

Muhammad Anwar Chaudhry, A. B. Thaheem

ON (α, β) -DERIVATIONS OF SEMIPRIME RINGS

Abstract. We show that if α and β are centralizing automorphisms and d a centralizing (α, β) -derivation of a semiprime ring R , then d is commuting. Some results on α -derivations and centralizing derivations of semiprime rings follow as applications of this result.

1. Introduction

Throughout, R denotes a ring with center $Z(R)$. We write $[x, y]$ for $xy - yx$. Then $[xy, z] = x[y, z] + [x, z]y$ and $[x, yz] = y[x, z] + [x, y]z$ hold in R . R is *prime* if $aRb = 0$ implies either $a = 0$ or $b = 0$; it is *semiprime* if $aRa = 0$ implies $a = 0$. A prime ring is obviously semiprime. An additive mapping d from R into itself is called a *derivation* if $d(xy) = xd(y) + d(x)y$ for all $x, y \in R$. A mapping f from R into itself is *commuting* if $[f(x), x] = 0$; and *centralizing* if $[f(x), x] \in Z(R)$ for all $x \in R$. We call a mapping $f : R \rightarrow R$ *central* if $f(x) \in Z(R)$ for all $x \in R$. Recall that if f is an additive commuting mapping from R into itself, then a linearization of $[f(x), x] = 0$ yields $[f(x), y] = [x, f(y)]$ for all $x, y \in R$. The study of centralizing and commuting mappings was initiated by Posner [12]. Considerable work has been done on centralizing and commuting mappings as well as centralizing and commuting derivations of prime and semiprime rings during the last couple of decades (see, e.g., [1–4, 6, 10, 11, 12] and references therein). Derivations are generalized as α - or skew-derivations and (α, β) -derivations and have been applied in various situations; in particular, in the solution of some functional equations (see, e.g., Brešar [5]). Let α, β be automorphisms of R . An additive mapping d of R into itself is called an (α, β) -derivation if $d(xy) = \alpha(x)d(y) + d(x)\beta(y)$ for all $x, y \in R$. If $\beta = 1$, where 1 is the

1991 *Mathematics Subject Classification*: Primary: 16A12, 16A70, 16A72; Secondary: 46L10.

Key words and phrases: derivation, automorphism, commuting map, centralizing map, α -derivation, (α, β) -derivation, prime ring, semiprime ring.

identity mapping of R , then d is called an α -derivation or a skew-derivation. For instance, $d = \alpha - \beta$ is an (α, β) -derivation and $d = \alpha - 1$ is an α -derivation. Of course, a $(1, 1)$ -derivation or a 1-derivation is a derivation. For more information on α -derivations and (α, β) -derivations, we refer to [5, 7, 8, 9, 13].

Bell and Martindale [2, Lemma 4] have proved that if d is a centralizing derivation on a nonzero left ideal U of a semiprime ring R , then d is commuting on U . The result has played a fundamental role in the development of the theory of commuting and centralizing mappings. The main purpose of this paper is to extend this result to (α, β) -derivations. We consider our results on the whole ring R rather than left ideals for simplicity. We essentially show (Theorem 2.4) that if α, β are centralizing automorphisms of a semiprime ring R and d is a centralizing (α, β) -derivation of R , then d is commuting. The result of Bell and Martindale [2, Lemma 4] follows as a corollary of our result.

2. Results

We shall need the following results.

LEMMA 2.1 [6, Proposition 3.1]. *Let U be a Jordan subring of a semiprime ring R . If an additive mapping f of R into itself is centralizing on U , then $2[f(x), x] = 0$ for all $x \in U$.*

LEMMA 2.2 [13, Proposition 2.3]. *Let d be a commuting α -derivation of a semiprime ring R , then d is central.*

LEMMA 2.3. *Let α and β be centralizing automorphisms and d a centralizing (α, β) -derivation of a semiprime ring R , then the identity $[d(x), x]^2 + (x[\alpha(x), d(x)] + [\alpha(x), d(x)]x)d(x) = 0$ holds for all $x \in R$.*

Proof. By assumption $[d(x), x] \in Z(R)$. Linearizing this, we get

$$(1) \quad [d(x), y] + [d(y), x] \in Z(R) \text{ for all } x, y \in R.$$

Since d is additive, therefore by Lemma 2.1, we have

$$(2) \quad 2[d(x), x] = 0 \text{ for all } x \in R.$$

Linearizing (2), we get

$$(3) \quad 2([d(x), y] + [d(y), x]) = 0 \text{ for all } x, y \in R.$$

Using (1)–(3) and the fact that $[d(x), x] \in Z(R)$, the following identity follows easily

$$(4) \quad [d(x), xy + yx] + [d(y), x^2] = 0 \text{ for all } x, y \in R.$$

Replacing y by yx in (4), we get $[d(x), xyx + yx^2] + [d(yx), x^2] = 0$, which gives $[d(x), xy + yx]x + (xy + yx)[d(x), x] + [\alpha(y)d(x) + d(y)\beta(x), x^2] = 0$ for all $x, y \in R$. This further gives

$$(5) \quad [d(x), xy + yx]x + ([x, y] + 2yx)[d(x), x] + \alpha(y)[d(x), x^2] + [\alpha(y), x^2]d(x) + d(y)[\beta(x), x^2] + [d(y), x^2]\beta(x) \text{ for all } x, y \in R.$$

Since β is additive and centralizing, therefore by Lemma 2.1, we have $2[\beta(x), x] = 0$. Thus $[\beta(x), x^2] = x[\beta(x), x] + [\beta(x), x]x = 2x[\beta(x), x] = 0$. Also $[d(x), x] \in Z(R)$ and $2[d(x), x] = 0$ imply that $[d(x), x^2] = x[d(x), x] + [d(x), x]x = 2x[x, d(x)] = 0$ for all $x \in R$. When we combine these with (4), then from (5), we get $-[d(y), x^2]x + [x, y][d(x), x] + [\alpha(y), x^2]d(x) + [d(y), x^2]\beta(x) = 0$ for all $x, y \in R$, which implies

$$(6) \quad [x, y][d(x), x] + [\alpha(y), x^2]d(x) + [d(y), x^2](\beta(x) - x) = 0 \text{ for all } x, y \in R.$$

Now

$$(7) \quad \begin{aligned} [d(y), x^2] &= x[d(y), x] + [d(y), x]x = x[d(y), x] + [d(y), x]x \\ &\quad + x[d(x), y] + [d(x), y]x - x[d(x), y] - [d(x), y]x \\ &= x([d(y), x] + [d(x), y]) + ([d(y), x] + [d(x), y])x \\ &\quad - x[d(x), y] - [d(x), y]x \text{ for all } x, y \in R. \end{aligned}$$

Using (1) and (3), from (7), we get

$$(8) \quad \begin{aligned} [d(y), x^2] &= 2x([d(y), x] + [d(x), y]) - x[d(x), y] - [d(x), y]x \\ &= -x[d(x), y] - [d(x), y]x \text{ for all } x \in R. \end{aligned}$$

Since α is centralizing, therefore it is commuting by [2, Lemma 2]. Thus

$$(9) \quad \begin{aligned} [\alpha(y), x^2] &= x[\alpha(y), x] + [\alpha(y), x]x = x[y, \alpha(x)] + [y, \alpha(x)]x \\ &= -x[\alpha(x), y] - [\alpha(x), y]x \text{ for all } x, y \in R. \end{aligned}$$

Using (8) and (9), from (6), we get

$$(10) \quad \begin{aligned} [x, y][d(x), x] - (x[\alpha(x), y] + [\alpha(x), y]x)d(x) \\ - (x[d(x), y] + [d(x), y]x)(\beta(x) - x) = 0 \text{ for all } x, y \in R. \end{aligned}$$

Replacing y by $d(x)$ in (10), we get

$$(11) \quad [d(x), x]^2 + (x[\alpha(x), d(x)] + [\alpha(x), d(x)]x)d(x) = 0 \text{ for all } x \in R. \blacksquare$$

We now prove our main result.

THEOREM 2.4. *Let α and β be centralizing automorphisms and d a centralizing (α, β) -derivation of a semiprime ring R , then d is commuting.*

P r o o f. Since d is centralizing, therefore $[d(x), x] \in Z(R)$ for all $x \in R$. Further, Lemma 2.1 gives $2[d(x), x] = 0$ for all $x \in R$. Since α is a centralizing

automorphism, therefore α is commuting which implies $(\alpha - 1)$ is a commuting α -derivation of R . By Lemma 2.2, we conclude that $(\alpha - 1)$ is central. Thus $[(\alpha - 1)(x), d(x)] = 0$ for all $x \in R$, which implies $[\alpha(x), d(x)] = [x, d(x)]$ for all $x \in R$. Using this, from Lemma 2.3, we get $0 = [d(x), x]^2 + (x[x, d(x)]) + [x, d(x)]x)d(x) = [d(x), x]^2 + (2x[x, d(x)])d(x) = [d(x), x]^2$ for all $x \in R$. Since a semiprime ring has no central nilpotents, therefore $[d(x), x] = 0$ for all $x \in R$. Thus d is commuting. ■

Taking $\alpha = 1 = \beta$ in Theorem 2.4, we get the following well known result of Bell and Martindale [2, Lemma 4], in the special case when derivation is considered on the whole ring instead of a left ideal.

COROLLARY 2.5. *If d is a centralizing derivation of a semiprime ring R , then d is commuting.*

Taking $\beta = 1$ in Theorem 2.4, the following corollary is immediate.

COROLLARY 2.6. *If α is a centralizing automorphism and d a centralizing α -derivation of a semiprime ring R , then d is commuting.*

Acknowledgments. The authors gratefully acknowledge the support provided by the King Fahd University of Petroleum and Minerals during this research.

References

- [1] R. Awtar, *On a theorem of Posner*, Proc. Cambridge Philos. Soc. 73 (1973), 25–27.
- [2] H. E. Bell and W. S. Martindale, III, *Centralizing mappings of semiprime rings*, Canad. Math. Bull. 30 (1987), 92–101.
- [3] M. Brešar, *Centralizing mappings on von Neumann algebras*, Proc. Amer. Math. Soc. 111 (1991), 501–510.
- [4] M. Brešar, *On a generalization of the notion of centralizing mappings*, Proc. Amer. Math. Soc. 114 (1992), 641–649.
- [5] M. Brešar, *On the composition of (α, β) -derivation of rings, and application to von Neumann algebras*, Acta Sci. Math. (1992), 369–376.
- [6] M. Brešar, *Centralizing mappings and derivations in prime rings*, J. Algebra 156 (1993), 385–394.
- [7] T. C. Chen, *Special identities with (α, β) -derivations*, Riv. Mat. Univ. Parma 5 (1996), 109–119.
- [8] N. Jacobson, *Structure of rings*, Colloq. Publ. 37, Amer. Math. Soc. (1956).
- [9] V. K. Kharchenko and A. Z. Popov, *Skew derivations of prime rings*, Comm. Algebra 20 (1992), 3321–3345.
- [10] J. Luh, *A note on commuting automorphisms of rings*, Amer. Math. Monthly 77 (1970), 61–62.
- [11] J. H. Mayne, *Centralizing automorphisms of prime rings*, Canad. Math. Bull. 19 (1976), 113–115.

- [12] E. Posner, *Derivations in prime rings*, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [13] A. B. Thaheem and M. S. Samman, *A note on α -derivations on semiprime rings*, Demonstratio Math. 34 (2001), 783–788.

DEPARTMENT OF MATHEMATICAL SCIENCES
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA
E-mails: chaudhry@kfupm.edu.sa, athaheem@kfupm.edu.sa

Received April 8, 2002.

