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ON T H E COHOMOLOGY AND GEOMETRY 
OF PRINCIPAL SHEAVES 

Abstract . We study the cohomological classification of principal sheaves, the latter 
being defined in a slightly different way than in [6], a fact allowing to consider on them 
geometrical objects like connections. The classification of vector sheaves (studied in [10]) 
is now a corollary of the classification of their principal sheaves of frames. In particular, 
principal sheaves with an abelian structural sheaf, equipped (the former) with a connec-
tion, admit a hypercohomological classification generalizing that of Maxwell fields given 
in [10]. 

Introduction 
The present note is placed within the framework of Abstract Differential 

Geometry expounded in [10], in combination with certain ideas from [20]. 
In this framework, we start with algebraized spaces, i.e., spaces not bear-

ing any smooth structure in the ordinary sense, and apply purely sheaf-
theoretic methods, without recurrence to any kind of calculus. Such spaces 
include the smooth manifolds, the differential spaces in the sense of [16], 
and other generalized structures, such as those of [14], [15], [17] etc. They 
are also the base space of principal and vector sheaves, over which one can 
extend a great part of the classical geometry of fiber bundles, in particular 
the theory of connections and related topics. 

This point of view seems to be advantageous especially for theoretical 
physics, where the spaces involved axe far from being smooth and often admit 
singularities. Therefore, algebraic methods are most welcome. For relevant 
comments we refer to [7] (see also [8]), as well as to [12], [13], and [11] for 
recent applications of Abstract Differential Geometry in this direction. 

Here we are mainly concerned with the cohomological classification of 
principal and vector sheaves. Principal sheaves are meant in a slightly dif-
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ferent way than in the original definition of [6], i.e., locally they look like 
sheaves of groups. This slight deviation allows one to define connections and 
related geometrical objects (see [20]), a fact not considered in the fundamen-
tal work of A. Grothendieck. The main Theorem 2.9, in conjunction with 
Theorem 2.6, gives a detailed account of the classification of these principal 
sheaves. 

On the other hand, vector sheaves and their classification have been stud-
ied by A. Mallios in [10]. However, using the (principal) sheaves of frames 
associated with vector sheaves, we derive the cohomological classification 
of vector sheaves from that of principal sheaves. This is the content of the 
other main Theorem 3.5. 

Finally, we examine the particular case of principal sheaves with abelian 
structural sheaf, the former being equipped also with a connection. As we 
show in Theorem 4.6, sheaves of this category admit a hypercohomologi-
cal classification with coefficients in a two-term complex, determined by an 
appropriate operator of (abstract) logarithmic differential. A by-product of 
this result is the classification of Maxwell fields (i.e., line sheaves equipped 
with connections), also obtained straightforwardly in [10, Chap. VI, Theo-
rem 18.2]). 

1. Preliminaries 
For the basic theory of sheaves and their cohomology, we refer to [3], [5] 

and [10, Vol. I], whose main notations and terminology are followed here. 
Given a sheaf S = (<S, X, 7r) and an open U C X, we denote by S(U) 

the set of (continuous) sections of S over U. A morphism of sheaves / : 
S —• <S' induces the corresponding morphism of presheaves (of sections) 
{fu • S(U) -> S'(U)}, for all open U C X. 

It is often convenient to identify a sheaf with the sheaf of germs of 
its sections. Similarly, a morphism / can be identified with the morphism 
generated by the presheaf morphism (fu)- For simplicity, we usually write 
f{s), instead of fu(s), for any section s 6 S(U). In this case, the difference 
between the original morphism / and the induced morphism of sections will 
be understood by the context or by an explicit mention of the range of the 
morphism at hand. 

As mentioned in the Introduction, we start with an algebraized space 
(X, A), where X is a topological space and A a sheaf of associative, com-
mutative, and unital K-algebras (K = R, C) over X. 

To an (X, «4), we associate a differential triad (A, d, Q1), where fi1 is 
an A-module over X, and d : A —> fi1 a K-linear morphism satisfying the 
Leibniz condition d(a-b) = a-d(b)+b-d(a), for every (a, b) G Ax.xA. Given an 
algebraized space (X, A), we obtain a differential triad by the sheafification 
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of Kahler's theory of differentials (see [10, Chap. XI, Section 5], [2, Chap. 
3]). For many examples and other details we refer to [10, Sections VI. 1, VI.2, 
and Chap. X]. 

2. Classification of principal sheaves 
In this section X is assumed to be just a topological space. It will be 

completed with a differential triad in Section 4, where we introduce connec-
tions. 

Fixing a sheaf of groups (G, X, ttg), we give the following basic definition, 
which is a slight variant of A. Grothendieck's original one (see [6, p. 32]). 

DEFINITION 2.1 . A principal sheaf of structure type Q and with structural 
sheaf Q is a sheaf of sets (V, X, 7r) such that: 

i) Q acts on the right of V. 
ii) There exists a coordinatizing open covering U = {U a C X \ a 6 1} 

of X and corresponding isomorphisms (: coordinates) <pa : V\ua G\ua> 
satisfying the equivariance property 4>a(s • g) = <f)a(s) • g, for every (s,g) e 
(P*xG)\ua. 

For brevity, a principal sheaf as before is called a ¿/-principal sheaf, de-
noted by V = (V, G, X, TT). 

The local structure of a principal sheaf implies that Q acts freely on V 
and freely transitively on its stalks. As a result, we obtain 

LEMMA 2.2 . The map k : VxxV —+ G, given byq = p-k(p, q), is a morphism 
of sheaves satisfying equalities 

Hp -9,q) = 9~l • *(p> q); *(p, 9 • 9) = fc(p, q) • 9-
P r o o f . Clearly, k is well defined by the properties of the action of Q on V 
mentioned before the statement. On the other hand, the set 

(2.1) (V xx V)\Ua = 7r\ua) xUa *-\Ua) 

is open in V Xx V, for every Ua e U. Then, for any p, q € {V xxV)\ua, 
we check that k(p,q) = <f>a{p)~l • 4>a(q), thus proving the continuity of fc 
on (2.1), from which follows that k is a morphism. The equalities of the 
statement axe routinely checked. • 

A coordinatizing open covering U induces the family of (local) natural 
sections of V 

sa = 4>~1 ol\UaeV{Ua), a el, 

if 1 : X —> G is the unit section of Q (: l (x) := ex, the neutral element of the 
stalk Gx)• Equivalently, sa = 0Q1(l|[/a) (f>a denoting now the induced 
morphism of sections. 
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The same local structure induces also the 1-cocycle (gaß) G Zl(U,Q) of 
V, given by gaß(x) := (4>a o <f>ßl)(ex), for every x G Uaß := Ua n Uß. It is 
immediate that 

(2.2) Sß = sa- gaß. 

DEFINITION 2.3. A morphism of principal sheaves (over the same base X) 

i f A M x ) : (P,G,X,n) —> (V',g',xy) 
is determined by an ordinary morphism of sheaves of sets / : V —* V 
and a morphism of sheaves of groups <f> : Q —• Q', related together by the 
equivariance property f(p • g) = f(p) • (f>(g), for every (p, g) G V Xx Q-
An isomorphism is a morphism where / and (j> are isomorphisms in their 
categories. 

Restricting ourselves to the category of ^-principal sheaves over the same 
base X, we say that two such sheaves are equivalent if they are (/ , idg, idx)-
isomorphic. We obtain an equivalence relation the quotient space of which 
is denoted by 
(2.3) Pg{X). 

LEMMA 2.4. Every morphism of the form (f,idg,idx) is an isomorphism. 

P r o o f . Since / is a local homeomorphism, it suffices to show that / is a 
bijection. First assume that f(p) = f(q), for any p,q E V. Since ir(p) = 
7T(q) :— x, there is a (unique) g € Qx such that q = p • g. Applying / we 
see that f(p) = /(?) = f(p) • g, which implies that g = ex and proves the 
injectivity of / . 

To show that / is onto, we take an arbitrary q 6 V with 7r'(q) = x. If 
x G Ua, we consider the natural section sa G V(Ua) and the element 

p := sa(x) • k' (f(sa(x)), q) G Vx, 

where k' is the analog of k for V'. Clearly f(p) = q. m 

The following result describes the relationship between isomorphisms of 
principal sheaves and cocycles, a fact which is crucial for the subsequent 
(cohomological) classification of principal sheaves. 

PROPOSITION 2.5. Let V, V be two Q-principal sheaves over the same coor-
dinatizing open covering U = (Ua)aei o f X . Let (sa), (s'a) be their respective 
natural sections and (gaß)> (g'aß) the corresponding cocycles. Then, for every 
isomorphism of V onto V', there exists a unique 0-cochain (ha) G C°(U, Q) 
satisfying equalities 

(2.4) f(sa) = s'a • ha, 
(2.5) g'aß = ha • gaß • hß1, 
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on Ua and Uap respectively (a, ¡3 € I). Conversely, any O-cochain satisfying 
(2.4) determines a unique isomorphism f satisfying also (2.5). 

P r o o f . For any x G Ua, there is a unique ha(x) G Qx such that f(sa)(x) = 
f(sa{x)) = s'a(x) • ha(x). This determines a section ha G Q(Ua) satisfying 
(2.4). Its continuity is a consequence of equality hQ = k'o(s'a, f(sa)). Apply-
ing / on both sides of (2.2), we have that f(sp) = f(sa) • gap- Substituting 
f(sa) and f(sp) with their expressions given by (2.4), and using the analog 
of (2.2) for V , we get (2.5). 

Conversely, for each a G / , we define the map fQ •'P\ua —*V\ua with 

It is clear that 7r' o <j>Q = 7r and fQ = (s^ o 7r) • (ha o n) • (k o (sa o ir,id)), 
with 7r and id now restricted on V\ua- Hence, fa is a continuous morphism 
of sheaves over Ua, which is also Q\ua-equivariant by Lemma 2.2. Therefore, 
Lemma 2.4 implies that fQ is an isomorphism of principal sheaves. 

On the other hand, for any p G V with 7r(p) = x G Uap, we have also 
the analogs of (2.6) and (2.7) 

Then, (2.7) and (2.7'), along with (2.2), yield ga(x) = gap{x) • gp{x). There-
fore, the last equality, the analog of (2.2) for V , and (2.5) imply that 

s'p(x) • hp(x) • gp{x) 

= s'a(x) • 9a0(x) • hpix) • 9pa(x) • ga(x) 

= s'a(x) • (ha(x) • gap{x) • h^x(x)) • hp{x) • gpa{x) • ga(x) 

= s'Q(x) • h a (x ) -g a (x ) , 

which shows that (2.6) and (2.6') coincide on the overlapping. We obtain an 
isomorphism / by gluing together all the f a ' s . 

Equality (2.4) is trivially satisfied. Finally, assume that there is also 
another isomorphism / ' satisfying (2.4). Then, for any p as before, 

f'(p) = f M x ) • ga(x)) = f'(sa(x)) • ga(x) 

= f(sa(x)) • ga{x) = f(sa(x) • ga{x)) = f(p); 
that is, / = / ' . This completes the proof. • 
THEOREM 2.6. Let li be an open covering of the topological space X, which 
is a basis of its topology. Then, a 1-cocycle (gap) G Zl(U,Q) determines a 

fa(p) •= s'Q(x) • ha(x) • ga(x), 

ga(x) = k(sQ(x),p). 

(2.6') 

(2.7') 
fp(p) = «¡s(s) • • 9p(x), 

P = sp(x) • gp{x). 
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unique, up to isomorphism, principal sheaf (V, Q, X, ir) with corresponding 
cocycle the given (gap)-

P r o o f . Let (G(Ua),(ap) be the presheaf of sections of Q, with restriction 
maps the group morphisms (ap : G(Ua) —• G(Up) : cr h-> cr\u0, if Up C Ua. 
We consider the maps 

Qap •= 9pa • Cap : G(Ua) —• G(Up), Up C Ua. 
Then, for any Uy C Up C UQ and a e G(Ua), 

{&p7 0 Qap)(cr) = 6/3-y (9pa ' Ca/3^)) = 9fP ' C/37 (dPa ' (ap(°)) 
= 9fP • 9Pa • Cp-r (Ca/j(c)) = 9ia ' Ca7(^) = 0a7(o"), 

from which follows that gay = o gay. Therefore, in virtue of the hypoth-
esis about the covering, the association Ua > G(Ua) and the maps (gap) 
determine a presheaf (G(U a ) , gap) which, in turn, generates a sheaf of sets 
denoted by (V, X, it). We show that this is the sought principal sheaf. 

i) There is a right action 6 : V Xx G > V obtained as follows: for each 
a 6 / , we define the map : G(Ua)xG(Ua) —• G(Ua), with 6a{a,g) := cr-g. 
Each 8a is an action such that gQpo5a = Spo(gQp x Ca/g), for every Up C Ua. 
Then, 6 is generated by the presheaf morphism (5a). 

ii) To find the local structure of V, we fix an open set Ua G U. Then, all 
the ¡70's, with Up C Ua, form a basis of the topology of Ua. For any such 
Up, we define the map 

(2.8) ^ : G(Up) —• G(Up) : a i—> gap • a, 

whose domain is the group of sections of the presheaf (G(U a ) , Qap), gener-
ating V, while its range is the group of sections of (G(Ua),(ap)i generating 
the group G-

It is straightforward that (2.8) is a G(Up)-equivariant bijection, with 
inverse given by ^ " ^ ( r ) = gpa • r , for every r 6 G(Up). Moreover, for every 
C/7, with i/7 C Up C Ua, and any a € G{Up), 

(Cpy 0 ^a.Up)^) = (9aP • = 0a7 ' (9yP • f/7) 
= ^a,u^(9fp • <r\uj = O gp1)(a). 

This shows that the family (ipa,Up) '• (G{Up), gp7) —• (G{Up), (py), for all Up's 
running in Ua, is a (¿/(f/^-equivariant presheaf isomorphism, generating 
thus a G|ua-equivariant sheaf isomorphism : V\ua G\ua• Therefore, 
(ipa)aei is a family of coordinates of V with respect to U. 

iii) Let us denote by (gap) the cocycle of V, with respect to U and the 
local structure just defined. For an i G Uap, by definition, we have that 
9ap(x) = (i>a

 0 ipp1)(ei)- Since G can be identified with the sheaf of germs 
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of its (continuous) sections, we may write 

ex = [l|t/7] = l|t/7(z) 
for some C/7 C Uap with x e C/7 (which, of course, always exists). Thus, 
(2.8) implies that 

§afi(x) = (tpa o Tjjpl)(ex) = ll>a(lpp l(l\Uy(x))) 

= VfeWkK^lM*)) ) = Tpa(9-,p{x)) = Ipaifix) ' 
= V»a(l|Kyi®)) • 9ip(x) = gay(x) • g^{x) = gap{x) 

Hence, (gap) = (gaj3). 
Finally, assume that there is also another principal sheaf (V, Q, X, n') 

with the same cocycle (gap). Since (2.5) is trivially satisfied, Proposition 2.5 
implies that V and V' are isomorphic. The proof is now complete. • 
COROLLARY 2.7. Let V = (V, Q, X , ir) be a principal sheaf with coordinatiz-
ing covering U and cocycle (gap) € Zl(U,Q). Assume that V = {Vi |z 6 J } 
is an open refinement ofU, which is also a basis of the topology of X . Then 
V is isomorphic to a principal sheaf V = (V, Q, X , n) with coordinatizing 
covering V and corresponding cocycle (cjij) € Zl(V, Q), obtained by an ap-
propriate restriction of (gap) • 

Proo f . For a refining map r : J I (: Vi C we set gij := 5T(i)T(j)lvy> 
for all i,j G J . We obtain a cocycle (§ij) € Zl(V,Q) inducing, by Theorem 
2.6, a principal sheaf V as in the statement. 

Let us denote by (</>j) the coordinates and by (sj) the natural sections of 
V, with respect to V. For each i e J, we define the isomorphism 

fi •= </>;(•) ° 4>i • v\Vi — v\Vi 

where is, in fact, restricted on the subsheaf Q\vi Q G\uT(iy 
We shall show that fi = f j on . Indeed, for any p in the previous 

overlapping, with 7f(p) = x, there are unique Oj, aj € Qx such that Sj(x) aj = 
p = Sj(x) • aj. Since aj = gji(x) • ai, we check that 

fj(p) = (<t>T(j) 0 4>i)(sj(x) ' a j ) = K(j) (9ji(x) • 

= K(j) (9ji(x)) ' ai = Ku^rij) 0 #T(i)Xe*))' a* 

= K(i)(ai) = (C(i) 0 &)(*>) = /i(p). 
as claimed. Gluing together the isomorphisms ( f i ) we obtain the isomor-
phism of the statement. • 

A direct combination of Proposition 2.5 and Corollary 2.7 proves also 
the following isomorphism criterion for principal sheaves with different co-
ordinatizing coverings. 
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COROLLARY 2.8. Let (P,G,X,TT) be a principal sheaf with cocycle (gaß) 
over a coordinatizing open covering U = (C/Q)Qe/, which is also a basis of 
the topology of X. Let (Q,G,X, n') be another principal sheaf with cocycle 
{la'ß') overU' = (Uai)ai€jt, also a basis of the topology of X. If V = (Vi)j6j 
is a common refinement of U and U', we denote by V and Q the principal 
sheaves obtained from V and Q, respectively, by restricting their cocycles on 
V. Then the following conditions are equivalent: 

i) V and Q are isomorphic. 
ii) V and Q are isomorphic. 
iii) If T : J —> I and r ' : J —> I' are refining maps for the previous 

coverings, and (§ij) := (gT(i)T(j)), (lij) •= (7r'(i)r'(j)) are the cocycles of V 
and Q respectively, then there exists a 0-cochain (h{) € C°(V,G) such that 
lij = K • gij • hj1, for every i,j € J. 

Recalling the notation (2.4), we are now in a position to prove the main 

THEOREM 2.9 (Classification of principal sheaves). 

Pg(X)^H1(X,G). 

For details concerning the 1st cohomology set we refer to [6, Chap. V], 
[9, Chap. 1], [10, Chap. III]. However, for the reader's convenience, we recall 
the following facts needed in the proof. 

Let X be a topological space, U = {Ua \ a € 1} an open covering of it, and 
Q a sheaf of (not necessarily abelian) groups. Two cocycles (faß) > (faß) e 

Zl(JA, Q) are said to be cohomologous if there is a 0-cochain h = (ha) € 
C°(U,Q) such that f'aß = ha • faß • hß1 holds over Uaß, for all « , / ? € / . 
The equivalence class of (faß) is denoted by [(faß)]u and the corresponding 
quotient space by Hl{U, Q). 

If V = (VI)IEJ is an open refinement of U, any refining map r : J —• I 
induces the map 

# : H\U,Q) —• H\V,G) : [(faß)]u — [(fr(i)rU))\Vij}v, 
which is independent of the choice of r . As is known, 

(2.9) Hl(X,G) := l i m f f 1 ^ ) , 
u 

with U is running the set of all proper open coverings of X. For every hi, 
there is a canonical injection tu : Hl(U, Q) —• H1(X, Q). Then, we set 

(2-10) [(faß)} := tu([(faß)]u). 

Proo f of T h e o r e m 2.9. We define the map $ : Pg(X) Hl(X,Q) as 
follows: for a class [P] G Pg(X), we set $([P]) := [(&*/?)], if U = (UQ)aeI 
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is an arbitrary coordinatizing open covering with corresponding cocycle 
{daß) € Q) for the representative sheaf V. 

We show that $ is well defined, i.e., independent of the choice of the 
representative and its cocycle. To this end let Q be any principal sheaf with 
[V] = [Q], whose cocycle ("fa'ß') is defined over a coordinatizing covering 
W — (Ua')a'el'- We choose an arbitrary common refinement V C UriU', V = 
(^i)ieJ) forming also a basis of the topology of X. Considering any refining 
maps r : J —• I and r ' : J —> / ' , Corollary 2.7 implies that V is isomorphic 
to a principal sheaf V with corresponding cocycle (<jij) E Zl(V, Q) given by 

(2- l l) 9ij = 9r{i)T{j) Wij i i,j e J. 

Similarly, Q is isomorphic to Q with cocycle (7^) G Zl{V, Q) given by 
(2-12) % = 0V'(i)T'(j) \Vij i i,j e J. 
Since, by the assumption, V = V = Q = Q., Corollary 2.8 implies that 

(2-13) [(Sn)]v = [(7ü)]v-
On the other hand, condition tu = iy 0 a n d its analog for U' (cf., for 
instance, [1, p. 89]), along with equalities (2.9)-(2.10), imply that 
(2.14) [(gaß)} = t u ([(<M)]W) = (tv o ([(gaßM 

= tv ([(pr(i)rü)lvy)]v) = ([(öij)]v) 

= ([(7tj)]v) = tV ([(Tr'COr'ÜjlVijOlv) 

= (tV O iy ') ([(7a'/3')]v) = tU> ([(7a'ß')}w) 

= Klcc'ß')], 

which proves the previous assertion. 
Here it is worthy to note that, since all the cocycles used above are 

taken over open coordinatizing coverings, the direct limit (2.9) should be 
taken with respect to all proper (open) coordinatizing coverings U of X. 
This is possible because the latter form a cofinal subset of the set of all 
proper (open) coverings of X. For relevant details we refer, e.g., to [9] and 
[10, Vol. I, p. 127]. 

To show that $ is injective, assume that $([7-*]) = $([Q]), for any 
[P], [Q] 6 Pg(X). If ( g a ß ) and ("fa'ß') are the cocycles over any open co-
ordinatizing coverings of the representatives V and Q, respectively, then 
[(pa/?)] = [(7a'/?')]- Hence, as in the preceding part of the proof, 

tv ([(3r(t)T(j)lvi;/)]v) = tv ([(7r'(i)r'0)l^)]v) , 
or, in virtue of (2.11) and (2.9), 

tv ( M v ) = tv ([(7ii)]v) € H\X, <?), 
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and, by the injectivity of ty, [(<7ij)]v = [{lij)]v- Consequently (see Corollary 
2.8), V = P = Q = Q, thus proving the injectivity of 

Finally, let [{gap)\ S H1(X, Q) be an arbitrarily chosen cohomology class 
with the representative cocycle (gap) defined over some open covering U 
of X . If U is a basis of the topology of X , then Proposition 2.5 ensures 
the existence of a principal sheaf V with ^([P]) = [(ga0)]- If U is not 
necessarily a basis of the topology, then we can always find a refinement V 
of U with this property. Then, taking the restriction (gij) of (gap) on V and 
the corresponding sheaf V, as in (2.11), we have that 

^ ( ^ ] ) = M = i v ( [ ( i 7 r ( i ) r O - ) k ) ] v ) 

= (*v ° *v) ([(<M)M = tu ([(gap)]u) = [(<M)], 

which completes the surjectivity of $ and the proof. • 

3. Vector sheaves 
In this section we obtain the classification of vector sheaves by applying 

Theorem 2.9 to their sheaves of frames. 

DEFINITION 3 .1 . Let (X,A) be an algebraized space. A vector sheaf £ = 
(£, X, p) of rank n is a locally free A-module; that is, there is an open coordi-
nat ing covering U = (Ua)ael of X and A\ua-isomorphisms (: coordinates) 
•>P«:e\Ua^An\Ua^(A\Ua)n. 

For a coordinatizing covering as before, the transformations of coordi-
nates (actually A\uap-isomorphisms of modules) gaQ := if)a 0 ipp1 define the 
cocycle (gap) 6 Zl (U,QC{n,A)) of £, where Q£(n,A) is the general linear 
group sheaf generated by the complete presheaf 

X DU i—> GL(n,A(U)) S I s o ^ ^ l t / , ^ » . 

Hence, gaj3 G I s o ^ ^ l ^ , ^ " ! ^ ) ^ GL(n, A{Uap)) ^ g£(n,A)(Uap). 
Working as in the proof of Theorem 2.6, we can show that a cocycle (gap) £ 
QC(n, A) determines both a Q£(n, ,4)-principal sheaf and a vector sheaf of 
rank n (see also [10, Vol. 1, p. 359]). The link between these two sheaves is 
provided by the sheaves of frames defined right below. 

Given a vector sheaf £ (of rank n), with coordinatizing covering U, we 
consider the presheaf 

(3.1) U^IsoAlu(An\u,£\u), 

where U is running now the basis of topology B of X, consisting of the open 
sets V C X such that V C Ua, for some Ua G U. 
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We have already proved (see [18]) the following 
PROPOSITION 3.2 . The sheaf V{£) generated by the presheaf (3.1) is a 
QC(n, A)-principal sheaf whose cocycle over U coincides with the cocycle 
(.9aß) °f £• We call V{£) the sheaf of frames of £. 
COROLLARY 3.3. For any principal sheaf of the form (P,QC(n,A),X,-K), 
there is a vector sheaf £ such that V = P(£). 
Proo f . Let V be a principal sheaf as in the statement, with cocycle {gaß) £ 
Q£(n,A). Then, the same cocycle determines a vector sheaf and the sheaf 
of frames V(£), both of them having as cocycle the given (gaß)- The result 
now follows from Proposition 2.5. • 

A morphism / = ( f , i d x ) between two vector sheaves (£,X,p) and 
(£',X,p') is a morphism of «4-modules. The definition of an isomorphism 
between vector sheaves of rank n, over the same base X, is obvious. Analo-
gously to (2 .3 ) , we denote by 
(3 .2) *\{X) 
the set of the resulting isomorphism classes. 

For an isomorphism / : £ —* £' we can prove the analog of Proposition 
2.5; that is, / is completely known by a 0-cochain (ha) e C°(U, QC(n, >1)) 
such that f\£ua = ip'a ° ha o ipa and g'aß = ha o gaß o hß1. As a consequence, 
we obtain 
LEMMA 3 .4 . Two vector sheaves £ and £' are isomorphic if and only if their 
corresponding sheaves of frames are isomorphic. 
Proo f . This is a result of the fact that the cocycles involved in both cases 
are cohomologous via the same cochain (ha). • 

We can prove now the analog of Theorem 2.9, namely the classification 
of vector sheaves 
THEOREM 3 .5 . With the notation (3 .2 ) , 

Proo f . In virtue of Theorem 2.9, it suffices to show that 

This is a consequence of Corollary 3.3 and Lemma 3.4, along with the vector 
sheaf analog of Proposition 2.5. • 
REMARK 3.6 . A straightforward proof of Theorem 3 .5 , without use of prin-
cipal sheaves, is given in [10, Chap. V, Theorem 2.1]. Our approach shows 
that the study of vector sheaves and their geometry can be reduced to that 
of principal sheaves (see also the next section, as well as [18]). 
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4. Sheaves with connections 
As in Section 3, we fix an algebraized space (X,A) together with a 

differential triad (A,d,Q.1). In order to define connections on a principal 
sheaf V = (V, G, X, TT), we need to enrich the structure of Q. Thus, we 
assume that the following properties are satisfied: 
LSG 1. Q admits a representation in an ,4-module of Lie algebras £ , i.e., 
there is a morphism of sheaves of groups Q : Q —> Aut{C). 

LSG 2. There is a logarithmic differential d : Q —• ii1 ® A C satisfying 

d(g • h) = eih-1) • d{g) + d(h), (g, h)eQxx Q. 

The first term in the right side member of the last equality denotes the 
natural action of Q on (the right of) Q1 C (see [20] for details). Also, 
Aut(C) is the sheaf of groups generated by the complete presheaf 

U i—• Aut(£|{/) := End(£|i/)', 

the upper dot denoting the set of invertible endomorphisms. 

DEFINITION 4 .1 . A sheaf of groups satisfying ( L S G 1) and ( L S G 2 ) is called 
a Lie sheaf of groups. It is denoted by Q = (Q, p, C, d) 

A typical example is provided by the general linear group sheaf 

GC(n,A) = (&£(n, A), Ad, Mn(A), d), 
partially defined in Section 3. The matrix algebra sheaf M.n(A) is generated 
by the (complete) presheaf of nxn matrices U H-> Mn(A(U)), with U running 
in the topology of X. Thus, for every open U C X 

gC(n,A)(U) a GL(n, A(U)) = Mn(A{U))' S* Mn(AY(U), 

whence, QC(n,A) = Mn(A)'. 
The logarithmic differential d : QC(n,A) —• fl1 Mn(A) is defined 

by d(a) := a - 1 • d(a), where <f(a) := (da^) G M„(ii1(i7)), for every matrix 
a = (aij) G Mn(A(U)) and U C X open. 

Finally, Ad : QC(n,A) —• Aut(Mn(A)) is determined by the family of 
group morphisms Adj/ : GL(n, A(U)) —> End(A^nM)|t/)' (for all open 
U C X), each one of which is defined, in turn, as follows: for any a G 
GL(n,A(U)), the isomorphism Ad[/(a) : Mn{A)\u Mn(A)\u is given 
(section-wise) by Ad[/(a)(6) := a • b • a - 1 , for every b G Mn(A(V)) and every 
open V C U. 

DEFINITION 4 . 2 . An abelian Lie sheaf of groups is a Lie sheaf of groups 
(iQ, p, C, d), where Q is a sheaf of abelian groups and p the trivial represen-
tation. 
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An illustrating example is provided by the group sheaf of units A = 
{A',p',A, d). In this case, A' = QC{\,A), p' is the trivial representation, 
and the logarithmic differential reduces to d : A' —• fi1 A = fi1 with 
d(s) := s - 1 • d(s), for every s € A'iJJ) and every open U C X . 

• From now on we consider {¿-principal sheaves with Q a Lie sheaf of 
groups. Also, in order to facilitate our notations, we set fi1(£) := Q1 C. 

DEFINITION 4.3. A connection on ('P, Q, X, 7r) is a morphism (of sheaves of 
sets) D : V i i 1 (JC), such that D(p • g) = g{g_1) • D(p) + d(g), for every 
( p , 9 ) e V x x G . 

Equivalently, a connection D is determined by the family of local sec-
tions, called (after the classical terminology) local connection forms, given by 
u>a := D(sa) G ii1(£)(C/a), a € I, and satisfying the compatibility condition 
(viz. local gauge transform) up — p(g~^).oja + d(gap), over each Uap ^ 0. 
In particular, for an abelian Lie sheaf of groups Q, the previous condition 
reduces to 
(4.1) U0 = u a + d{gap). 

For the existence of connections on principal sheaves, various examples and 
other details, we refer to [20]. 

On the other hand, according to [10, Vol. II], an A-connection on a vector 
sheaf £ is a K-morphism V : £ —> £ <8u ii1 satisfying the Leibniz-Koszul 
condition V(a • s) = a • Vs + s <g> da, for every (a, s) 6 A xx £• 

The relationship between connections on principal and vector (or, more 
general, associated) sheaves has been studied in [18], [21]. In particular, we 
have shown that there exists a bijection 

(*) {.4-connections V on £} {connections D on V(£)} 

DEFINITION 4.4. Let V and V' be two principal sheaves with the same struc-
tural sheaf Q = ( Q , p , C , d ) and base X , equipped with the connections D 
and D' respectively. We say that (V,D) and (V',D') are (gauge) equiva-
lent if there is an isomorphism of principal sheaves / : V —• V such that 
D = D ' o f . 

Over a common coordinatizing covering U for both V and V', we have 
already proved (see [19, Theorem 3.9]) the following criterion of equivalence. 
In case of different coordinatizing coverings, we may take a common refine-
ment and consider the equivalent principal sheaves of Corollaries 2.7 and 
2.8. 

LEMMA 4 . 5 . (P,D) and (V, D') are equivalent if and only if there exists a 
0-cochain (ha) € C°(U,Q) such that equalities 
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(4-2) g'a/3 = ha • ga/3 • hp1 

(4.3) ua = p{h-1).Ja + d{ha) 

hold on Uap and Ua respectively, for every a, ¡3 £ I. 

Similarly to (2.3), we denote by Pg(X)D the set of equivalence classes 
derived from Definition 4.4. On the other hand, 

stands for the (Cech) 1-dimensional hypercohomology group with coefficients 
in the 2-term complex d : Q -» fi1^) (see [4, p. 21], [10, Vol. I, p. 224]). 
Hence, based on the mechanism of [10, Chap. VI, Theorem 18.2], we are in 
a position to prove the following 

THEOREM 4.6. If Q is an abelian Lie sheaf of groups, then 

Pg(X)D £* H\X,g &(€)). 

P r o o f . Since we consider only the 1-dimensional hypercohomology with 
coefficients in the complex d : Q —• fi1(£), we may consider the following 
diagram, where the rectangle (I) is commutative 

0 0 

¿0,1 ¿1,1 
c° (u,n\c)) —- c1 (u,si\c)) 

d?^=d ( i ) 

I r0,0 I rl,0 
c°(u,g) * C\u,g) - c\u,g) 

The horizontal morphisms are the usual coboundary operators and the ver-
tical ones are those induced by d. As a result, we obtain the (total) complex 

with 5° = c°(u,g), s1 = c^u^) © c°(u,&(€)), s2 = c2{u,g) © 
C1 (U, &(€)), D° = <5°'° + d and D1 = (i1-0 - d) + <50,1. By an easy compu-
tation we verify that 

(4.4) Ker (D1) = Ker(51,0 - 6) © Ker^0-1), 
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(4.5) Im(D°) = Im(5°'°) © lm(d). 

Therefore, 

We choose now a pair ('P, D). The principal sheaf V determines a cocycle 
{daß) € Zl(JA,G) C C\U, G), while D defines the local connection forms 
(u>a) 6 C°(U, fi1(£)), satisfying (4.1). The same equality implies that 

(4.6) d((gaß)) = 6°>i((u,a)). 

Hence, applying D1 on the pair ((gaß), (<^a)), and taking into account (4.4) 
and (4.6) along with the cocycle condition of (gaß), we see that 

D1 ((gaß), M ) = (i1-0 ({goß)) - d ((gaß))) + 6°>l ((Wtt)) 

= 51'0 ((gaß)) = 9aß • 9ß7 • 9ia = 0, 

which shows that ((gaß), (wa)) 6 Ker(Z)1), thus determining the class 

{((gaß),M))uzH\U,G 

and the corresponding class [((<7Q(a), (wa))] S Hl(X,Q —> i i 1 ^ ) ) . This 
allows one to define the map 

$ : Pg(X)D 3 [(P,D)] ~ [ ( & * ) , ( < " « ) ) ] 6 H l ( X , Q & { C ) ) . 

i) $ is well defined. Assume that (V, D) and (V1, D') are equivalent. 
Taking a common coordinatizing covering for both principal sheaves, Propo-
sition 2.5 implies that g'aß = ha • gaß • hß1 = (ha • hß1) • gaß, thus 

(4.7) (g'Qß) • (g~l
ß) = {(h-1)) . 

The same Proposition, in conjunction with the definition of d, yields 

(4.8) ( ü / t t - W a ) = (-a(Ä a)) = ö((fc- 1 ) ) -

Hence, to prove our claim, it suffices to show that 

[ ( G M , M ) ] u = [((¡faß), M ) ] u E Ker(D1)/lm(D°), 

or, equivalents, ((g'aß), (uj'J) - ((gaß), M ) = ((g'aß - gaß), K - "a)) € 
Im(D°). This is indeed the case, since (4.7), (4.8) and (4.5) (or the definition 
of D°), along with the commutativity of G (whence the equivalent use of 
multiplicative and additive notations), lead to 

((9'aß - goß), K - *«)) = (s°'°(h»% ö ( 0 ) 

= (S°'°,d)((h-1)) = D°((h-1)). 
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Note that if we use different coordinatizing covers, then we obtain equal 
classes in the direct limit, working as in the proof of Theorem 2.9. 

ii) $ is injective. This is proved by the same arguments, as before, in a 
reverse way (see also the proof of Theorem 2.9). 

iii) $ is surjective. To this end let us take an arbitrary element of 
Hl(X,Q —> i ]1(£)) , represented by the class [((gap), °f a pair 
( W i ( w J ) € Cl{U,G) e CQ(U, &}(£)). Therefore, equalities 

0 = D1 ((gap), M ) = (i1-0, d) ((gap)) + 60'1 ((Wa)) 

= *lfl ( M ) + ( - 9 {(go?)) + ¿0i1 ( (««))) , 

together with (4.2), imply that 

(4-9) 6 l f i ( ( g a f i ) ) = 0 , 

(4.10) 0 ( ( 0 o * ) ) = J0 , 1 (("«))• 

From (4.9), it follows that gap • gp^ = gay, i.e., (gap) € Zl(U,Q), which 
determines a (/-principal sheaf V with cocycle (gap) (see Theorem 2.6). On 
the other hand, (4.10) yields d ((gQp)) = (d(gap)) = <50,1 ((u>Q)) = (w/j-u;Q), 
that is, up = wa + d(gap), for every a , / ? € I. This is precisely (4.1), which is 
equivalent to the existence of a connection D on V. Therefore, $ ([(7>, £>)]) = 
[((gap), (wQ))], by which we complete the proof. • 

In particular, taking as Q the abelian sheaf of groups A, we obtain 

COROLLARY 4.7. The following isomorphism holds true: 

Pa.(X)d ^ H\X, A ^ n1). 

For our final result we need 

DEFINITION 4.8. A line sheaf is a vector sheaf of rank 1. Furthermore, in 
the terminology of [10, Vol. II, p. 94], a Maocwell field is a pair (£, V), where 
Z is a line sheaf and V an .4-connection on it. 

Line sheaves are classified by $\(X) = Hl(X,A) (cf. Theorem 3.2). 
Moreover, in analogy with Definition 4.4, two Maxwell fields (£, V) and 
(£', V') (over X) are said to be equivalent if there is an isomorphism of line 
sheaves / : £ — > £ ' such that 

V ' o / = ( / ® l n i ) o V . 

The set of resulting classes is denoted by Therefore, we obtain 
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COROLLARY 4.9. The following classification of Maxwell fields holds true: 

*3t(x)v si H\X,A n1). 
P r o o f . The conclusion is a consequence of Corollaries 3.3 and 4.7, taking 
also into account Lemma 3.4 and the bijection (•). • 

REMARK 4.10. A direct proof of the previous Corollary (without recurrence 
to principal sheaves) is given in [10, Vol. II, p. 175]. In the latter, line sheaves 
are denoted by C, a notation reserved here for the sheaves of Lie algebras C 
introduced in the beginning of this section. 
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