notations), lead to

((95p = 9ap), (we — wa)) = (6*°(h3 1)), 8(h3 1))
= (8%9,8)((ha")) = D°((h31))-
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Note that if we use different coordinatizing covers, then we obtain equal
classes in the direct limit, working as in the proof of Theorem 2.9.

ii) @ is injective. This is proved by the same arguments, as before, in a
reverse way (see also the proof of Theorem 2.9).

iii) ® is surjective. To this end let us take an arbitrary element of
HY(X,6 % Q!(L)), represented by the class [((gas), (wa))l, Of a pair

((908), (wa)) € CYU,G) ® CO(U,Q(L)). Therefore, equalities
0= D' ((gap); (wa)) = (6"°,0) ((9ap)) + 8”* ((wo))

= 62 ((9ag)) + (=0 ((90p)) + 6™ ((wa)))
together with (4.2), imply that

(4.9) 8% ((9ap)) =0,

(4.10) 9 ((9ap)) = 0% (wa)) -

From (4.9), it follows that gag - ggy = gay, i-€., (gag) € Z*(U,G), which
determines a G-principal sheaf P with cocycle (g.g) (see Theorem 2.6). On
the other hand, (4.10) yields 8 ((gag)) = (8(gag)) = 6% (wa)) = (ws — wa),
that is, wg = wa+9(gap), for every a, 8 € I. This is precisely (4.1), which is
equivalent to the existence of a connection D on P. Therefore, ® ([(P, D)]) =
[((9ap); (wa))], by which we complete the proof.

In particular, taking as G the abelian sheaf of groups .A’, we obtain
COROLLARY 4.7. The following isomorphism holds true:
PP = (X, 4 L ).
For our final result we need

DEFINITION 4.8. A line sheaf is a vector sheaf of rank 1. Furthermore, in
the terminology of [10, Vol. II, p. 94], a Mazwell field is a pair (£, V), where
£ is a line sheaf and V an A-connection on it.

Line sheaves are classified by #4(X) = H(X, A") (cf. Theorem 3.2).
Moreover, in analogy with Definition 4.4, two Maxwell fields (£, V) and
(&', V') (over X) are said to be equivalent if there is an isomorphism of line
sheaves f : £ — &' such that

Vof=(f®lgn)oV.
The set of resulting classes is denoted by #1 (X )V. Therefore, we obtain
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COROLLARY 4.9. The following classification of Mazwell fields holds true:

ey (X)" = H'(X,A 5 ab).
Proof. The conclusion is a consequence of Corollaries 3.3 and 4.7, taking
also into account Lemma 3.4 and the bijection (x). =

REMARK 4.10. A direct proof of the previous Corollary (without recurrence
to principal sheaves) is given in [10, Vol. II, p. 175]. In the latter, line sheaves
are denoted by L, a notation reserved here for the sheaves of Lie algebras £
introduced in the beginning of this section.
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