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ON PSEUDO-EFFECT ALGEBRAS 
WHICH CAN BE COVERED BY PSEUDO MV-ALGEBRAS 

A b s t r a c t . Pseudo-effect algebras are partial algebras (E; + , 0,1) which were recently 
introduced. They have a partially defined addition + which is only associative and not 
necessary commutative and with two complements, left and right ones. They Eire a non-
commutative generalization of orthomodular posets and MV-algebras, respectively. We 
define five kinds of compatibilities, and we introduce a block as a maximal set of mutually 
compatible elements. The compatibility is a property of the physical system which cor-
responds to the distributivity, or equivalently, to "classical mechanics"-type phenomena. 
We show that any lattice pseudo-effect algebra under a natural condition can be covered 
by blocks, and any block is a pseudo MV-algebra. This result generalizes the analogical 
result of Riecanova for effect algebras. If the pseudo-effect algebra with the condition is, 
in addition, a cr-complete lattice, then it is a commutative effect algebra which can be 
covered by cr-complete MV-algebras. 

1. Introduction 
Today there exists a whole family of non-commutative generalizations of 

MV-algebras which were introduced by Chang [Cha] in fifties: pseudo MV-
algebras of Georgescu and Iorgulescu [Gelo] and generalized MV-algebras of 
Rachunek [Rac] which, in addition, are equivalent. Also a non-commutative 
version of BL-algebras, pseudo BL-algebras, have been introduced in [DGI]. 
In addition, pseudo-effect algebras, which are partial non-commutative al-
gebras, were recently introduced by the authors [DvVe I, DvVe II]. Non-
commutative algebras are algebraic non-commutative analogs of non-com-
mutative reasoning. 

A non-commutative reasoning can be met in the every-day life very often. 
Many human processes are depending on the order of variables. On the other 
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hand; today there exists even a concurrent programming language using a 
non-commutative logic [Bau]. 

Quantum mechanical measurements are also in general non-commuta-
tive; the result of some experiment may depend on the order of the mea-
surements. Consider, for example, a beam of particles which are prepared in 
a certain state, and which are sent through a sequence of three polarizing fil-
ters F\, F2, -F3. It is well-known that the order of the filters makes in general 
a difference. For example, let the filter be polarizing in planes perpendicular 
to the particle beam, such that Fi polarizes vertically, F2 horizontally and 
F3 at a 45° angle. If we place the filters in the order Fi, F2, F3, then no 
particles are detected, but in the order F\, F$, F2, particles are detected; the 
difference is due to quantum interference. 

Such phenomena are in the literature nowadays presented also as sequen-
tial conjunctions or sequentially independent effects by Gudder and Nagy 
[GuNa] or sequential probability models by Foulis [Fou]. Our structure, the 
pseudo-effect algebra, is different, and it arises typically from not necessarily 
commutative po-groups, which have been studied in physics for many years. 

An important case of (Abelian) po-groups used in physics is B(H), the 
system of all Hermitian operators of a separable Hilbert space H, and the 
system of all effect operators E(H), i.e. the system of all Hermitian operators 
A on H such that O < A < J, where O and I are the zero and identity 
operators. Then E(H) is the interval in B(H), and it is one of the most 
important examples of effect algebras. In addition, if M is a maximal system 
of all mutually commuting operators from E(H), then M can be converted 
into an MV-algebra, [CGP]. 

In 1994, effect algebras entered quantum structures which generalize MV-
algebras. Quantum structures are algebraic structures which are connected 
with mathematical foundations of quantum mechanics. The most important 
examples of them are orthomodular lattices, orthomodular posets, orthoal-
gebras and effect algebras [FoBe, DvPu]. They are not distributive struc-
tures, but a local distributivity is expressed by the compatibility. The blocks, 
maximal sets of mutually compatible elements, are sometimes Boolean al-
gebras, and in quantum structures it means that blocks reflect a so-called 
locally classical part of a quantum mechanical system [Var, DvPu]. 

Recently Riecanova [Rie] showed that every lattice effect algebra can be 
covered by blocks and every block is an MV-algebra. 

In the present paper we generalize this result to pseudo-effect algebras in-
troduced by the authors. Such algebras are sometimes unit intervals in cones 
of unital po-groups [DvVe I, DvVe II]. We introduce five kinds of compatibil-
ities of elements of pseudo-effect algebras and show that in a case of lattice 
pseudo-effect algebras four of them coincide. We show that any block in a 
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lattice pseudo-effect algebra is a distributive lattice with special kinds of the 
Riesz decomposition properties. If, in addition, they satisfy the difference 
compatibility property, then any block is a pseudo-effect subalgebra of the 
pseudo-effect algebra E which, in addition is a pseudo MV-algebra, and E is 
a set-theoretical union of its blocks. Moreover, if such a pseudo-effect alge-
bra E is a cr-complete lattice, then every block is a cr-complete MV-algebra, 
and E is commutative. 

In addition, an open problem is formulated. 
We recall a similar problem for effect algebras with the Riesz interpo-

lation property was studied in [Dvu 1], and Jenca [Jen] studied blocks of 
mutually compatible elements satisfying the Riesz decomposition property. 
However, such blocks are not necessary MV-algebras. 

2. Pseudo-effect algebras 
A partial algebra (E; +, 0,1), where + is a partial binary operation and 

0 and 1 are constants, is called a pseudo-effect algebra ([DvVe I, DvVe II]) 
if, for all a, b, c 6 E, the following holds 

(i) a + b and (a + b) + c exist if and only if b + c and a + (b + c) exist, and 
in this case (a + b) + c = a + (b + c); 

(ii) for any a 6 E, there is exactly one d E E and exactly one e € E such 
that a+d=e+a=l; 

(iii) if a+b exists, there are elements d,e € E such that a+b = d+a = b+e; 
(iv) if 1 + a or a + 1 exists, then a = 0. 

If we define a < b iff there exists an element c 6 E such that a + c = b, 
then < is a partial ordering on E such that 0 < a < 1 for any a 6 E. If E 
is a lattice under <, we say that E is a lattice pseudo-effect algebra. If + is 
commutative, i.e. if a + b = b + a, E is said to be an effect algebra. 

Let E be a pseudo-effect algebra. Let / , \ be two partial binary opera-
tions on E such that, for a, b G E, a / b is defined iff b \ a is defined iff a < b, 
and such that in this case we have 
(2.1) (6 \ a) + a — a + (a / b) = b. 
Then 
(2.2) 

If a < b < c, then 
a = (6 \ a) / b = b \ (a / b). 

(c \ a) \ (b \ a) = c \ b, 
(o / b) / (o / c) = b / c, 
(c \ b) / (c \ a) = b \ a, 
(a / c) \ (b / c) = a / b. 
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Let E = (E; + , 0,1) be a pseudo-effect algebra. We define a" := 1 \ o 
and a~ := a / 1 for any a € E. 

For example if (G, it) is a unital (not necessary Abelian) po-group with 
a strong unit u (sometimes it is sufficient to assume only u > 0), and 

T(G,u) := [0,u] = {g € G : 0 < g < «}, 
then (r(G, u); + , 0, u) is a pseudo-effect algebra if we restrict the group 
addition + to r(G, u). In [DvVe II], there are conditions showing when a 
pseudo-effect algebra can be represented in this way. 

We recall that a pseudo MV-algebra is an algebra (M; © , - , 0,1) of 
type (2,1,1, 0,0) such that the following axioms hold for all x,y,z 6 M 
with an additional binary operation © defined via 

y Qx = (x~ ©y~)~ 

(Al) x © (y © z) = (x © y) © z\ 
(A2) a;©0 = 0©rc = x; 
(A3) x © l = l © x = l; 
(A4) 1~ = 0; I " = 0; 
(A5) (x - f f iy - )~ = ( z ~ © y ~ ) ~ ; 
(A6) x © x ~ 0 y = y © y ~ © x = x © y ~ © y = i / © x ~ © x ; 
(A7) x © (®" © y) = (x © y~) © y; 
(A8) = x. 

In [Dvu] it was shown that every pseudo MV-algebra is isomorphic to 
r(G, u), where (G, u) is a unital ¿-group with a strong unit u, where a©6 := 
(a + b) A u, a © b = (a — u + 6) V 0 and a~ =u — a and a~ = — a + u. 

If M is a pseudo MV-algebra, then the partial operation a + b is defined 
iff a < b~, and then a+b : = a©6, and (M; + , 0,1) is a pseudo-effect algebra. 

For two elements a, b 6 E, we write a com b if, for any x,y € E with 
x < a, y < b, we have x + y, y + x are defined in E, and x + y = y + x. 

PROPOSITION 2.1 . Let E be a pseudo-effect algebra. For a,b,c £ E, let 
a com b, and c < a, c < b. Then 

(a \ c) + (b \ c) = ((a + b) \ c) \ c, 
(c / b) + (c / a) = c / (c / (a + b)). 

Proof . Put u = (a + b) \ c. Then a + b = u + c and a + (b \ c) + c = u + c, 
a + (b \ c) = u. Hence ((a +b) \ c) \ c = (a + (b \ c)) \ c = ((b \ c) + a) \ c = 
(b \ c) + (a \ c) = (a \ c) + (b \ c). • 

PROPOSITION 2.2 . Let E be a pseudo-effect algebra, a,b,c G E, a,b < c. If 
aVbeE, then (c \ a) A (c \ b) € E, (a / c) A (b / c) 6 E, and 

c \ ( a V b ) = ( c \ a ) A ( c \ 6), 
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(a V b) / c = (a / c) A (6 / c). 

In particular, if a + b = b + a, then 

(a V 6) I (a + 6) = a A b = (a + fc) \ (a V 6). 

In addition, if c > V» a t € .E, then Ai(c \ aj), Ai(ai ' c) E, and 

c \ ( V « i ) = A ( c v °»)> ( V a * ) ' 0 = A( a» ' c)-
i t X i 

P r o o f . We have o < aVb <c,b< a\/b < c, so that c \ (aV6) < c \ a, c \ 6. If 
w < c \ a,c \ b, then by (2.2), a = (c \ a) / c < w / c, b < (c \ b) / c < w / c, 
so that aV b < w / c and w = c \ (w / c) < c \ (a V 6). Thus c \ (a V 6) = 
(c \ a) A (c \ 6). 

The second equality can be proved in an analogical way. The third equa-
tion follows from the first two ones. • 

PROPOSITION 2.3. Let E be a lattice pseudo-effect algebra, a,b,c € E, and 
a,b < c. Then 

C \ ( O A 6 ) = ( C \ O ) V ( C \ b), 

(a A b) / c = (a / c) V (6 / c). 
P r o o f . From a Ab < a < c and a A b < b < c, we have c \ a < c \ (a Ab), 
c\b < c \ (aAb). Suppose w > c \ a,c\b. Then c \ a = (c \ a) Ac < IOAC < c, 
so that ( w A c ) / c < ( c \ a ) / c = a. 

In a similar way, (w A c) / c < b. Therefore, (w Ac) / c < aAb. Hence, 
c \ (a A 6) < c \ ((u; A c) / c) = w A c < w, which implies c \ (a A 6) = 
(c \ a) V (c \ 6). 

The proof of the second equation is similar. • 

PROPOSITION 2.4. Let E be a lattice pseudo-effect algebra. For any a,b € E, 

(a V b) \ (a A b) = ((a V b) \ a) + (a \ (a A b)) 
(a A b) / (a V b) - ((a A b) / a) + (a / (a V 6)). 

P r o o f . Calculate aV b = ((a V 6) \ a) + (a \ (a A b)) + a A b. Then (a V 
b) \ (o A b) = (a V b) \ a + (a \ (a A b)). Similarly a V 6 = a + a / ( a V 6 ) = 
(a A b) + (a A b) / a + a / (a V b). m 

PROPOSITION 2.5. Lei E be a pseudo effect-algebra and let c < f\{ai e E. 
Then Ai(ai ^ c), At(c ' °t) € E, and 

( / \ a,) \ c = / \ (o i \ c), c / ( / \ a{) = / \ ( c / ai). 
i i i i 

P r o o f . It is clear that (Aiai) \ c < ai \ c. Let w < ai \ c for any i. Then 
to + c < a», so that w + c < /{¡ai, i.e., w < (Aio>i) \ c. 

In a similar way we prove the second equality. • 
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PROPOSITION 2.6. Let E be a pseudo-effect algebra, a = VI O, 6 E. Then 
Ai(a \ ai), Ai(oi / a) € E, and 

f\(a \ai) = 0 = f\(ai / a). 
i I 

P roo f . Let w < a \ aj for any a{. Then a^ = (a \ a^ / a < w / a, hence, 
a <w / a, which gives w = a\(w/a)<a\a = 0. 

Similarly for the second equality. • 

PROPOSITION 2.7. ¿ei E be a lattice pseudo effect algebra. If a = Vi<H € E 
and c < ai for any i, then Vi(°i N c)> Vi(c ' ai) £ E, and 

a \ c = \J(ai \ c), c / a — \/(c / aj). 
i t 

P roo f . Since c < â  < a, then aj \ c < a \ c for any i. Let ai \ c < v 
for any i. Then ai \ c < v A (a \ c) < a \ c, so that ( a \ c ) \ ( v A ( a \ c)) < 
(a \ c) \ (ai \ c) = a \ ai for any z. By Proposition 2.6, (a \ c) \ (i)A(a \ c)) = 
0 which implies a \ c = v A (a \ c), i.e., a \ c < v, consequently a \ c = 
Vt(o» N c)-

In a similar way we prove the second equality. • 

PROPOSITION 2.8. Let E be a lattice pseudo-effect algebra. Then, for any 
a,be E, 

(a\ (a A b)) A (b \ (a A b)) = 0 = ((a A b) / a) A ((a A 6) / 6) 
((a V 6) \ a) A ((a V 6) \ 6) = 0 = (a / (a V 6)) A (6 / (a V 6)). 

P roo f . Put c = a A 6 in Proposition 2.5. 
For the second equality, let z < (a V 6) \ a, (a V 6) \ 6. Then z + a < a V 6 

and z + 6 < a V 6, so that a < z / (a V £>) and b < z / (a V b) which gives 
a V b < z / (a V 6), i.e., z = 0. • 

PROPOSITION 2.9. Zef E be a lattice pseudo-effect algebra. Ifx+y, x+z G E, 
then 

x + (y A z) = (x + y) A (x + z), 
x + ( y V ^ ) = ( i + y)V ( i V z ) . 

I f y + x,z + xeE, then 

(y A z) + z = (y + x) A (z + x), 
(y V z) + x = (y + x) V (z V x). 

P r o o f . By Proposition 2.5, x / ((x + y) A (x + z)) = y Az, i.e., x + (y Az) = 
(x + y) A (x + z). In a similar way we obtain the second equality using 
Proposition 2.7. • 
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PROPOSITION 2 . 1 0 . Let E be a lattice pseudo-effect algebra. I f a A b = 0 and 
a + b,b + a 6 E, then 

a V 6 = ( o + 6 ) A ( 6 + o) . 

Proo f . Let w = (a + b) A (b + a). Then w > a V b, and w \ (aVi») < 
(a + b) \ a = b and w \ (a A b) < (b + a) \ a = b, so that w \ (a V b) = 0, i.e., 
w = a V b. • 

3. Compatibilities 
In the present section, we introduce five kinds of compatibilities of el-

ements of a pseudo-effect algebra. We show that in the case of a lattice 
pseudo-effect algebra four of them coincide. We prove that a set of mu-
tually compatible elements, an analog of Boolean subalgebra, is always a 
distributive lattice with two kinds of the Riesz decomposition properties. 

We say that a poset E (i) satisfies the Riesz interpolation property, (RIP) 
for short, if, for all xi,X2,yi,y2 in E, Xi < yj for i , j = 1,2 implies there 
exists an element z £ E such that Xi < z < yj for i,j = 1,2, and (ii) is 
an antilattice, if only comparable elements of E have an infimum. It is clear 
that if E is a lattice, then it satisfies (RIP), and any linearly ordered poset 
is an antilattice. 

We introduce five kinds of the compatibilities of elements of a pseudo-
effect algebra. We say that two elements a and b of a pseudo-effect algebra E 
axe (i) compatible (and we write a <-> b) if there are three elements a\, c G 
E such that a = ai + c, b = b\ + c, and ai + 6i + c = b\ + ai + c 6 E; 
(ii) strongly compatible (and we write a <-—> b) if there are three elements 
ai, bi,c € E such that a = ai + c, b = b\ + c, ai + bi + c = ¿>i + ai + c G E, 
and ai A b\ = 0, (iii) weakly compatible, (and we write a b) if there 
exist three elements a\,bi,c € E such that a = a\ + c, b = bi + c, and 
ai + bi + c £ E a n d £>i + a i + c € E, ( i v ) ultra weakly compatible ( a n d w e 
write a b) if there exist three elements ai,&i,c € E such that either 
a = a i + b\ + c 6 E, o r 6 i + a\ + c € E, a n d ( v ) ultra strongly compatible 
(and we write a b) if there are three elements a\,bi,c 6 E such that 
a = ai + c, b = bi + c, ai A b\ — 0, ai com&i, and ai + bi + c G E. It is 
evident that (v) implies (ii), (ii) implies (i), (i) implies (iii), and (iii) implies 
(iv). If E is an effect algebra, then (ii) and (v) are equivalent, and so are (i), 
(iii) and (iv). If E is a lattice effect algebra, then (i) and (ii) are equivalent 
[Rie], 

We note that if E is an effect algebra with (RIP), then a *—> b iff a *-* b 
and a A 6 € E, [Dvu 1]. Therefore it can happen for such effect algebras that 
a b but a b. In addition, it can happen that a b but a > 1 — 6, 
or a 1 — a as the following example shows. 
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EXAMPLE 3.1. Let G be the additive group R2 with the positive cone of all 
(x, y) such that either a; = y = 0 o r a ; > 0 and y > 0. Then u = (1,1) is a 
strong unit for G. The effect algebra E = r(G, u) is an antilattice having 
(RIP), but E is not a lattice, and a = (0.8; 0.2) «-» 1 - a = (0.2;0.8) and 
a 1 — a. 

REMARK 3.2. (0) a <-+ b if and only if b *-> a; a 6 iff 6 a. 

(i) strong compatibility implies compatibility. 
(ii) a <—> a, (a = 0 + a, a = 0 + a). 
(iii) If a < b, a b (a = 0 + a, b = (b \ a) + a). 
( i v) o ^ U a + ^ 1 . 
(v) If E is a pseudo MV-algebra, then any two elements are strongly 

compatible. 

PROPOSITION 3.3. Let E be a pseudo-effect algebra. Then a *-* b if and only 
if there exist three elements c € E such that a — c + a^, b — c + b'i, 
and c + ai + 6i = c + b\ + a\ € E. 

In addition, a <-—> b if and only if there three elements b[,c € E such 
that a = c + a[, b = c + b[, c + + = c + b\ + a\ € E, and A b[ = 0. 

Proof . Let a <-> b. Then a = ai+c , b = 6i+c, where a i + 6 i + c = &i+ai+c e 
E, so that a = c + a'i,b — c + b'i- Therefore, u := ai + b\ + c = a\ +c + t/^ = 
c + + b[ 6 E and u — bi + ai+c — bi + c + a'l = c + b'l-\-ai which proves 
a'l + b[ = b[ + a\. 

If, in addition, a b and w < a\, b[, then a — c + w + w / a[, b = 
c + w + w / b'i, so that a = w' + (w / a'J' + c and b = w' + (w / b'j)' + c. Hence 
w' < ai, 6i i.e., w' = 0 and w = 0. • 

PROPOSITION 3.4. Let a and b be two elements of a lattice pseudo-effect 
algebra E such there are three elements a i ,6 i ,c G E such that a = oi + c, 
b = b\ + c, ai + ¿>i + c € E, ai + b\ = b\ + a\, and A b\ = 0. Then 
a V b = ai + bi + c, a A b = c, ai = a \ (a A b), and 6i = 6 \ (a A 6). 

In addition, if a = ai + c, b = b\ + c, ai A 6i = 0, and ai + i>i + c G E 
or bi + a\ + c E E, then aAb = c. 

Proof . We have c < a,b. Let d < a,b. Then c < cV d < a, b implies 
(c V d) \ c < a \ c = ai, (c V d) \ c < b \ c = bi, which gives (c V d) \ c < 
ai A ¿>i = 0, i.e., c = c V d and d <c. 

Similarly, if u := ai + b\ + c, then a, b < u. Assume a, 6 < w. Then 
a,b < wAu < u, i.e., u \ (wAu) < u \ a = bi, u \ (wAu) <u\b = a\ which 
gives u \ (w A u) < ai A ¿>i = 0, i.e., w Au = u and u < w. 

The last assertion is now clear. • 
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It is worthy to recall that Proposition 3.4 is valid also for the case a = 
c + ai, b = c + bi, where c + ai + &i = c + &i + ai, and oi A 6i = 0. Then 
a V b = c + ai + i>i, a A b = c, ai = (a A b) / a, and bi = (a A b) / b. 

On the other hand, it is possible to show that if a b, then a\,b\,c are 
not necessarily determined uniquely even in a commutative case of E. 
PROPOSITION 3.5. Let a and b be elements of a pseudo-effect algebra E. 

(i) a b if and only if there are two elements u, v G E such that v < 
a,b < u, u \ a = b \ v, u \ b = a \ v, and (u \ a) + (it \ b) = (it \ b) + (u \ a). 

(ii) a b if and only if there are two elements u,v 6 E such that 
v < a,b < u, u \ a = b \ v, u \ b = a \ v, (u \ a) + (u \ b) = (u \ b) + (u \ a), 
(u \ a) A (u \ b) = 0 . 

P r o o f , (i) Let a = ai + c, b = 6i + c, ai + b\ = 6i + ai, ai + £>i + c € E. 
Put v = c and u = ai + bi + c. Then v < a, b < u, u \ a = (bi + a) \ a = bi, 
b \ v = (6i+c) \ c = fei, u \ b = (ai+£>) \ b = a\, and a \ v = (ai+c) \ c = ai. 

Conversely, suppose the conditions are fulfilled. Define c = v, b\ = b \ v, 
ai = a \ v. Then a = (a \ v) + v = ai + c; b = (b \ v) + v = b\ + c, and 
u = (it \ b) + b = (a \ v) + (6i + c) = ai + b\ + c. 

On the other hand, it = (u \ a) + a = (b \ v) + (ai + c) = + ai + c. By 
cancellation, we have ai + b\ = b\ + a\. 

(ii) It is now easy. • 

PROPOSITION 3.6. Let E be a lattice pseudo-effect algebra and a,b € E. The 
following statements are equivalent 

(i) a b. 
(ii) (a V b) \ a = b \ (a A b) and (a V 6) \ b = a \ (a A b). 

(iii) (a A b) / a = b / (a V b) and (a A b) / b — a / ( o V b). 
Proo f , (i) =>(ii). Let a <-+ b. Then by Proposition 3.7 

a = a \ ( o A b) + (a A 6), 

b = b\ (a A 6) + ( a A 6), 

and a V b = a \ (a A b) + b \ (a A b) + (a A 6). On the other hand, a V 6 = 
(a V 6) \ 6 + b \ (a A b) + (a A 6), which implies (o V 6) \ b = a \ (a A b). 

Similarly, aVb = b \ (aAi>) + a \ (aA6) + (aA6) and aV6 = (aV6) \ a + 
a \ (a A 6) + (a A b), i.e., (a V 6) \ a = 6 \ (a A 6). 

(ii)=r-(i). We have a = a\(aAb) + aAb and b = 6 \ (a A 6) + a A i>. Put 
ai = a \ (a A 6), = £> \ (o A 6), and c = a A 6. Then a V b = (aV6) \ a + a = 
(a V b) \ a + a \ (a A 6) + a A 6 = (a V 6) \ 6 + b \ (a A 6) + a A 6. Then 

+ + c = b\ + ai + c € E, and by Proposition 2.8, a\ A 6i = 0. 
The equivalence (i) and (iii) follows from Proposition 3.3 and from similar 

reasoning as those in the equivalence (i) and (ii). • 
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PROPOSITION 3.7. Let E be a lattice pseudo-effect algebra. If a b, then 
(1 \ a) (1 \ b), and (a / 1) (6 / 1). 

P roo f . We have by Proposition 3.4 a V b = a \ (a A b) + b \ (a A b) + a A b, 
so that, 1 = 1 \ (a V b) + a \ (a A b) + b. Hence 

1 \ b. = 1 \ (a V b) + a \ (a A b). 

Similarly, 1 = 1 \ (a V b) + b \ (a A b) + a, i.e., 

1 \ a = 1 \ (aVb) + b \ (a Ab). 

Since a \ (a A b) + b \ (a A b) = b \ (a A b) + a \ (a A b), by Proposition 3.3, 
we conclude that (1 \ a) (1 \ b). 

If now we express a Vi) = a A b + (a A b) / b + (a A b) / a and 1 = 
aA6+(aA6) / b+(aAb) / a+(aV6) / 1, we have b / 1 = (aAb) / a+(aV6) / 1 
and a / 1 = (a A b) / b + (a V b) / 1, i.e., (a / 1) (b / 1). • 

THEOREM 3.8. Let E be a lattice pseudo-effect algebra and a,b € E. Then 
the following assertions are equivalent. 

(i) a «-» b. 
(ii) a b. 

(iii) a <—> b. 

Proo f . It is clear that (ii) implies (i), and (i) implies (iii). 
(i)=£>(ii). Let a *-y b, i.e., a = a\+c and b = &i+c. Therefore a = c+a\ and 

b = c+b[ for some a'lf b[ 6 E. Then u := ai + fti + c G E and a,b < aVfc < u. 
Hence (a V 6) \ a < u\ a — bi < b and (a V b) \ b < u \ b — a\ < a. In a 
similar way we have a / (aV6) < a / u = a / (ai + 6i + c) = a / (ai + c+ft^) = 
a / {c + a'x + ¿4) = b[ < b, as well as b / (a V b) < a\ < a. 

Put w\ := ((a V b) \ b) / a = ((a V b) \ b) / ((a V 6) \ (a / (a V 6)) = 
t \ (a / (a V 6)), when we have used (2.2) and equations below (2.2). 

In a similar way, w2 := ((a V 6) \ a) / 6 = a \ (6 / (a V 6)). Define w = 
wi V102- We assert w = a A b. We have 

a \ w < a \ (((a V b) \ b) / a) = (a V b) \ b, 
b\w<b\ (((a V b) \ a) / b) = (aV b) \ a. 

Hence by Proposition 2.5, 

(a A b) \ w = (a \ w) A (b \ w) < ((a V b) \ b) A ((a V b) \ a) = 0, 

i.e., a A b = w. 
Define a' := a \ w < (a V b) \ b < a\ and b' := b \ w < (a V b) \ a < 61. 

Then ui := a' + b' + w G E and u2 := b' + a' + w G E. We show that 
u\ A U2 = a V 6. It is clear that u\ A U2 > a V b. Assume d > a, b. Then 
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a, ft < a V ft < d A ui A U2- Hence 

(til A 112) \ {d A u\ A U2) < ( u i A U2) \ a <U2 \ a = b', 

(ui A 112) \ [d A ui A U2) < (^1 A U2) \ b <u\\ a — a!. 

Since a' A b' = 0, we have ui A U2 = d A ui A «2, i.e., d > u 1 A U2, which 
proves a V ft = ui A U2-

Calculate 

oV6 = ( a V 6 ) \ a + o \ ( o A i i ) + a A i ) > 6 ' + o' + « j > a V 6 , 
a V 6 = ( a V 6 ) \ a + 6 \ ( a A 6 ) + a A 6 > a ' + 6' + u ; > a V 6 , 

which proves ui = U2 = a V ft. 
Since a'A6' = 0, by Proposition 3.4, we have aVft = a'+6'+u> = b'+a'+w, 

a' — a \ (a A b), b' = b \ (a A b), w = a A ft, i.e., 

(a Vft) \ a = ft' = ft \ (a Aft), 
(aV b) \ b = a' = a \ (a Ab), 

and 

u;i = ((a V 6) \ b) / a = (a \ (a A 6)) / a = a A ft, 
102 = ((a V 6) \ a) / b = (ft \ (a A a)) / b = a A ft, 

i.e. = W2 = w = a A ft. 
(iii)=i>-(i). It follows the main ideas of the proof of the the previous im-

plication. 
Thus, let a = ai + c = c + a^ and ft = fti + c = c + ft'i for some , ft^ € E, 

and let u\ •.— a i+ f t i+c E E and U2 := fti+ai+c € E. Set u = ui Au2- Hence 
{a\Jb) \ a <u \ a <U2 \ a = b\ <b a n d {a\Jb) \ b < u \ b < u\ \ b = a\ < a. 
In addition, a / (aVft) < a / iti = a / (ai + 61 + c) = a / (c + ai + ft^) = ft^ < ft 
and ft / (a V ft) < ft / it2 = ft / (c + ft'i + a'x) = o^ < a. 

Put wi := ((a V ft) \ ft) / a = ((a V ft) \ ft) / ((a V ft) \ (a / (a V ft)) = 
ft \ (a / (a Vft)). Similarly we have for W2 := ((aVft) \ a) / ft = a \ (ft / (a Vft)). 
Define w = w\ V W2. We have as above it; = a A ft. 

Define a' := a \ w < (a V ft) \ ft < ai and ft' := ft \ w < (a V ft) \ a < fti. 
Then := a' + ft' + w e E and u'2 := ft' + a' + w G E. We show that 
ui A «2 = a V ft. It is clear that u[ A u'2 > aV ft. Assume d > a, b. Then 
a, ft < a V ft < d Au[ Au'2. Hence 

(i4 A «2) x ^ u'i A "2) ^ (u'i ^ "2) \ a < "2 v a = 

(«i A «2) \ (dA A u'2) < (u'i A u'2) \ b <u[ \ a = a'. 

Since a' A ft' = 0, we have u'x A u'2 = d A u[ A u'2, i.e., d > u[ A u'2, which 
proves a V ft = u[ A u'2. 
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Calculate 
a V 6 = ( a V 6 ) \ a + a \ ( a A 6 ) + a A 6 > 6 ' + a' + i i i>aV6, 
a\/b = (a Vb)\a + b\ (a A b) + aAb> a'+ b' + w>a\/b, 

which proves u[ = u'2 = a V b, that is a <-> b. • 
PROPOSITION 3.9. Let a and b be elements of a lattice pseudo-effect algebra 
E such that a A 6 = 0. 

(1) If a b, then a + b,b + a 6 E and a + 6 = aV6 = 6 + a. 
(2) If a + b,b + a 6 E, then a<->b. 

Proof. (1) Since a = a \ (a Ab) + a Ab and b = b \ (a A b) + a A b, so that 
aVb = a\(aAb) + b\(aAb) + aAb = a + b 

= b \ (a Ab) + a \ (a Ab) + a Ab = b + a. 
(2) Use Theorem 3.8. • 

PROPOSITION 3.10. Let E be a lattice pseudo-effect algebra. Then a <—> b if 
and only if a b, and a b if and only if either (a V b) \ b = a \ (a Ab) 
or (a V b) \ a = b \ (a A 6), or equivalently, either a / (a V b) = (a A 6) / b or 
b / (a V 6) = (a Ab) / a, or equivalently either a \ (a A b) <b~ orb\ (a A b) < 
a~, or equivalently, either (a A b) / a <b~ or (a Ab) / b < a~. 

In particular, if a Ab = 0 and a + b 6 E, then a V b = a + b. 

Proof. Assume a b. By Theorem 3.8, a b, that is a = ai + c, 
b = &i + c, ai A £>i = 0 and ai + £>i + c = bi + ai + c G E. Assume x < ai 
and y < b\. Then i A j/ = 0, and x + y, y + x € E. By Proposition 3.9, 
x + y = x\/y = y + x, which proves that a b. 

Assume now a b. First assume a A b = 0 and a + b 6 E. We 
assert a V b = a + b. Indeed, calculate (a V b) \ b < (a + b) \b = a and 
a / (a V b) < a / (a + b) = b. Then w := ((a V b) \ b) / a = ((a V b) \ b) / ((a V 
b) \ (a / (aV6))) = 6 \ (a / (aV6)) < 6. Hence w < aAb = 0, i.e., (aV6) \ 6 = a 
and, finally, a V 6 = a + b. 

Second, let a = ai + c, £> = b\ + c and, for example, u := ai + bi + c € E. 
Therefore for a' := a \ (aAb) < ai and b' := b \ (aAb) < b\. Since a' Ab' = 0 
and a' + b' € E while a' + b' < ai + b\ G E, by Proposition 2.8 and by 
the first part of the present proof, a' V b' = a' + b'. Using Proposition 2.9, 
a V b = (a' V b') + a A b = a' + b' + d = a' + b, where c' = a A b. Therefore, 
(a V b) \ b = a \ (a A b). 

In a similar way we proceed with the second possibility. • 
We recall that the last statement generalizes that from Proposition 2.10. 

PROPOSITION 3 .11 . Let E be a lattice pseudo-effect algebra. Then a <-> b 
if and only if a \ (a A b) b \ (a A b). In addition, a b if and only if 
a \ (aAb) b \ (a A b). 
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P r o o f . One direction is clear. Suppose now ai : = a \ ( a A 6 ) 6 \ (a A6) = : 
bi. By Proposition 3.9, a i V a2 = a i + a2 and from Proposition 2.9 we have 
(ai V 02) + c € E, where c = a A b. Then a V b — (ai V 61) + c = ai + b\ + c = 
bi + ai + c, i.e., a b. 

Assume now a \ (a A b) b \ (a A b). B y Proposition 3.10, e.g., (a V 
b) \ b = a \ (a A6). Hence, a V 6 = b \ (aAb) + b > 6 \ ( a A b ) + b \ (a/\b) 6 E, 
that is, a \ (a A b) 6 \ (a A b). 

Conversely, if a' : = a \ (a A 6) 6 \ (a A 6) = : 6', then a' = ai + c 
and 6' = 61 + c, where e.g., a i + b\ + c € E. Since c < a' A b' = 0, we 
have a ' + 6' G E. Therefore, a ' V b' = a' + b' by Proposition 3.10, we have 
a V b = (a' V b') + a A b = a' + b' + c G E, and finally, a 6. • 

PROPOSITION 3.12. Lei E be a lattice pseudo-effect algebra, let ai «-• b for 
any i G I, and a := Vie/ a» ^ Then b a and 

V ( A I A 6 ) = ( \ / A I ) A 6. 
T T 

P r o o f . The proof will follow from the following Claims. 

CLAIM 1. a < (b \ (a A b)) / 1, b \ ( a A b) + a \ ( a A b) + a A b € E. 
a V 6 < 6 \ (a A 6) + o \ (o A b) + a A b. 
( a V 6 ) \ a<b \ (a A 6). 

We have ai<(b\ (aiAb)) / 1 < (6 \ (aAi>)) / 1, so that o < (6 \ (aA&)) / 1, 
so that 6 \ (a A 6) + a G E. Therefore, a V 6 < 6 \ (o A i>) + o \ (a A ft) + a A 6 
and (a V 6) \ a < 6 \ (a A 6). 

CLAIM 2 . AI(& \ (A. A 6 ) ) = 6 \ (A A 6) . 

6 \ (a A 6) < ft \ (a, A ft) for any aj. Let d < b \ (aj A 6) = (ai V b) \ ai < 
(aVft) \ ai. Then a» = ( ( a V 6 ) \ a») / (aVft) < d / (aVft) and a < d / (aVft), 
so that d = (a V 6) \ (d / (a V 6)) < (a V 6) \ a < b \ (a A 6) using Claim 1. 
This implies Claim 2. 

CLAIM 3 . ( a V ft) \ a = ft \ ( a A ft). 

B y Claim 2, 6 \ (aAb) = Ai(& ^ (a. Aft)). Hence, Ai(*> ^ (a« Aft)) = Ai((a»V 
6) \ ai). Let now x < (a; V 6) \ ai for any i E I. Then x < (a V ft) \ ai, so 
that ai = ( (a V 6) \ ai) / (a V b) < x / (a V 6). Consequently, a < x / (a V ft). 
Therefore, x = (a V 6) \ (x / (a V 6)) < (a V 6) \ a, which proves Claim 3. 

CLAIM 4. a A 6 = Vi(a» A 6). 

Let aiAft < e for any i € I. Then aiAb < bAe so that b \ (ftAe) < ft \ (aiAb) 
for any i G I. B y Claim 2, b \ (b A e) < Ai(ft \ (a» A ft)) = ft \ (a A b). Hence 
aAb = (b \ (aAb)) / ft < (ft \ (bAe)) / b = ftAe < e, so that aAb = Vi(a» A b). 

CLAIM 5 . a \ ( a A b) = A i ( a ^ (Oi A ft)). 
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We have a \ (aAb) < a \ (aj At) for any i € I. Assume w < a \ (oj Ab) for 
every i. Then ai Ab = (a \ (a* Ab)) / a < w / a, and by Claim 4, aAfc <w/a. 
Therefore, w = a \ (w / a) < a \ (a Ab) which yields Claim 5. 
CLAIM 6 . a \ (a A b) + b e E. 

We have ai \ (ai Ab) < 1 \ b for any i. Then at < 1 \ 6 + aj A 6 < 
l\b + aAbe E, so that a < 1 \ b + a Ab. Hence a \ (a A b) < 1 \b and 
a \ (a A b) + b < 1. 

CLAIM 7. a \ (a A b) + b = a V b. 

It is clear hat a \ (a A b) + b > a, 6, so that o \ (a A b) + b > a V b. Let 
a \ (a A b) + b > x > a,b. Then x > ai,b for any z, so that x > ai V b = 
ai \ (a» A b) + b and 

Oj \ (ûj A 6) + b < x, 
ai \ (ai Ab) < x \ b, 

ai < x \ b + ai Ab € E, 
ai<x\b + aAbeE, 

a<x\b + aAb, 
a \ (a A b) < x \ b, 

a \ (a A b) + b < x, 
a \ (a A b) + 6 = a V b. 

CLAIM 8 . a < 6 . 

It follows from Claim 3 and Claim 7 and of (ii) of Proposition 3.6. • 
COROLLARY 3.13. Let E be a lattice pseudo-effect algebra. If a\ <->6 and 
a2 «-• b, then (aiVa2)Ab = (aiAb)V(a2Ab) and (aiAa2)v6 = (aiVi>)A(a2V6). 
Proof. The first equality follows from Claim 4 of the proof of Proposition 
3.12. 

For the second one. By Proposition 3.7 and Theorem 3.8, we have 1 \ ai 
«-> 1 \ b <-> 1 \ a2. Then ((1 \ ai) V (1 \ a2)) A (1 \ b) = 1 \ ((ai A a2) V b). On 
the other hand, by the first part, it equals to ((1 \ ai) A (1 \ b)) V ((1 \ a2) A 
(1 \ b)) = (1 \ (a: V b)) V (1 \ (a2 V b)) = 1 \ ((ai V b) A (a2 V b)) which entails 
the desired result. • 
PROPOSITION 3 .14 . Let E be a lattice pseudo-effect algebra, let ai <-> b for 
any i € / and let a = Aie/ a» ^ Then b «-> a. 
Proof. By Proposition 3.7 1 \ b 1 \ ai for any i. Since 1 \ (Aiai) = 
Vj(l \ ai) € E, by Proposition 3.12, 1 \ b Vi(l N aù• Applying again 
Proposition 3.7, b <-• a. » 

We have the following two forms of the Riesz decomposition properties. 
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PROPOSITION 3.15 . Let a, 6, c be elements of a lattice pseudo-algebra such 
that a + b € E, c < a + b and c b or c «-• a. Then there exist two elements 
ai, bi €. E such that c = a\ + b\, and a\ < a and b\ < b. 

P r o o f . L e t c < a + b and define v := c\ (b A c), a\ := a A v. Then a i < a 
and a i < c. P u t £>i : = a i / c. T h e n c = a i + 61. 

To finish the proof, we have t o show that 61 < b. 

a i + bi = c < (a + b) A (6 V c) 

= (a + 6) A (c \ (6 A c) + 6) 

= (a + b) A (v + b) 
= (a A v) + b = a i + b, 

when we have used Proposition 2.8 . B y the cancellation, 61 < b. 
In a similar way we proceed when a <-> c. • 

PROPOSITION 3.16. Let E be a lattice pseudo-effect algebra. Let ai + 02 = 
b\ + 62, where a\ 61 and 02 <-> 62- Then there exist four elements 
c i l , c i 2 , C2i,C22 G E such that 

Moreover, we may assume that c\i A C21 = 0, and under this condition 
the Cij's are determined uniquely, and c\2 + C21 = c\2 V C21 = C21 + C12. 
P r o o f . W e define c u = a i A i>i, c\i = (a i A 61) / a i , C22 = 0,2 A 62 and 
C21 = a2 \ (02 A 62). T h e n a i = c u + c\2 and 02 = C21 + 022- W e show t h a t 
C21 = Û2 x (^2 A ^2) = («I A 61) / 61. P u t y = a i + a 2 = òi + ò2 = 61 + 61 / y = 
y \ 62+62 = 0 1 + 0 1 / y = y \ 0 2 + 0 2 - B y the cancellation, we have 62 = 61 / y, 
61 = y \ 62, a i = y \ 02 and 02 = a i / y. 

Calculate and use Proposition 2 .2 : C21 = 02 \ (02 A62) = (a i / y ) \ ( ( a i / y ) 
A(61 / y ) ) = (a i / y) \ ( (aiV&i) / y ) = a i / ( a i V 6 x ) = (aiA&i) / 61 = c u / 61, 
when we have used Proposition 3.6 . 

B y s y m m e t r y we have 

Hence, by Proposition 2.8 , C12 A C21 = ( ( a i A a i ) / a i ) A ( ( a i A 61) / 61) = 0. 
In addition, 61 = e n + C21 and 62 = C12 + C22. 

Since ai + a2 = e n + C12 + C21 + C22 = e n + C21 + C12 + C22 = 61 + 62, we 
conclude C12 + C21 = C21 + c i 2 , so t h a t by Proposition 3 .10 , C12 C21 and 
C12 + C21 = C12 V C21 = C21 + C12. 

Uniqueness. Adding the elements e n and C21, respectively, t o the equality 
c\2 A C21 = 0, we obtain by Proposition 2.9, ( e n + C12) A ( e n + C21) = c u , 
so that e n = a i A 61, and similarly C22 = 0,2 A 62. Using the cancellation 

oi = c u + C12, 

0.2 = C21 + C22, 
61 = Cn + C21, 

hi = Cl2 + C22-

62 \ (02 A 62) = ( a i A 61) / a i = C12 = e n / a i . 
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property, we see that c\2 and C21 are defined consequently in the same way 
as at the beginning of the present proof. • 

4. Pseudo-effect algebras and blocks 
In the present section, we introduce a block, which is roughly speaking 

a maximal set of "distributive" or, more precisely, of "Riesz decomposable" 
elements of a pseudo-effect algebra. We show that if a lattice pseudo-effect 
algebra E satisfies the difference compatibility property or, equivalently, the 
weak compatibility property (i.e., the ultra weak and weak compatibilities 
are equivalent), then every block is a pseudo-effect algebra which is a pseudo 
MV-algebra, and E can be covered by its blocks. If, in addition, such an 
algebra is er-complete, then every block is a a-complete MV-algebra, and E 

is a commutative effect algebra. 
Let {Et}teT be a system of pseudo-effect algebras such that EtC\Es = 

{0,1} for t ^ s. The set E := UteT can be organized into a pseudo-effect 
algebra such that x + y is defined in E iff x, y 6 Et for some t € T and if 
x + y is defined in Et, and in such a case, x + y takes the value from Et. 

Then E is a pseudo-effect algebra which is said to be a horizontal sum of 
the system of pseudo-effect algebras {Et}teT-

A maximal set of mutually compatible elements of a pseudo-effect algebra 
E is said to be a block. 

For example, if E is a pseudo MV-algebra, then E is a unique block in 
E. In addition, if E is a horizontal sum of a system of pseudo MV-algebras 
{Et}teT, then E is not necessarily a pseudo MV-algebra, and {Et}teT is the 
system of all blocks in E. 

The following example is from [Rie 1]. 

EXAMPLE 4.1. Let E — {0, a, b, c, d, 1}, where the addition + is defined in 
the table. 

+ 0 a b c d 1 

0 0 a b c d 1 

a a d c 1 X X 

b b c d X 1 X 

c c 1 X X X X 

d d X 1 X X X 

1 1 X X X X X 

/ 0 a b c d 1 

1 c d a b 0 
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Then E is an effect algebra which is not a lattice, but all elements of E 
are strongly compatible and e.g. c d and c V d 6 E but c A d # E, as 
well as a b, a A 6 € E but a V b £ E. Moreover, E is a unique block, but 
it is not an MV-algebra. 

PROPOSITION 4 .2 . If E is a pseudo-effect algebra. If a b, then either 
a 1 \ 6 or b 1 \ a. If a <-> b, then a 1 \ b and b a / 1. 

Proof . Assume that a = ai + c = d + a\, b = b\ + c and u = a\ + bi + c € E 
for some d E E. Then 1 = 1 \ tt + ai +b which gives 1 \ b = 1 \ u+a\. Hence 
l \ u + ai + c = l \ u + c' + a i € i ? which proves a 1 \ b. 

In a similar way we proceed with the second possibility. The case a b 
is now evident. • 

We can ask whether is the ultra weak compatibility equivalent with the 
weak compatibility in lattice pseudo-effect algebras ? 

The partial answer gives the following notion. 

We say that a pseudo-effect algebra E has the weak compatibility prop-
erty, (WCP) for short, if, for a,b € E, a b implies a *-—> b. 

For example, (i) every pseudo MV-algebra, or (ii) every horizontal sum 
of pseudo MV-algebras, or (iii) every effect algebra, or (iv) every horizontal 
sum of the previous algebras has (WCP). 

PROPOSITION 4 .3 . Let E be a lattice pseudo-effect algebra such that 1 \ a = 
a / 1 for every a 6 E. Then E has ( W C P ) . 

Proof . By Proposition 3.11, it is sufficient to verify that if a b for 
a,b € E with a A b = 0, we have a b. Assume, e.g., u = a + b € E. Then 
l = a + fc + u / l = a + fl/l = a + l \ a = l \ a + o and therefore, b < 1 \ a 
and finally, b + a G E which proves a <-—> b. 

In a similar way we prove that if b + a 6 E, then a + b & E. • 

REMARK 4.4. There exists a non-commutative lattice-ordered pseudo-effect 
algebra E such that 1 \ a = a / 1 for every a G E, [Rae 1]. Such algebras 
are sometimes connected with cyclically ordered (non-commutative) unital 
groups in the sense of Rieger [Rig], [Fuc]. 

PROPOSITION 4.5. Let a lattice pseudo-effect algebra E satisfy ( W C P ) . 
(i) If a <-> b, then l \ 6 < - > a « - » & / l . 
(ii) If a «-• b and c> a, b, then c \ b <-> a <-» b / c. 

Proof , (i) By Proposition 4.2, if a «-> 6, then a 1 \ b and b 1 \ a. 
(WCP) and Theorem 3.8 implies a <-> 1 \ b and b <-• 1 \ a. Using Proposition 
3.7, we have a / 1 <-> b and 1 / b *-+ a. 

(ii) It follows similar reasonings as those in (i). • 
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We say that a pseudo-effect algebra E satisfies the difference compati-
bility property, (DCP) for short, if a <-> b, a <-> c and b < c imply c «-» c \ 6. 
Every pseudo MV-algebra, or every horizontal sum of pseudo MV-algebras, 
or every effect algebra, or any horizontal sum of the previous algebras has 
(DCP). On the other hand, Example 3.1 has (WCP), but not (DCP). 

PROPOSITION 4.6. Let E be a pseudo-effect algebra with ( D C P ) . (i) If a <-• b, 
then l \ 6 < - > a « - * 6 / l . 

(ii) If a <-» b, a c, and b + cE E, then a «-> b + c. 

Proof , (i) Since a <-• b, a 1, b < 1, we have a <-> 1 \ b. By symmetry we 
have 1 \ a <-> b and by Propositions 3.3 and 3.7, we have a = (1 \ a) / 1 
6 / 1 . 

(ii) Assume a <-> b, c and b + c€ E. Then b <1 \ c and by (i) a <-• 1 \ c. 
Therefore, a <-> (1 \ c) \ b = 1 \ (b + c), so that by (i), a <-• b + c. • 

In what follows, we prove that in lattice pseudo-effect algebras (WCP) 
implies (DCP). 

PROPOSITION 4.7. Let E be a lattice pseudo-effect algebra satisfying (WCP). 
If a b, a «-• c and b < c, then a «-> c\ b and a <-» b / c. 

Proof . By Proposition 3.10, from a n c w e have c < a " + a A c . On the 
other hand, 

a A (c \ 6) + b > (a A b~ A (c \ 6)) + b 
= (a A 6~ + 6) A ((c \ 6) + 6) (Proposition 2.9) 
= (a A b~ + b) A c 
> a A c, 

while a <-• implies (aAb~) + (aAb~) / 6_ + (aA6_) / a = i>- + (aA&-) / a e 
E, so that (a A 6 _ ) / a <b and a < a Ab~ + b. 

Therefore, b> (aA(c\b)) / (aAc). Calculate c = c \ b+b < a~ +aAc = 
a~ + a A (c \ b) + (a A (c \ b)) / (a A c), so that 

c \ 6 + (a A (c \ b)) / (a A c) < c \ b + b = c 
< a - + a A (c \ b) + (a A (c \ b)) / (a A c) 

which gives 
c \ b < a~ + a A (c \ b). 

By Proposition 3.10, this implies c \ b <—• a and by (WCP), c \ b <-> a. 
By duality we prove a <-> b / c. • 
Finally, we say that a pseudo-effect algebra E1 satisfies the compatibility 

complement property, (CCP) for short, if a b implies a <-> 1 \ 6; then also 
a <-* b / 1. 
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We prove that in lattice pseudo-effect algebras three properties (WCP), 
(DCP) and (CCP) are equivalent. 

PROPOSITION 4.8. Let E be a lattice pseudo-effect algebra. The following 
three properties are equivalent. 

(i) (WCP). 
(ii) (DCP). 

(hi) (CCP). 

P roo f . By Proposition 4.7, (WCP) implies (DCP), and by Proposition 4.6, 
(DCP) implies (CCP). 

We claim (CCP) entails (WCP). Let a b. By Proposition 3.11 it is 
sufficient to assume that a A b = 0, and e.g. a + b € E. Then a < b~ = 1 \ 6, 
so that a <-> . Therefore, a «-> b~ / 1 = b. • 

Now we present the main results of the paper. 

THEOREM 4.9. Let E be a lattice pseudo-effect algebra with (DCP). Then 
every block of E is a pseudo-effect subalgebra of E which is a pseudo MV-
algebra. Moreover, any such pseudo-effect algebra E is a set-theoretical union 
of its blocks. 

Proo f . Let M be a block of E. Therefore, 0,1 € M. If a € M, then by 
(DCP), 1 \ a, a / 1 € M, and if b, c € M and b + c € E, then by Proposition 
4.6, 6 + c 6 M which proves that M is a pseudo-effect subalgebra of E. By 
Proposition 3.12 and Proposition 3.14, M is a lattice in which by Proposition 
3.6 a \ (a A b) = (a V b) \ b for all a,b G M, which by [DvVe II, Prop. 8.8] 
is a necessary and sufficient condition for (M; , 0,1) to be a pseudo 
MV-algebra, where 

a © 6 := ((a~ A b) / a~ ) - , a, b € M. 

Let now A be any subset of mutually compatible elements of E. Due to 
Zorn's lemma, there exists a block of E containing A. Since any element of 
E belongs to some block of E, E can be covered by its blocks. • 

As a corollary of Theorem 4.9 we have the following important result of 
Riecanova [Rie]: 

COROLLARY 4.10. Every lattice effect algebra E can be covered by blocks 
which are MV-algebras, and every block of E is an MV-algebra. 
P r o o f . Since every effect-algebra satisfies (WCP), the blocks of every lattice 
effect-algebra are by Theorem 4.9 MV-algebras. • 

THEOREM 4.11. Let a pseudo-effect algebra with ( D C P ) be a a-lattice. Then 
every block of E is an MV-algebra, and E can be covered by commutative 
blocks, and in addition, E is a (commutative) effect-algebra. 
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P r o o f . Let {an} be a sequence of elements of a block M of E. By Propo-
sition 3.12 and Proposition 3.14, V n

a n , A n °n e which by Theorem 4.9 
means M is a pseudo MV-algebra which is a cr-complete lattice. In view 
of [Dvu, Thm 4.2], every cr-complete MV-algebra is a (commutative) MV-
algebra. 

Assume now a + b G E. Then a < 1 \ b and a <-> 1 \ 6, consequently, 
a <-> b by Proposition 4.6. By Theorem 4.9 there exists a block M of E such 
that a,b e M. Since by above, M is a (commutative) MV-algebra, we have 
a + b = b + a. • 

The last theorem can be extended as follows. We say that a pseudo-effect 
algebra E is Archimedean if, for an element a € E such na := aH \-a e E 
for any n > 1, we have a = 0. 

THEOREM 4.12. Let E be a lattice pseudo-effect algebra such that every 
block is a pseudo-effect subalgebra of E. If E is Archimedean, then E is a 
(commutative) effect algebra. 

Proo f . Let M be a block of E. Since E is a lattice such that a \ (a A b) = 
(a V b) \ b, for all a, 6 € M, we have that M is a pseudo MV-algebra. Now 
if a 6 M and na € E for any integer n > 1, then na G M for any n > 1, 
which by the assumptions implies a = 0, i.e., M is an Archimedean pseudo 
MV-algebra. By [Dvu, Thm 4.2], this implies M is an MV-algebra. Hence, 
if a + b € E, then a < 1 \ b which means that a and b belong to the same 
block, therefore, a + b = b + a. • 

THEOREM 4.13. Every cr-complete effect algebra is Archimedean. 

Proo f . It follows from Theorem 4.12 and Corollary 4.10, or it is possible to 
use directly the definition of the Archimedeanicity and Proposition 2.2 for 
the elements an = na. • 

Finally, we show that properties (WCP), or equivalently (DCP) or (CCP) 
are necessary for the validity of Theorem 4.8. 

PROPOSITION 4.14. Let E be a lattice pseudo-effect algebra. Then every block 
of E is a pseudo-effect subalgebra of E if and only if E satisfies (WCP), or 
equivalently E satisfies (DCP), or equivalently E satisfies (CCP). 

P r o o f . If E satisfies e.g. (DCP), then by Theorem 4.9, every block of E 
is a pseudo-effect subalgebra of E. Conversely, let any block of E be a 
pseudo-effect subalgebra of E. Assume a b, then a and b belongs to the 
same block and hence a <-> 1 \ b, so that E has (CCP). • 

Finally, we show that the equivalent properties (WCP), (DCP) and 
(CCP) are not satisfied in every lattice pseudo-effect algebra. We recall that 
according to Proposition 3.10 and Proposition 4.8, the above properties are 
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equivalent with the following condition: for any a, 6 € E 

(4.1) a A 6 = 0, a + b exists iff b + a exists. 

EXAMPLE 4.15. Let G be the additive free group generated by the two 
elements g, h] let v : (G; +) —> (Z;+), where Z is the additive group of 
the integers, be the homomorphism determined by the conditions v(g) = 
v(h) = 1; and define a partial order in G by setting G+ := {x € G : x = 
0 or v{x) > 0}. Then we have for o, 6 € G 

a < b iff a = b or v(a) < v(b). 

Then G is a po-group, but G is not lattice-ordered; g V h is not defined 
in G. 

Consider now the interval pseudo-effect algebra (r(G, g + h)\+,0,g + h). 
We have E := T(G, g + h) = {a € G : a = 0 or v(a) = 1 or a = g + h}. It 
is lattice-ordered; for if a, b € E, then either a and b are comparable, or else 
v(a) = v(b) = 1, in which latter case the only lower bound is 0 and the only 
upper bound is g + h. 

E does not fulfil (4.1) , since for instance g Ah = 0, g + h is defined, but 
h + g is not. 

PROBLEM 1. Characterize pseudo-effect algebras which can be covered by 
pseudo MV-algebras. 
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