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ON PSEUDO-EFFECT ALGEBRAS
WHICH CAN BE COVERED BY PSEUDO MV-ALGEBRAS

Abstract. Pseudo-effect algebras are partial algebras (E; 4,0, 1) which were recently
introduced. They have a partially defined addition + which is only associative and not
necessary commutative and with two complements, left and right ones. They are a non-
commutative generalization of orthomodular posets and MV-algebras, respectively. We
define five kinds of compatibilities, and we introduce a block as a maximal set of mutually
compatible elements. The compatibility is a property of the physical system which cor-
responds to the distributivity, or equivalently, to “classical mechanics”-type phenomena.
We show that any lattice pseudo-effect algebra under a natural condition can be covered
by blocks, and any block is a pseudo MV-algebra. This result generalizes the analogical
result of Rie¢anovi for effect algebras. If the pseudo-effect algebra with the condition is,
in addition, a o-complete lattice, then it is a commutative effect algebra which can be
covered by o-complete MV-algebras.

1. Introduction

Today there exists a whole family of non-commutative generalizations of
MV-algebras which were introduced by Chang [Cha)] in fifties: pseudo MV-
algebras of Georgescu and Iorgulescu [Gelo] and generalized MV-algebras of
Rachtinek [Rac] which, in addition, are equivalent. Also a non-commutative
version of BL-algebras, pseudo BL-algebras, have been introduced in [DGI].
In addition, pseudo-effect algebras, which are partial non-commutative al-
gebras, were recently introduced by the authors [DvVe I, DvVe II]. Non-
commutative algebras are algebraic non-commutative analogs of non-com-
mutative reasoning.

A non-commutative reasoning can be met in the every-day life very often.
Many human processes are depending on the order of variables. On the other
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hand; today there exists even a concurrent programming language using a
non-commutative logic [Bau].

Quantum mechanical measurements are also in general non-commuta-
tive; the result of some experiment may depend on the order of the mea-
surements. Consider, for example, a beam of particles which are prepared in
a certain state, and which are sent through a sequence of three polarizing fil-
ters Fy, Iy, F3. It is well-known that the order of the filters makes in general
a difference. For example, let the filter be polarizing in planes perpendicular
to the particle beam, such that F} polarizes vertically, F5 horizontally and
F3 at a 45° angle. If we place the filters in the order Fj, F», F3, then no
particles are detected, but in the order Fi, F3, F», particles are detected; the
difference is due to quantum interference.

Such phenomena are in the literature nowadays presented also as sequen-
tial conjunctions or sequentially independent effects by Gudder and Nagy
[GuNa] or sequential probability models by Foulis [Fou]. Our structure, the
pseudo-effect algebra, is different, and it arises typically from not necessarily
commutative po-groups, which have been studied in physics for many years.

An important case of (Abelian) po-groups used in physics is B(H), the
system of all Hermitian operators of a separable Hilbert space H, and the
system of all effect operators E(H), i.e. the system of all Hermitian operators
A on H such that O < A < I, where O and I are the zero and identity
operators. Then E(H) is the interval in B(H), and it is one of the most
important examples of effect algebras. In addition, if M is a maximal system
of all mutually commuting operators from E(H), then M can be converted
into an MV-algebra, [CGP].

In 1994, effect algebras entered quantum structures which generalize MV-
algebras. Quantum structures are algebraic structures which are connected
with mathematical foundations of quantum mechanics. The most important
examples of them are orthomodular lattices, orthomodular posets, orthoal-
gebras and effect algebras [FoBe, DvPu]. They are not distributive struc-
tures, but a local distributivity is expressed by the compatibility. The blocks,
maximal sets of mutually compatible elements, are sometimes Boolean al-
gebras, and in quantum structures it means that blocks reflect a so-called
locally classical part of a quantum mechanical system [Var, DvPul.

Recently Rie¢anové [Rie] showed that every lattice effect algebra can be
covered by blocks and every block is an MV-algebra.

In the present paper we generalize this result to pseudo-effect algebras in-
troduced by the authors. Such algebras are sometimes unit intervals in cones
of unital po-groups [DvVe I, DvVe II]. We introduce five kinds of compatibil-
ities of elements of pseudo-effect algebras and show that in a case of lattice
pseudo-effect algebras four of them coincide. We show that any block in a
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lattice pseudo-effect algebra is a distributive lattice with special kinds of the
Riesz decomposition properties. If, in addition, they satisfy the difference
compatibility property, then any block is a pseudo-effect subalgebra of the
pseudo-effect algebra E which, in addition is a pseudo MV-algebra, and E is
a set-theoretical union of its blocks. Moreover, if such a pseudo-effect alge-
bra F is a o-complete lattice, then every block is a o-complete MV-algebra,
and F is commutative.
~ In addition, an open problem is formulated.

We recall a similar problem for effect algebras with the Riesz interpo-
lation property was studied in [Dvu 1}, and Jen¢a [Jen] studied blocks of
mutually compatibie elements satisfying the Riesz decomposition property.
However, such blocks are not necessary MV-algebras.

2. Pseudo-effect algebras

A partial algebra (E;+,0,1), where + is a partial binary operation and
0 and 1 are constants, is called a pseudo-effect algebra ([DvVe I, DvVe II})
if, for all a, b, ¢ € E, the following holds

(i) a+b and (a+b) + c exist if and only if b+ c and a + (b+ ¢) exist, and
in this case (a +b) +c=a+ (b+¢);
(i) for any a € E, there is exactly one d € E and exactly one e € E such
thata+d=e+a=1;
(iii) if a+b exists, there are elements d, e € E such that a+b = d+a = b+e;
(iv) if 1+ a or a + 1 exists, then a = 0.

If we define a < b iff there exists an element ¢ € E such that a +c =,
then < is a partial ordering on F such that 0 <a < 1foranya€ E.If £
is a lattice under <, we say that E is a lattice pseudo-effect algebra. If + is
commutative, i.e. if a + b = b+ a, F is said to be an effect algebra.

Let FE be a pseudo-effect algebra. Let /, \ be two partial binary opera-
tions on E such that, for a,b € FE, a / b is defined iff b \ a is defined iff a < b,
and such that in this case we have

(2.1) (bra)+a=a+(asb)=b.
Then
(2.2) a=(bva)/b=>b\(a/b).

Ifa <b<c, then
(cva)v(bva)=c\ b,
(asb)/(arec)=bre,
(c\b)/(cva)=bra,
(are)v(brc)y=ab.
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Let E = (E;+,0,1) be a pseudo-effect algebra. We define a~ :=1\a
and a~ :=a/1for any a € E.

For example if (G, u) is a unital (not necessary Abelian) po-group with
a strong unit « (sometimes it is sufficient to assume only u > 0), and

I'(G,u) :=[0,u] ={g€G: 0< g <u},

then (I'(G,u);+,0,u) is a pseudo-effect algebra if we restrict the group
addition + to I'(G,u). In [DvVe II], there are conditions showing when a
pseudo-effect algebra can be represented in this way.

We recall that a pseudo MV-algebra is an algebra (M;®,”,~,0,1) of
type (2,1,1, 0,0) such that the following axioms hold for all z,y,2 € M
with an addltlonal binary operation © defined via

yoz=("oy)"”

(ADz®(yo2)=(z@y) @2

(A2) z0=0®z=mu;

(A3)yzpl=10z=1;

(A4)17=0;1" =0

(A5) (z~@y™)" =(z"®y™)7;

(AB) 20z~ Qy=y®y " O0z=z0y dy=y0O0z~ Puz;
(AT)z0(z” @y) = (zDY™) Oy;

(A8) (z7)~ ==z.

In {Dvu] it was shown that every pseudo MV-algebra is isomorphic to
I'(G, u), where (G, u) is a unital ¢-group with a strong unit v, where a®b :=
(a+b)Au,a@b=(a—u+b)VOand a~ =u—aand a™ = —a +u.

If M is a pseudo MV-algebra, then the partial operation a + b is defined
iffa < b7, and then a+b := a®b, and (M;+,0,1) is a pseudo-effect algebra.

For two elements a,b € E, we write acomb if, for any z,y € E with
z<a,y<b wehave z+y,y+ z are defined in E, and z+y =y + z.

PROPOSITION 2.1. Let E be a pseudo-effect algebra. For a,b,c € E, let
acomb, andc < a, c<b. Then

(ave)+(brve)=((a+bd) )¢,
(c/b)+(cra)=c/(c/(a+Db)).
Proof. Putu=(a+b)\c. Thena+b=u+canda+(brc)+c=u+c,
a+(b\vc)=u. Hence ((a+d)\c)re=(a+(brc))ve=((bre)+a)\ec=
(bre)+(ave)=(are)+(brc). =

PROPOSITION 2.2. Let E be a pseudo-effect algebra, a,b,c € E, a,b < c. If
aVbe E, then (c\xa)A(c\b)€E,(arc)AN(b/c)€ E, and

c\(avbd)=(c\a)A(c\b),
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(avbd)re=(arsc)n(bsc).
In particular, if a + b= b+ a, then
(avbd)/(a+b)=aAb=(a+b)\(aVD).
In addition, if c > \/; a; € E, then \;(c\ a;), N;(ai’c) € E, and

C\(\/ai)=/\(C\ai), (\/ai)/c=/\(a,~/c).

1 1 1
Proof. Wehavea < avb<¢,b<aVvb<c¢,sothatc\ (avb) <c\a,c\b. If
w<cra,c\b then by (22),a=(cva)/c<wrse,b< (c\b)/c<weg,
sothat aVb<w/candw=c\(w/c) <c\(aVb). Thuscr(aVbd) =
(cva)A(c\b).

The second equality can be proved in an analogical way. The third equa-
tion follows from the first two ones. u

PROPOSITION 2.3. Let E be a lattice pseudo-effect algebra, a,b,c € E, and
a,b<c. Then
c\(aAb)=(c\a)V(c\b),
(anb)rc=(arsc)V(bsec).
Proof. FromaeAb<a<candaAb<b<c wehavec\a <c\(aAb),
c\b<c\ (aAb). Supposew > c\a,c\b. Thenc\a = (c\ a)Ac < wAc <L,
so that (wAc)/c<(c\a)/c=a.

In a similar way, (w A ¢) 7 ¢ < b. Therefore, (w A ¢) /¢ < a A b. Hence,
cy(aAnd) < e ((wAc)src) = wAc £ w, which implies ¢\ (a A b) =
(cva)V(c\b).

The proof of the second equation is similar. =
PROPOSITION 2.4. Let E be a lattice pseudo-effect algebra. For any a,b € E,

(avd)r(anb)y=((aVvbd)va)+ (ar(aAb))
(aAb)/(aVvb)=((aAb)/a)+ (a’(aVD)).
Proof. Calculate aVb = ((aVb)\a)+ (a\(aAb)) +aAb Then (aV
b)\(aAb) =(aVvb)ra+ (a\(aAb)). SimilarlyavVb=a+a/(aVbd) =
(anb)+(anb)s/atas/(aVd). =
PROPOSITION 2.5. Let E be a pseudo effect-algebra and let ¢ < A\;a; € E.
Then A;(a; \ ¢), N\i(c/ a;) € E, and

(Aai) \c= /\(a,- \¢), ¢/ (Aa,-) = /\(C/ a;).

2

1
Proof. It is clear that (A;a:i)\c < a;\c. Let w < a; \ ¢ for any ¢. Then
w++ ¢ < a;, s0 that w+c < A;a, ie, w< (A;a:) Ve

In a similar way we prove the second equality. =
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PROPOSITION 2.6. Let E be a pseudo-effect algebra, a = \/;a; € E. Then
Ai(a ai), Ai(ai 7 a) € E, and

/\(a va))=0= /\(ai / a).
i i
Proof. Let w < a\ a; for any a;. Then a; = (a\ a;) 7a < w7 a, hence,
a <w/a, which givesw=a\(ws/a)<a\a=0.

Similarly for the second equality. »

PROPOSITION 2.7. Let E be a lattice pseudo effect algebra. Ifa =V ;a; € E
and ¢ < a; for any i, then V;(a; \ ¢), V;(c/ a;) € E, and

a\c=\/(a,~ \ ), C/a=\/(0/ai).
1 1
Proof. Since ¢ < a; < a, then a;\¢c < a\c for any . Let a; \ ¢ <
for any i. Then a;\c < vA(avc) < are sothat (ave)\ (VA (anc))
(a\c)\(a;\ ¢) =a\ q; for any 7. By Proposition 2.6, (a\ ¢) \ (vA(a\ ¢))
0 which implies a\¢c = v A (a\¢), i.e,, a\¢c < v, consequently a\c =
Vi(ai\ ¢).

In a similar way we prove the second equality. =

HIA e

PROPOSITION 2.8. Let E be a lattice pseudo-effect algebra. Then, for any
a,be FE,
(a\(@aAb) AN (aAb)=0=((aAb)/a)A((aAb)/b])
((avb)ya)A((avb)\b)=0=(a/(aVb)A(b/(aVb)).
Proof. Put ¢ = a A b in Proposition 2.5.
For the second equality, let 2 < (aVbd)\a,(aVb)\b. Thenz+a < aVd

and 2+ b<aVb sothat a < z/(aVvb)and b < z/(aVb) which gives
avVb<z/(aVvb),ie,z2=0.u

PROPOSITION 2.9. Let E be a lattice pseudo-effect algebra. If t+y,2+2 € E,
then

z+(YyAz)=(c+y) A(z+2),
z+(yVvz)=(z+y)V(zV2).
Ify+z,z+x € E, then
(yA2)+z=(y+z)A (2 +x),
(yvz)+z=(y+z)V(zVz).

Proof. By Proposition 2.5, z / ((z+y)A(z+2)) =yAzie,z+(yAz) =
(z + y) A (z + 2). In a similar way we obtain the second equality using
Proposition 2.7. u
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PROPOSITION 2.10. Let E be a lattice pseudo-effect algebra. If aAb =0 and
a+bb+ac€kE, then

aVb=(a+b)A(b+a).

Proof. Let w = (a+b) A (b+ a). Then w > aV b, and wr(aVd) <
(a+b)rva=bandw\(aAb) < (b+a)\a=b,sothat w\(aVd)=0,ie,
w=aVb =

3. Compatibilities

In the present section, we introduce five kinds of compatibilities of el-
ements of a pseudo-effect algebra. We show that in the case of a lattice
pseudo-effect algebra four of them coincide. We prove that a set of mu-
tually compatible elements, an analog of Boolean subalgebra, is always a
distributive lattice with two kinds of the Riesz decomposition properties.

We say that a poset E (i) satisfies the Riesz interpolation property, (RIP)
for short, if, for all z1,z2,y1,¥2 in E, z; < y; for 4,5 = 1,2 implies there
exists an element z € F such that z; < z < y; for 4,5 = 1,2, and (ii) is
an antilattice, if only comparable elements of F have an infimum. It is clear
that if F is a lattice, then it satisfies (RIP), and any linearly ordered poset
is an antilattice.

We introduce five kinds of the compatibilities of elements of a pseudo-
effect algebra. We say that two elements a and b of a pseudo-effect algebra £
are (i) compatible (and we write a < b) if there are three elements a,, b1, ¢ €
Esuchthata =a1+c¢,b=b1+c,anday+b1+c=b1+a;+ce E;
(ii) strongly compatible (and we write a «—— b) if there are three elements
a1,bj,ce Esuchthata=a;+c¢,b=b1+c,a1+bi1+c=by+a1+c€E,
and a; A by = 0, (iii) weakly compatible, (and we write a «+— b) if there
exist three elements a;,b1,c € E such that a = a; + ¢, b = b1 + ¢, and
a1+ by +c€ E and by + a1 + ¢ € E, (iv) ultra weakly compatible (and we
write a «—— b) if there exist three elements aj,b;,c € E such that either
a=a1+b+c€ E, orb+a;+cé€E, and (v) ultra strongly compatible
(and we write a «— b) if there are three elements a;,b,c € E such that
a=a1+¢,b=b+c, a1 Aby =0, a1comb;,and a1 + by +c€ E. It is
evident that (v) implies (ii), (ii) implies (i), (i) implies (iii), and (iii) implies
(iv). If E is an effect algebra, then (ii) and (v) are equivalent, and so are (i),
(iii) and (iv). If E is a lattice effect algebra, then (i) and (ii) are equivalent
[Rie].

We note that if E is an effect algebra with (RIP), then a «+— biffa < b
and aAb € E, [Dvu 1]. Therefore it can happen for such effect algebras that
a « bbut a ¢« b. In addition, it can happen that a «*— b but a ¢~ 1—b,
or a #— 1 — a as the following example shows.
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EXAMPLE 3.1. Let G be the additive group R? with the positive cone of all
(z,y) such that either z =y =0orz >0and y > 0. Thenu=(1,1) is a
strong unit for G. The effect algebra E = ['(G,u) is an antilattice having
(RIP), but E is not a lattice, and a = (0.8;0.2) « 1 — a = (0.2;0.8) and
a—1-—a.

REMARK 3.2. (0) @ « b if and only if b « a; a < b iff b «— a.

(i) strong compatibility implies compatibility.

(ii) a «=» @, (a=0+a,a =0+ a).

(i) fa < b, a b (a=0+a,b=(b\a)+a).

(iv) 0 «— a «— 1.

(v) If E is a pseudo MV-algebra, then any two elements are strongly
compatible.

PROPOSITION 3.3. Let E be a pseudo-effect algebra. Then a « b if and only
if there ezist three elements a},bj,c € E such thata = c+aj, b=c+ b,
andc+a) + by =c+b+4d] €E.

In addition, a —— b if and only if there three elements a}, b}, c € E such
thata=c+a),b=c+b|,c+aj+by=c+bj+a| €E, andad| Ab] =0.

Proof.Let a & b. Then a = ay+¢,b = by +¢, where a;+b1+c = by +a1+c €
E, so that a = ¢+ a},b = c+b). Therefore, u:=a;+ b1 +c=a;+c+b =
c+aj+b) € F and u = by + a1 + ¢ = by +c+a} = c+b] + a1 which proves
aj + b =b] +aj.

If, in addition, @ «—— b and w < a},b), thena =c+w+w/a}, b =
c+w+w /by, sothat a = w'+ (w/a}) +cand b=w'+ (w s b}) +c. Hence
w <apbrie,w'=0andw=0.=

PROPOSITION 3.4. Let a and b be two elements of a lattice pseudo-effect
algebra E such there are three elements a1,b1,c € E such that a = a1 +c,
b=bi+c,a1+bi+c€ FE,a1+b =b+ay, and aj Aby = 0. Then
aVb=a1+bi+c,aAb=c,a1=a\(aAb), and by =b\ (aAb).

In addition, ifa=a1 +¢c,b=by+c¢,a1Abj =0, anda; +b1+c€ FE
orbi+a1+c€e E, thenanb=c.

Proof. We have ¢ < a,b. Let d < a,b. Then ¢ < ¢V d < a,b implies
(evd)ye<a\vec=ay, (cVd)\c < b\c = by, which gives (cVd)\c <
ajAb;=0,ie,c=cvdandd<ec.

Similarly, if u := a1 + b1 + ¢, then a,b < u. Assume a,b < w. Then
a,b<wAu<uyie,u\ (wAu) <uva=b;,u\ (wAu) <u\b=a; which
givesu\(wAu)<a3Ab =0,ie,wAu=uand u L w.

The last assertion is now clear. =
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It is worthy to recall that Proposition 3.4 is valid also for the case a =
c+ay, b=c+ by, where c+a; + by = c+ by + a3, and a; Aby = 0. Then
aVb=c+a;+b,aAb=c,a;=(aAb)/a,and by =(aAb)/b.

On the other hand, it is possible to show that if a < b, then a3, b1, c are
not necessarily determined uniquely even in a commutative case of E.

PROPOSITION 3.5. Let a and b be elements of a pseudo-effect algebra E.

(i) @ < b if and only if there are two elements u,v € E such that v <
a,b<u,ura=brv,u\b=a\v,and (ura)+(u\b)=(u\b)+ (u\ a).

(ii) @ «— b if and only if there are two elements u,v € E such that
v<a,b<u,uva=brv,ur\b=a\v, (ura)+ (u\b)=(u\b)+ (u\a),
(uva)A(urb)=0.

Proof. () Leta=aj +¢,b=b1+¢c,a1+ by =bi+a1,a1+ b +c€ E.
Putv=candu=a;+b+c. Thenv<a,b<u,uva=(b+a)\a=b,
byv=(b1+c)\ec=b,ur\b=(a1+b)\b=aj,and a\ v = (a;+¢) \ ¢ = a;.

Conversely, suppose the conditions are fulfilled. Define ¢ = v, by = b\ v,
aj =a\v. Thena = (a\v)+v=a;+¢; b= (brv)+v =0b +¢ and
u=(@u\b)+b=(a\v)+ (b1 +c)=a1+b+c

On the other hand, u = (u\a)+a=(b\v)+ (a1 +c¢)=b; +a1+c By
cancellation, we have a; + b; = b; + a;.

(ii) It is now easy. =

PROPOSITION 3.6. Let E be a lattice pseudo-effect algebra and a,b € E. The
following statements are equivalent
(i) a << b.
(i) (avb)ya=0b\(aAb) and (aVb)\b=a\ (aAD).
(iii) (aAb)7a=b/(aVDd) and (aAb)/b=a/(aVD).

Proof. (i) =(ii). Let a « b. Then by Proposition 3.7
a=a\(aAb)+ (aAbd),
b=b\(aAb)+ (aAb),

and avVb=a\(aAb)+b\(aAb)+ (aAb). On the other hand, a Vb =
(avbd)\b+b\ (aAb)+ (aAb), which implies (aVb)\b=a\ (aAb).

Similarly, aVb=b\ (aAb)+a\ (aAb)+(aAb) andaVb= (aVb)\a+
a\(anb)+(aAnb)ie,(avd)rva=b\(and).

(ii)=(i). We have a =a\(aAb)+aAband b=b\(aAb)+aAb Put
a; =a\ (aAb),by =b\ (aAb),and c=aAb. ThenaVb=(aVb)\a+a=
(avb)ra+ar(aAb)+aAb=(avb\b+b\(aAb)+aAb Then
a1+ by 4+ c=b1 + a1 + ¢ € E, and by Proposition 2.8, a; A b =0.

The equivalence (i) and (iii) follows from Proposition 3.3 and from similar
reasoning as those in the equivalence (i) and (ii). m
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PROPOSITION 3.7. Let E be a lattice pseudo-effect algebra. If o < b, then
(1va) «— (1\b), and (a /1) < (b/ 1).

Proof. We have by Proposition 34 aVb=a\(aAb)+b\(aAb)+aAb,
so that, 1 =1\ (aVb)+a\ (aAb)+b. Hence

Inb=1\(aVb)+a\(aAb).
Similarly, 1=1\(aVb)+ b\ (aAb)+a,ie.,
Iva=1\(aVb)+b\(aAbd).

Since a\ (aAb)+ b\ (aAb) =b\(aAb)+a\ (aAb), by Proposition 3.3,
we conclude that (1\ a) «— (1\b).

If now we express aVb = aAb+(aAb)/b+(aAb)/a and 1 =
aAb+(aAb) 7 b+(aAb) 7 a+(aVb) /1, wehave b/ 1 = (aAb) / a+(aVb) /1
anda/1=(aAb)/b+(aVd)/l,ie,(as/1)e(bs1). u

THEOREM 3.8. Let E be a lattice pseudo-effect algebra and a,b € E. Then
the following assertions are equivalent.

(i) a & b.

(ii) @ «— b.

(iil) @ <= b.
Proof. It is clear that (ii) implies (i), and (i) implies (iii).

(i)=(ii). Let a < b, i.e., a = a1+cand b = by +c. Therefore a = c+a} and
b= c+b] for some a},b} € E. Thenu:=a;+bj+c€ Eanda,b < aVvb< u.
Hence (avb)ya <uva=b <band (avVd)\b<u\b=a1 <a.Ina
similar way we have a / (aVb) <a/u=a/(a1+bi+c)=a/(a;+c+b)) =
a/(c+aj+b)=b <baswellasb/(aVb)<aj <La.

Put w1 == ((avbd)\b)sa = ((avd)\b)/((avd)(a/(aVd) =
b\ (a/ (aVb)), when we have used (2.2) and equations below (2.2).

In a similar way, wy := ((aVb)\a)/b=a\(b/(aVb)). Define w =
wy V wy. We assert w = a A b. We have

avw<a\(((avb)yb)ra)=(aVb)\b,
byw<by(((avb)rva)/b)=(aVd)\a.
Hence by Proposition 2.5,
(anb)yw=(a\w)A (b w) < ((aVb)\b)A((aVbd)\a)=0,

ie,aAb=w.

Define o' :=a\w < (aVvVb)\b<ajand ¥/ :=b w < (aVb)ra < b
Then u; == a’' + ¥ +w € E and ugy := b +d' + w € E. We show that
up Aug = a Vb It is clear that u; Augs > a VvV b. Assume d > a,b. Then
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a,b<aVb<dAu; Auy. Hence

(up Aug)\ (dAug Aug) < (ur Aug)va<ugra=V,
(wp Au)\ (dAugAug) < (U Aug) \b<ujva=ad.

Since a’ A b = 0, we have u; Auy = d Auy A ug, i.e.,, d > uj A ug, which
proves a V b = u; A us.
Calculate

aVb=(aVvb)\a+ar(aAb)+aAb>b +d +w>aVh,
aVb=(aVvb)\a+b\(aAb)+aAb>d +b +w>aVh,

which proves u1 = ug =a Vv b.
Since a’ Ab' = 0, by Proposition 3.4, we have aVb = a’'+b'+w = b/+a’'+w,
d=a\(aAb), ¥ =b\(aAb),w=aAb,ie,

(avb)rva="b =b\(aAbd),
(avb)\b=a'=a\(aAbd),
and

wp=((avVb)\b)sra=(a\(aAb))/a=aAd,
weg=((avb)ra)/b=(b\(aAa))/b=aAb,

ie.wy=wy=w=aAb

(iii)=>(i). It follows the main ideas of the proof of the the previous im-
plication.

Thus, let a = a1 + ¢ =c+a} and b= by + ¢ = c+ b} for some a},b] € E,
and let u; := a;+b1+c € F and up := byj+a1;+c € E. Set u = u; Aus. Hence
(avb)ra<ura<ugra=b <band (avb)\b<u\b<uj\b=a; <La.
In addition, a / (aVd) <a/uy=a/(a1+bi+c)=a/(c+aj+b) =t <b
and b/ (aVvb)<b/ug=b/s(c+b)+a})=0d]<a

Put wy := ((evd)\b)sa = ((eavbd)\b)/((avd)r(as(aVd) =
b\ (a/ (aVb)). Similarly we have for wy := ((aVb) \a) 7b=a\ (b/ (aVD)).
Define w = w; V wy. We have as above w = a A b.

Define o' :=a\w < (aVb\b<ajand b/ :==bvw < (aVb)ra < b
Then u] =o'+ b +w € E and v := b + o' + w € E. We show that
uj Auj = a Vb It is clear that u} Auph > aV b. Assume d > a,b. Then
a,b<aVb< dAuj Aub. Hence

(AU (AU Auy) S (UujAup)vaLupra=Vb,
(WAu)\ (AU Aug) S (ujAup)\b<ujra=d.

Since o’ A b = 0, we have uj Aufj = d Auj Aup, ie., d > u] Aup, which
proves a V b = uj A ub.
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Calculate
avVb=(aVb)ra+a\(aAb)+aAb>b +d +w>aVh,
aVb=(aVvb)ra+br\(aAb)+anb>ad +b +w>aV),

which proves uj =up =a Vb, thatisa — b. =

PROPOSITION 3.9. Let a and b be elements of a lattice pseudo-effect algebra
E such that a Ab= 0.

(1) Ifa<— b, thena+bb+a€ E anda+b=aVb=>b+a.
(2) Ifa+b,b+acE, thena«b.

Proof. (1) Sincea=a\(aAb)+aAband b=b\(aAd)+aAb, so that
aVb=a\(aAb)+b\(aAb)+arb=a+b
=b\(aAb)+ar(aAb)+aArb=b+a.
(2) Use Theorem 3.8. »

PROPOSITION 3.10. Let E be a lattice pseudo-effect algebra. Then a —— b if
and only if a «<— b, and a «+= b if and only if either (aVb) \b=a\ (aAb)
or (aVby\a=>b\(aAb), or equivalently, either a / (aVb) = (aAb) /b or
b/ (aVvb) = (aAb) / a, or equivalently either a \ (aAb) < b~ orb\ (aAb) <
a~, or equivalently, either (a Ab) 7a < b~ or (aAb)/b<a™.

In particular, ifaAb=0anda+b€ E, thenaVb=a+b.

Proof. Assume a — b. By Theorem 3.8, a < b, that is ¢ = a1 + ¢,
b=bi+c,agAby=0andaj+bj+c=by+a1+c€ E. Assume z < ay
and y < b;. Then s Ay = 0, and z + y,y + £ € E. By Proposition 3.9,
T+y==zVy=uy+ z, which proves that a «— b.

Assume now a < b. First assume a Ab = O and a + b € E. We
assert a Vb = a + b. Indeed, calculate (a Vb)\b < (a+b)\b = a and
a/{avb)y<as(a+b)=>b.Thenw:=((avb)\b)sa=((avbd)\b)/((aV
b)\ (a/ (avb))) = b\ (a/ (avb)) < b.Hencew < anb=0,i.e., (avb)\b=a
and, finally, avb=a+b.

Second, let @ = aj + ¢, b = by + ¢ and, for example, u :=a;+b;j+c€ E.
Therefore for a’ := a\ (aAb) < a3 and b/ := b\ (aAb) < by. Since a’ AV =0
and @’ + b € E while @’ + b < a; + b; € E, by Proposition 2.8 and by
the first part of the present proof, @’ V¥ = a’ + . Using Proposition 2.9,
aVb=(a'VVt)+aAb=a +b + =d +b, where ¢ = a Ab. Therefore,
(avb)\b=a\ (aAb).

In a similar way we proceed with the second possibility. =

We recall that the last statement generalizes that from Proposition 2.10.

PROPOSITION 3.11. Let E be a lattice pseudo-effect algebra. Then a < b
if and only if a\ (a Ab) & b\ (a Ab). In addition, a «+— b if and only if
a\(anb) <5 b\ (aAb).
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Proof. One direction is clear. Suppose now a; :=a\ (aAb) «» b\ (aAb) =:
bi. By Proposition 3.9, a; V a3 = aj + a2 and from Proposition 2.9 we have
(aaVag)+ce€ E, where c=aAb. ThenaVb= (a1 Vh))+c=a1+b1+c=
bi+ai+c ie,aeb v

Assume now a\ (a A b) <= b\ (a A b). By Proposition 3.10, e.g., (aV
b)\b=1a\ (aAb). Hence,aVb=>b\ (aAb)+b > b\ (aAb)+b\ (aAb) € E,
that is, a \ (a Ab) <= b\ (a A D).

Conversely, if @/ := a\ (@ Ab) <= b\ (aAb) = ¥, then a’ = a; + ¢
and b = b; + ¢, where e.g., ay + by + c € E. Since c < o’ AV = 0, we
have o’ + b/ € E. Therefore, a’ Vb = a’ + b’ by Proposition 3.10, we have
aVb=(a'V¥)+aAb=a 4+ +c€E, and finally, a =— b. m

PROPOSITION 3.12. Let E be a lattice pseudo-effect algebra, let a; — b for
anyi€l, anda:=V,;c 0, € E. Thenb < a and

V(ainb) = (\ai) Ab.

i i

Proof. The proof will follow from the following Claims.

CLaM 1.a<(by(aAb)) /1, by (aAb)+ar(aAb)+aAbeE.
avb<b\(anb)+ar(aAb)+aAbd.

(avb)yva<br(aAd).

Wehave a; < (b\ (aiAb)) 71 < (b (aAb)) 7 1,sothata < (b (and)) 7 1,
so that b\ (a Ab) +a € E. Therefore, aVb<b\(aAb)+ar(aAb)+aAb
and (avVb)\a<b\(aAbd).

CLAIM 2. A\;(b\(ai Ab)) =br (a D).

by(aAb) <b\(a;ADb) for any a;. Let d < b\ (a; Ab) = (ai Vb)\a; <
(avbd)\a;. Thena; = ((avb)\a;)/(avd) <d/(avb)anda < d/(aVd),
sothat d = (avb)\(d/(aVb)) <(aVbd)\a < b\ (aAb) using Claim 1.
This implies Claim 2.

CLAM 3. (avb)va=b\(aAb).

By Claim 2, b\ (aAb) = A;(b\ (aiAb)). Hence, A;(b\ (aiAb)) = A;((aiVv
b) \ a;). Let now = < (a; V b) \ a; for any i € I. Then z < (a V b) \ a;, so
that a; = ((aVb)va;) 7 (aVb) <z/(aVb). Consequently, a <z /(aVb).
Therefore, z = (a Vb) \ (z 7 (a Vb)) < (aV b)\ a, which proves Claim 3.
CLAIM 4. a A b= V,;(ai A D).

Let a;Ab < efor any ¢ € I. Then a;Ab < bAeso that b\ (bAe) < b\ (aiAb)
for any < € I. By Claim 2, b\ (bAe) < A;(b\ (a; Ab)) = b\ (a Ab). Hence
anb=(b\ (aAb)) /b < (b (bAe)) 7 b=DbAe < e, so that aAb = V;(a; Ab).

CLAIM 5. a\ (a Ab) = Aj(a (a; AD)).
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We have a \ (aAb) < a\ (a;Ab) for any i € I. Assume w < a \ (a; Ab) for
every i. Then a; Ab = (a\ (a;Ab)) 7 a < w7 a, and by Claim 4, aAb < w / a.
Therefore, w = a\ (w/ a) < a\ (a A b) which yields Claim 5.

CLAIM 6. a\ (aAb)+bEE.

We have a;\ (a; Ab) < 1\b for any 7. Then a; < 1\b+a; Ab <
Ivb+aAbe E,sothat a <1\b+aAb Hencea(aAb) < 1\band
a\(anb)+b< 1.

CLAM 7. a\(aAb)+b=a Vb A

It is clear hat a\ (a Ab) +b > a,b, so that a\ (a Ab)+b > aVb. Let
av(aAb)+b>z > a,b Then ¢ > a;,b for any ¢, so that z > a; Vb =
a;\ (a; Ab)+ b and

a;\(a; Ab)+b<z,
a;\(a; Ab) <z b,
a; <z \b+a;AbeE,
a; <z \b+aAbeE,
a<z\b+aAd,
a\(aAb)<z\b,
a\(aAb)+b<z,
a\(aAb)+b=aVb.
CLAIM 8. a « b.

It follows from Claim 3 and Claim 7 and of (ii) of Proposition 3.6. m
COROLLARY 3.13. Let E be a lattice pseudo-effect algebra. If a; «— b and
ag < b, then (a1Vag)Ab = (a1 Ab)V(azAb) and (a3 Aaz)Vb = (a1 Vb)A(azVh).

Proof. The first equality follows from Claim 4 of the proof of Proposition
3.12.

For the second one. By Proposition 3.7 and Theorem 3.8, we have 1 \ a3
e~ 1\vbe 1vay Then ((1va)V(1va2)) A(1rvd) =11 ((a1 Aag) Vb). On
the other hand, by the first part, it equals to ((1\a1) A1\ b))V ((1\ag) A
(1vd)) =11 (a1 Vb)) V(1 (aaVb)) =1\ ((a1 Vbd)A(az Vb)) which entails
the desired result. =

PROPOSITION 3.14. Let E be a lattice pseudo-effect algebra, let a; «— b for
anyi €I andleta = \;cya; € E. Then b & a.

Proof. By Proposition 3.7 1\b « 1\ a; for any . Since 1\ (A;ai) =
V;(1\a;) € E, by Proposition 3.12, 1\b <« V;(1\ a;). Applying again
Proposition 3.7, b — a. =

We have the following two forms of the Riesz decomposition properties.
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PROPOSITION 3.15. Let a,b,c be elements of a lattice pseudo-algebra such
thata+b€ E, c<a+b and c < b orc < a. Then there ezist two elements
ay,b1 € E such thatc=ay + by, anda; < a and by <b.

Proof. Let c < a+band define v:=c\(bAc),a; :=aAv. Thena; <a
and a; < c. Put by :=a; 7 c. Then ¢ = a; + by.
To finish the proof, we have to show that b; < b.

a1 +b=c<(a+bA(bVe)
=(a+b)A(c\(bAc)+b)
=(a+b)A(v+Dd)
=(aAv)+b=ua;+b,

when we have used Proposition 2.8. By the cancellation, b1 < b.
In a similar way we proceed when a < c. m

PROPOSITION 3.16. Let E be a lattice pseudo-effect algebra. Let a; + ap =
b1 + be, where a; « by and as « by. Then there ezist four elements
€11, €19, €21, ¢22 € E such that

ay = c11 + c12, b1 = c11 + ca1,
ag = co1 + €22, by = c12 + c20.

Moreover, we may assume that cj2 A co1 = 0, and under this condition
the ci;’s are determined uniquely, and c12 + c21 = c12 V ¢c21 = c21 + c12.

Proof. We define ¢1; = a1 A b1, c12 = (a1 A b1) /a1, c2a = as A by and
co1 = a2 \ (a2 A b2). Then a; = ¢11 + ¢12 and ag = c91 + c99. We show that
Co1 = ag \ (a2/\b2) = (a1/\b1) /bi.Puty=a1+as=bi+by=b1+b1/y=
y \ ba+bs = a1+a;1 / y = y \ ag+ay. By the cancellation, we have by = b3 / v,
bi=y\be, a1 =y\ag and a3 = a; / y.

Calculate and use Proposition 2.2: g1 =ag \ (agAb2)=(a; 7 y) \ ((a1 /7 y)
/\(b1 / y)) = (al / y) \ ((a1Vb1) / y) =aj / (a1Vb1) = (a1/\b1) /by =c11 /7 by,
when we have used Proposition 3.6.

By symmetry we have

bo (ag /\b2) = (a1 /\bl) /a1 =c¢1p=2c11/ay.

Hence, by Proposition 2.8, cia A co; = ((a1 Aa1) 7 a1) A((a1 Ab1) 7 b)) =0.
In addition, b; = ¢11 + ¢21 and by = ¢12 + c22.

Since a1 + a2 = c11 + c12 + ¢21 + c22 = c11 + €21 + €12 + 22 = by + ba, We
conclude ¢19 + ¢21 = ¢91 + €12, so that by Proposition 3.10, ¢19 < ¢21 and
c12 + c21 = c12 V C91 = €21 + €19

Uniqueness. Adding the elements c1; and ¢»1, respectively, to the equality
c12 A co1 = 0, we obtain by Proposition 2.9, (c11 + c12) A (c11 + ¢21) = <1,
so that ¢1; = a1 A by, and similarly cga = ag A by. Using the cancellation
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property, we see that cj2 and cp; are defined consequently in the same way
as at the beginning of the present proof. =

4. Pseudo-effect algebras and blocks

In the present section, we introduce a block, which is roughly speaking
a maximal set of “distributive” or, more precisely, of “Riesz decomposable”
elements of a pseudo-effect algebra. We show that if a lattice pseudo-effect
algebra E satisfies the difference compatibility property or, equivalently, the
weak compatibility property (i.e., the ultra weak and weak compatibilities
are equivalent), then every block is a pseudo-effect algebra which is a pseudo
MV-algebra, and E can be covered by its blocks. If, in addition, such an
algebra is o-complete, then every block is a o-complete MV-algebra, and E
is a commutative effect algebra.

Let {E:}ier be a system of pseudo-effect algebras such that E; N E; =
{0,1} for t # s. The set E := |J;cr E: can be organized into a pseudo-effect
algebra such that z + y is defined in F iff z,y € E; for some t € T and if
z + y is defined in E, and in such a case, z + y takes the value from E;.
Then F is a pseudo-effect algebra which is said to be a horizontal sum of
the system of pseudo-effect algebras {E:}ier.

A maximal set of mutually compatible elements of a pseudo-effect algebra
E is said to be a block.

For example, if F is a pseudo MV-algebra, then F is a unique block in
E. In addition, if F is a horizontal sum of a system of pseudo MV-algebras
{Et}ter, then E is not necessarily a pseudo MV-algebra, and {E; }ier is the
system of all blocks in E.

The following example is from [Rie 1].

EXAMPLE 4.1. Let E = {0,a,b,c,d, 1}, where the addition + is defined in
the table.

+({0 a b ¢ d 1 1
010 a b ¢ d 1
ala d ¢ 1 x x c d
blb ¢ d x 1 x a b
cle 1 x x x X
d{d x 1 x x x 0
1]1 x X x X X
10 a b ¢ d 1

l ¢ d a b 0
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Then E is an effect algebra which is not a lattice, but all elements of E
are strongly compatible and e.g. c — d and cvVd € E but cAd € E, as
well as a << b, aAb € E but aVb ¢ E. Moreover, F is a unique block, but
it is not an MV-algebra.

PROPOSITION 4.2. If E is a pseudo-effect algebra. If a <= b, then either
a1 \borbe—1\a. Ifa—b, thena 1\ bandb<a 1.

Proof. Assumethata =a;+c=c +a;,b=bi+candu=a;+by+c€ E
for some ¢ € E. Then 1 = 1\ u+a; +b which gives 1\ b= 1\ u+a;. Hence
lvu+a+c=1\vu+c+a; GEwhichprovesa&l\b.

In a similar way we proceed with the second possibility. The case a « b
is now evident. =

We can ask whether is the ultra weak compatibility equivalent with the
weak compatibility in lattice pseudo-effect algebras ?

The partial answer gives the following notion.

We say that a pseudo-effect algebra E has the weak compatibility prop-
erty, (WCP) for short, if, for a,b € E, a <~ b implies a +— b.

For example, (i) every pseudo MV-algebra, or (ii) every horizontal sum
of pseudo MV-algebras, or (iii) every effect algebra, or (iv) every horizontal
sum of the previous algebras has (WCP).

PROPOSITION 4.3. Let E be a lattice pseudo-effect algebra such that 1\ a =
a /1 for every a € E. Then E has (WCP).

Proof. By Proposition 3.11, it is sufficient to verify that if a «~— b for
a,b € E with aAb =0, we have a «— b. Assume, e.g., u = a+b € E. Then
l=a+4+bt+us/l=a+a/1=a+1va=1\a+a and therefore, b<1\a
and finally, b+ a € E which proves a «—— b.

In a similar way we prove that if b+ a € F,thena+b€e E. =

REMARK 4.4. There exists a non-commutative lattice-ordered pseudo-effect
algebra E such that 1\a = a1 for every a € E, [Rac 1]. Such algebras
are sometimes connected with cyclically ordered (non-commutative) unital
groups in the sense of Rieger [Rig], [Fuc].

PROPOSITION 4.5. Let a lattice pseudo-effect algebra E satisfy (WCP).
(i) Ifae— b, thenl1\boae—b/1.
(ii) fa— b and c > a,b, thenc b ae=brec

Proof. (i) By Proposition 4.2, if @ <+ b, then a «+~- 1\ b and b < 1\ a.
(WCP) and Theorem 3.8 implies @ «++ 1 \ b and b < 1 \ a. Using Proposition
37, wehavea/l—band1l/be a.

(ii) It follows similar reasonings as those in (i). =
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We say that a pseudo-effect algebra E satisfies the difference compati-
bility property, (DCP) for short, if a & b, @ « c and b < ¢ imply ¢ < ¢\ b.
Every pseudo MV-algebra, or every horizontal sum of pseudo MV-algebras,
or every effect algebra, or any horizontal sum of the previous algebras has

(DCP). On the other hand, Example 3.1 has (WCP), but not (DCP).

PROPOSITION 4.6. Let E be a pseudo-effect algebra with (DCP). (i) Ifa « b,
then 1\be—a—b/1.
(ii) Ifa+b,a e c, andb+c€ E, thena < b+c.

Proof. (i) Since a & b, a & 1, b < 1, we have a « 1\ b. By symmetry we
have 1\ a « b and by Propositions 3.3 and 3.7, we havea = (1\a) /1 &
bs1.

(ii) Assume a «~ b,candb+c€ E. Thenb<1\cand by (i)a—1\c.
Therefore, a « (1\¢c)\b=1\(b+c¢),so that by (i),a = b+c. =

In what follows, we prove that in lattice pseudo-effect algebras (WCP)
implies (DCP).

PROPOSITION 4.7. Let E be a lattice pseudo-effect algebra satisfying (WCP).
Ifa—baeocandb<c thena—c\banda—b/c.

Proof. By Proposition 3.10, from a < ¢ we have ¢ < a~ + a A c. On the
other hand,
aA(c\b)+b>(aAb  A(c\b))+b
=(aAb” +b)A((c\b)+b) (Proposition 2.9)
=(aAb”+b)Ac
>alc,
while a « b~ implies (aAb”)+(aAb™) 7 b7 +(anb™) 7a=b"+(aAb") /a €
E,sothat (aAb")/a<banda<aAb +b.
Therefore, b > (aA(c\ b)) 7 (aAc). Calculatec=c\b+b< a" +aAc=
a”+aA(c\b)+{(aA(c\b))/(aAc), sothat
c b+ (aA(c\b))/(anc)<c b+b=c
<a 4+aA(c\b)+(an(c\b))/(aNc)
which gives
c\b<a” +an(c\b).
By Proposition 3.10, this implies ¢ \ b < a and by (WCP), c\ b « a.
By duality we provea <+ b/c. =
Finally, we say that a pseudo-effect algebra E satisfies the compatibility

complement property, (CCP) for short, if a < b implies @ < 1 \ b; then also
a—b/s1.



Pseudo-effect algebras 279

We prove that in lattice pseudo-effect algebras three properties (WCP),
(DCP) and (CCP) are equivalent.

PROPOSITION 4.8. Let E be a lattice pseudo-effect algebra. The following
three properties are equivalent.

(i) (WCP).
(i) (DCP).
(iif) (CCP).

Proof. By Proposition 4.7, (WCP) implies (DCP), and by Proposition 4.6,
(DCP) implies (CCP).

We claim (CCP) entails (WCP). Let a «— b. By Proposition 3.11 it is
sufficient to assume that aAb =0, andeg. a+b€ E. Thena <b™ =1\,
so that a «» b~. Therefore, a » b~ /1=b. m

Now we present the main results of the paper.

THEOREM 4.9. Let E be a lattice pseudo-effect algebra with (DCP). Then
every block of E is a pseudo-effect subalgebra of E which is a pseudo MV-
algebra. Moreover, any such pseudo-effect algebra E is a set-theoretical union
of its blocks.

Proof. Let M be a block of E. Therefore, 0,1 € M. If a € M, then by
(DCP),1\a,a/1€ M, and if b,c € M and b+ ¢ € F, then by Proposition
4.6, b+ ¢ € M which proves that M is a pseudo-effect subalgebra of E. By
Proposition 3.12 and Proposition 3.14, M is a lattice in which by Proposition
36a\(and)=(aVvb)\bforall a,b € M, which by [DvVe II, Prop. 8.8]
is a necessary and sufficient condition for (M;®,,~,0,1) to be a pseudo
MV-algebra, where

a®b:=((a~Ab)/a™)", abeM.

Let now A be any subset of mutually compatible elements of E. Due to
Zorn’s lemma, there exists a block of E containing A. Since any element of
E belongs to some block of E, E can be covered by its blocks. =

As a corollary of Theorem 4.9 we have the following important result of
Rietanové [Rie]:

COROLLARY 4.10. Every lattice effect algebra E can be covered by blocks
which are MV-algebras, and every block of E is an MV-algebra.

Proof. Since every effect-algebra satisfies (WCP), the blocks of every lattice
effect-algebra are by Theorem 4.9 MV-algebras. =

THEOREM 4.11. Let a pseudo-effect algebra with (DCP) be a o-lattice. Then
every block of E is an MV-algebra, and E can be covered by commutative
blocks, and in addition, E is a (commutative) effect-algebra.
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Proof. Let {a,} be a sequence of elements of a block M of E. By Propo-
sition 3.12 and Proposition 3.14, V,, an, A, an € M, which by Theorem 4.9
means M is a pseudo MV-algebra which is a o-complete lattice. In view
of [Dvu, Thm 4.2], every o-complete MV-algebra is a (commutative) MV-
algebra.

Assume now a +b € E. Then a < 1\b and a «~ 1\ b, consequently,
a « b by Proposition 4.6. By Theorem 4.9 there exists a block M of E such
that a,b € M. Since by above, M is a (commutative) MV-algebra, we have
at+b=b+a. =

The last theorem can be extended as follows. We say that a pseudo-effect
algebra E is Archimedean if, for an element a € Esuchna:=a+---+a € E
for any n > 1, we have a = 0.

THEOREM 4.12. Let E be a lattice pseudo-effect algebra such that every
block is a pseudo-effect subalgebra of E. If E is Archimedean, then E is a
(commutative) effect algebra.

Proof. Let M be a block of E. Since F is a lattice such that a \ (a Ab) =
(aVvb)\b, for all a,b € M, we have that M is a pseudo MV-algebra. Now
if a € M and na € E for any integer n > 1, then na € M for any n > 1,
which by the assumptions implies a = 0, i.e., M is an Archimedean pseudo
MV-algebra. By [Dvu, Thm 4.2], this implies M is an MV-algebra. Hence,
ifa+b € E, then a < 1\ b which means that a and b belong to the same
block, therefore, a+b=b+a. =

THEOREM 4.13. Every o-complete effect algebra is Archimedean.

Proof. It follows from Theorem 4.12 and Corollary 4.10, or it is possible to
use directly the definition of the Archimedeanicity and Proposition 2.2 for
the elements a, = na. =

Finally, we show that properties (WCP), or equivalently (DCP) or (CCP)
are necessary for the validity of Theorem 4.8.

PROPOSITION 4.14. Let E be a lattice pseudo-effect algebra. Then every block
of E is a pseudo-effect subalgebra of E if and only if E satisfies (WCP), or
equivalently E satisfies (DCP), or equivalently E satisfies (CCP).

Proof. If E satisfies e.g. (DCP), then by Theorem 4.9, every block of E
is a pseudo-effect subalgebra of E. Conversely, let any block of E be a
pseudo-effect subalgebra of E. Assume a < b, then a and b belongs to the
same block and hence a < 1\ b, so that FE has (CCP). =

Finally, we show that the equivalent properties (WCP), (DCP) and
(CCP) are not satisfied in every lattice pseudo-effect algebra. We recall that
according to Proposition 3.10 and Proposition 4.8, the above properties are
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equivalent with the following condition: for any a,b € E
(4.1) aANb=0, a+b existsiff b+a exists.

EXAMPLE 4.15. Let G be the additive free group generated by the two
elements g,h; let v : (G;+) — (Z;+), where Z is the additive group of
the integers, be the homomorphism determined by the conditions v(g) =
v(h) = 1; and define a partial order in G by setting Gt :={z € G: z =
0 or v(z) > 0}. Then we have for a,b € G

a < biff a =bor v(a) < v(b).

Then G is a po-group, but G is not lattice-ordered; g v h is not defined
in G.

Consider now the interval pseudo-effect algebra (I'(G, g+ h); +,0,g9+h).
We have E :=T(G,g+h)={a€G: a=0orv(a)=1lora=g+h} It
is lattice-ordered; for if a,b € E, then either a and b are comparable, or else
v(a) = v(b) = 1, in which latter case the only lower bound is 0 and the only
upper bound is g + h.

E does not fulfil (4.1), since for instance g A h = 0, g + h is defined, but
h + g is not.

PROBLEM 1. Characterize pseudo-effect algebras which can be covered by
pseudo MV-algebras.
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