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DISTRIBUTIVE ATOMIC EFFECT ALGEBRAS

Abstract. Motivated by the use of fuzzy or unsharp quantum logics as carriers of
probability measures there have been recently introduced effect algebras (D-posets). We
extend a result by Greechie, Foulis and Pulmannova of finite distributive effect algebras
to all Archimedean atomic distributive effect algebras. We show that every such an ef-
fect algebra is join and meet dense in a complete effect algebra being a direct product
of finite chains and distributive diamonds. This proves that every such effect algebra has
a MacNeille completion being again a distributive effect algebra and both these effect
algebras are continuous lattices. Moreover, we show that every faithful or (0)-continuous
state (probability) on such an effect algebra is a valuation, hence a subadditive state.
Its existence is also proved. Finally, we prove that every complete atomic distributive
effect algebra E is a homomorphic image of a complete modular atomic ortholattice re-
garded as effect algebra and E is an MV -effect algebra (MV-algebra) if and only if it is
a homomorphic image of a Boolean algebra regarded as effect algebra.

1. Introduction and basic definitions

Recently, effect algebras as carriers of probability measures in the “quan-
tum probability theory” have been introduced (Foulis and Bennett [4]). In
the fuzzy-probability setting an equivalent (in some sense) structure, D-
poset was introduced (F. Kopka [11]). Thus elements of these structures
represent quantum events or fuzzy events which have yes-no character that
may be unsharp or imprecise. Unfortunately, there are effect algebras (D-
posets) admitting no states hence also no probabilities. Moreover, a state or
probability w on a lattice effect algebra E need not be subadditive. It was
proved in Rietanovs [20] that w is subadditive iff it is a valuation.

The existence of (0)-continuous states on Archimedean modular atomic
effect algebras was proved in Rie¢anova [16]). But not all of them are also
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subadditive. Further, it is well known that on MV -effect algebras, which are
distributive lattices derived from MV -algebras, every state is subadditive
(see [8] and [16]). On the other hand distributive effect algebras need not
be MV -effect algebras. Nevertheless, as we are going to show, all faithful
states (probabilities) on them are subadditive (oc-subadditive). Further, for
Archimedean atomic distributive effect algebras we prove: (1) the existence
of a MacNeille completion, (2) the existence of a valuation, (3) the existence
of a modular ortholattice as a homomorphic pre-image.

A model for an effect algebra is the standard effect algebra of positive self-
adjoint operators dominated by the identity on a Hilbert space. In general
form, an effect algebra was introduced in [4].

DEFINITION 1.1. A structure (E;®,0,1) is called an effect-algebre if 0, 1
are two distinct elements and & is a partially defined binary operation on
E which satisfies the following conditions for any a,b,c € E:

(Ei)b®a=a®bif a®bis defined,
(Eil) (a®b) ®c=a® (b c) if one side is defined,
(Eiii) for every a € P there exists a unique b € P such that a®b =1
(we put a’ = b),
(Eiv) if 1 @ a is defined then a = 0.

We often denote the effect algebra (E;®,0, 1) briefly by E. Moreover, if
we write a ® b = ¢ for a,b,c € E, then we mean both that a & b is defined
and a ® b = c¢. In every effect algebra E we can define the partial operation
© and the partial order < by putting

a<band boa=—ciff a® cis defined and a ® c = b.

Since a®c = a®d implies ¢ = d, the © and the < are well defined. If F with
the defined partial order is a lattice (a complete lattice) then (E;@®,0,1) is
called a lattice effect algebra (a complete effect algebra).

Recall that a set Q C F is called a sub-effect algebra of the effect algebra
Eif:

)1eq,
(ii) if out of elements a,b,c € E with a® b = c two are in @ then
a,b,ce Q.

Assume that (Ey;®1,01,11) and (Ep; 2,02, 12) are effect algebras. An
injection ¢ : E; — Es is called an embedding iff ¢(11) = 12 and for a,b € F;
we have a < b iff p(a) < (¢(b))’ in which case p(a ®1b) = ¢(a) B2 p(b). We
can easily see that then ¢(F;) is a sub-effect algebra of E; and we say that
E; and p(E)) are isomorphic, or that E; is up to isomorphism a sub-effect
algebra of E5. We usually identify Ey with ¢(E).
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We say that a finite system F' = (ax)p_; of not necessarily different
elements of an effect algebra (E;®,0,1) is @-orthogonal if a1 ®as @ - - ®a,

(written €D ax or @ F) exists in E. Here we define a; @ ay ®--- ® a, =
k=1

n—1 n—1 )
(a1 Bas®--- D an_1) ® a, supposing that P ay exists and P ax < al,.

An arbitrary system G = (ax)xecq Of not necessarily distinct elements of E
is called @-orthogonal if @@ K exists for every finite K C G. We say that for
a @-orthogonal system G = (a,)xeq the element @G exists iff \/{P K |
K C G finite} exists in E and then we put @G = V{P K | K C G finite}
(we write G C G iff there is Hy C H such that G1 = (ax)xeH, )-

An effect algebra (E;®,0,1) is called Archimedean if for no nonzero
element e € E the elements ne = e ® @e--- @ e (n times) exist for all
n € N. An Archimedean effect algebra is called separable if every @®-ortho-
gonal system of elements of E is at most countable. We can show that every
complete effect algebra is Archimedean [15).

For an element z of an effect algebra E we write ord(z) = oo if nz exists
for every n € N. We write ord(z) = n, € N if n, is the greatest positive
integer such that n,x exists in F. Clearly, in an Archimedean effect algebra
ngy < oo for every z € E.

For more details we refer the reader to (Dvurecenskij and Pulmannova
[3]) and the references given there. We review only a few properties without
proof.

LEMMA 1.2. FElements of an effect algebra (E;®,0,1) satisfy the properties:

(i) a® b is defined iffa <V,
(i) a<ad®b,
(iii) f a Db and a Vb exist then a A b ezists and a® b= (a AD) D (a VD)),
(iv)adb<adciff b<c and a ® c is defined,
(v)aob=0iffa=0b,
(vi) ifu<a,v<band a®b is defined then u @ v is defined,
(vii) if E is a lattice and a,b < ¢ then (aVb)@c=(a®c)V (bDc).

2. Algebraic properties of atomic distributive effect algebras

It is well known that lattice effect algebras are a common generalization
of orthomodular lattices and MV-algebras (see [10], [1], [2], [7], [8])- As
posets, MV -algebras are distributive lattices.

DEFINITION 2.1. A lattice effect algebra is called distributive iff, as a poset,
it forms a distributive lattice.
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Recall that elements =z and y of a lattice effect algebra are called com-
patible (written z — y) if cVy =2 @ (y © (z Ay)). If every two elements of
E are compatible then F is called an MV -effect algebra. Every MV -effect
algebra M can be organized into an MV -algebra by extending partial oper-
ation @ onto the total binary operation & by putting z8y = @ (z' A y) for
all z,y € M (Ko6pka and Chovanec [12]). In a lattice effect algebra E every
maximal subset M C E of mutually compatible elements is a sub-lattice and
a sub-effect algebra of E. In fact M is an MV -effect algebra called block of
E. Moreover, E is a union of its blocks (Rie¢anova [17]). Every MV -effect
algebra (hence every block of a lattice effect algebra) is distributive. On the
other hand there are distributive effect algebras which are not MV -effect
algebras. The smallest one is a distributive diamond E = {0, a, b, 1} in which
1 = 2a = 2b. Evidently elements a, b are not compatible because a Ab =0
and a® (b (aAb)) is not defined in E. Hence E is not an MV -effect algebra.
The five-element effect algebra E = {0,a,b,¢,1} in which 1 = a @ ¢ = 2b
is not distributive because a Vb =2b=1but a Ac=bAc =0 and hence
(avb)Ac# (aAc)V (bAc). We will call it a non-distributive diamond.

Every finite chain 0 < a < 2a < ... < 1 = n,a is a distributive effect
algebra in which every pair of elements is compatible, hence it is an MV-
effect algebra.

An element a of an effect algebra F is called an atom if 0 < b < a implies
b =0 and F is called atomic if for every z € E, x # 0 there is an atom a € E
with a < z. Clearly every finite effect algebra is atomic. Greechie, Foulis and
Pulmannové [6] have proved that every finite distributive effect algebra E
is a cartesian product of finite chains and distributive diamonds. Here we
extend this result onto Archimedean atomic distributive effect algebras.

The notion of a central element of an effect algebra E has been introduced
in [6]. In [13] it was proved that an element z € E is central iff for every
z € E there exist elements z A z and z A 2’ for which z = (z A2) V (z A 2').
It follows that 1 = z V 2/, which is equivalent with the condition z A 2’ = 0.
Thus for a distributive effect algebra E the set of all central elements of
(called a center of E) is C(E) = {z € E | zA2' = 0}. In every effect algebra
E the center C(E) is a Boolean algebra [6]. Moreover, C(F) is a sub-lattice
and a sub-effect algebra of E' and for every @ C C(E) such that ¢ = \/ Q
exists in F we have g € C(FE), [18].

THEOREM 2.2. Let a be an atom of an Archimedean atomic distributive effect
algebra E with ord(a) = ng. Then

(i) nea € C(E) and ka ¢ C(F) for all positive integers k < nq,.
(ii) For every z € E with a < = < n,a there is a positive integer k such
that = = ka.
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(iii) [0,nqa] = {0,a,...,nq.a} iff there is no atom b # a with b < n,a;
otherwise n, = 2 and there is a unique atom b # a with b < n,a in which
case 2b = 2a, hence [0,nqa] = {0, a,b,2a = 2b} is a distributive diamond.

(iv) nqa is an atom of C(FE).

(v) C(E) is atomic and for every atom p € C(E) there is an atombe E
with p = nyb. :

Proof. (i) If k < n, then a®ka is defined which implies that a < (ka)A(ka)'.
Hence ka ¢ C(E). Further, a A (nga)’ = 0 as otherwise a A (nqa)’ = a which
gives a @ (nqa) is defined, a contradiction. Thus a ® (n.a) = aV (n.a). If
Ng 2> 2 then (2a)® (nqa) = a®(aV (nq.a)) = (a®a)V (a® (nqa)) = (2a) Vv
(nqa)’ which gives that (2a) A (n,a)’ = 0. By induction (nga) A (n,a)’ =
which gives nga € C(F).

(ii) Let @ € z < ka. Then {a, 2a, .. .,nq.a,z} is a set of pairwise compati-
ble elements and hence there is a block M of E such that {a,2a,...,n.a,z}
C M (see [17]). Because z < a D a ® ... ® a (k-times), we conclude using
the Riesz decomposition property for MV -algebras that x = la for some
positive integer [.

(iii) By (ii) [0,nqa] = {0,a,...,nqa} iff there is no atom b # a with
b < n,a. Assume to the contrary that there is an atom b # a with b < ng,a.
Then a < aVb < nga which by (ii) gives a Vb = la for some positive integer
l. Since E is also a modular lattice, intervals [a,a V b] and [a A b,b] are
isomorphic [5, p. 212], which gives that [a,la] and [0, b] are isomorphic. It
follows that I = 2, as b is an atom. Moreover, intervals [b,aV b] and [a A b, a]
are isomorphic, which gives that [b, 2a] and [0, a] are isomorphic. It follows
that there is an atom ¢ such that b&c¢ = 2a, as a is an atom. Evidently ¢ # a
because a # b. If ¢ # b then {0, a, b, c,2a} is a non-distributive diamond, a
contradiction. Hence ¢ = b and thus 2a = 2b. Assume n, > 2. Then 3a =
(2b)@a = b (b®a) = bd(bVa) = (bdb)V(bda) = 2bV (bVa) = 2bVa, which
implies that (2b) A a = 0, a contradiction. We conclude that n, = np = 2
and [0,n.a] = {0, a,b, 2a = 2b} is a distributive diamond.

(iv) This is clear by (iii) and (i).

(v) Assume that z € C(E), z # 0. Then there exists an atom b € E
with b < z. Moreover, npb = ((nb) A 2) V ((nsd) A 2’). If (npd) A 2’ # 0 then
(mpb) A 2’ = npb because (npb) A 2’ € C(F) and npd is an atom of C(FE) by
(iv). But then b < z A 2/, a contradiction. Thus npb = (npb) A z which gives
npb < z. Clearly, if z is an atom of C(E) then nyb = 2.

3. MacNeille completions of distributive atomic effect algebras
It is well known that every poset (P;<) has the MacNeille completion
(completion by cuts). By J. Schmidt [22] the MacNeille completion of a
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poset P is any complete lattice P into which the poset P can be supremum
and infimum densely embedded, i.e., for each z € P there are Q,M C P
such that z = \/ (M) = /\(,o(Q), where ¢ : P — P is the embedding. We
usually identify P with ¢(P).

A complete effect algebra (E’ &,0 ,1) is called a MacNeille completion of
an eﬁect algebra (E; e, 0,1) if, up to isomorphism, E is a sub-effect algebra
of E and, as posets, E is a MacNeille completion of E.

It is known that there are (even finite) effect algebras the MacNeille
completion of which are not again effect algebras [15].

For an effect algebra F and p € C(F) the interval [0,p] is an effect
algebra with inherited @-operation and the unit element p (see [6] and [13]).
An effect algebra E is called order continuous ((0)-continuous for brevity)
if for any net (z,)aee of elements of E such that z,, < z,4, for all a3 < o
and Vg Ta = = (written z, T ) we have \/ (o Ay) = z Ay for all
y € E [16]. An (o)-continuous effect algebra E is a continuous lattice in
order convergence.

Recall that a direct product ], .y E, of effect algebras E,., we mean
a Cartesian product with “coordinatewise” defined &, 0 and 1 (see [6] and

[16]).
THEOREM 3.1. For an atomic Archimedean distributive effect algebra E, let
Ac(g) = {px | % € H} be the set of all atoms of the center C(E) of E.

Let E = I1..cx[0, px] be the direct product of effect algebras [0, p.], > € H.
Then

(i) E is a complete atomic distributive effect algebra which is a Mac-
Neille completion of the effect algebra E.
(ii) If E is complete then E is isomorphic with [], ¢ 4[0,p.].

(iii) E and E are (0)-continuous lattices.

Proof. Because C(E) is a Boolean algebra, we have \/, . p,. = 1. As
C(F) = B(E)N S(E), where B(E) = {y € E |y & z for all z € F} and
S(E)={z € E|z Az’ =0}, we have p,, «~ z for all x € H and z € E. By
[9] we obtain that £ =z A (Ver p,{) =V,cu(@ADx) = D,.cu(x APx),
because @ ,.c x (£ ADPx) = V,.cg(zAPx) for every finite K C H. Conversely,
if T = (Zx)xeH € E then we have for s # 39, Tpey < Poy < P, < T4, and
hence T, @ Z,,, = T, V Z,;,. By induction V/, g Z. = @, Zx for every
finite K C H. By definition of € we have \/, .y Ts = Dccr T

Assume that z,y € E with z <y. ThenzAp, <y Ap,. <y VP, =
(YADx). Asz = (zApx) @ (zAP,) and y = (y Apx) ® (y Ap),) We have
Thy= ((m/\p,,) &) (y/\p,,)) \Y ((a:/\p’x) @ (y/\p’x), because p, Ap, =0
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and (zAP,)® (yAD,) <P, Thus (2D y) Ap,x = (T Apsx) ® (Y A DPx)-
We conclude that the map ¢ : E — E, defined by ¢(z) = (z A ps)xen for
every z € E, is an embedding. We identify E with ¢(E). Then evidently E
is supremum dense (hence also infimum dense) in E. This proves that E is
the MacNeille completion of E. Further, for every sy € H and every atom
Gy < Pi the element (z,.).cH € E such that Z,, = ap and z,, = 0 for all
3 # 3 is an atom of E. Tt follows that E is atomic.

(ii) This follows by part (i)

(iii) Because [0, px],cnH are finite lattices, hence (0)-continuous lattices.
As E inherits all infima and suprema existing in F, we conclude that F is
(0)-continuous.

COROLLARY 3.2. (i) Every atomic Archimedean distributive effect algebra is
sub-directly decomposed into finite chains and distributive diamonds.

(ii) An atomic distributive effect algebra has a MacNeille completion that
is again a distributive effect algebra iff it is Archimedean.

Proof. (i) follows from Theorems 2.2 and 3.1. Assertion (ii) is a conse-
quence of Theorem 3.1 and the fact that every complete effect algebra is
Archimedean [15].

4. States, probabilities and valuations

Recall that a map w : E — [0,1] is called a (finitely additive) state on
an effect algebra Fif w(l) =land z £ ¢y = w(z®y) = w(z) + w(y); wis
called (o)-continuous if xa-@w = w(z,) — w(z). Here for a net (z4)ace

of elements of E we write z,, ﬁ»z if there exist nets (uq)ace, (Va)ace such
that uy, < 74 < v, for all @« € £ and u, T z and v, | z. A state w is
called o-additive (or a probability) if w(@ff:l zn) =Y >, w(zy) for every
@-orthogonal sequence (z,)32, for which €, ; =, exists in E. A state w

on E is called faithful if w(z) = 0 => z = 0. A state w on a lattice effect
algebra FE is called a valuation if z Ay =0= w(zVy)=0.

LEMMA 4.1. (i) A state w on a lattice effect algebra E is a valuation iff
w(aVbd)+w(aAb) =w(a)+w(b) foralla,be E.

(i1) If there exists a faithful state on an effect algebra E then E is
separable.

The proof can be found in [20].

We say that a state on a lattice effect algebra F is subadditive if w(zVy) <
w(z)+w(y) forall z,y € E. fw(\or;2n) < Yo w(zy) forall z, € E
with Vf;l z, € F then w is called o-subadditive.
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Note that every valuation on a lattice effect algebra F is subadditive. On
the other hand, a state on a lattice effect algebra F need not be subadditive.
In Riecanova [20] it has been proved:

LEMMA 4.2. A state on a lattice effect algebra is subadditive iff it is a valu-
ation.

The proof of the following Lemma is a routine verification.

LEMMA 4.3. Let E be a lattice effect algebra and w be a state on E. If w is
faithful (or E is separable) then the following conditions are equivalent:

(i) w is o-additive,
(ii) zp | 0 = w(z,) | O,
(iii) zp, Tz = w(z,) T w(x),
(iv) w is (0)-continuous,
(v) w(BG) = V{> ,epw(z) | F C G is finite} for every ®-orthogonal
system G for which @ G exzists in E.

In this section we show that on every Archimedean atomic distributive
effect algebra E there exists a valuation and that every faithful or (0)-
continuous state on F is a valuation.

THEOREM 4.4. If w is a faithful probability on an Archimedean atomic
distributive effect algebra E then

(i) w is a valuation,
(ii) w is o-subadditive.

Proof. (i) As w is faithful, the effect algebra E is separable (see [20]), hence
the set Ac(g) of all atoms of the center C(E) of E is at most countable.
Set Ac(g) = {pn | n = 1,2,...} By Theorem 2.2, every interval [0, py]
is either a finite chain or the distributive diamond, hence every state on
[0, ps] is a valuation. It follows that for every restriction w|(g p, its multiple
aty@lio,p] 15 & valuation.

Assume that z,y € E with z Ay =0. Then

zVy=Vy) Ap. =P Ap) V(Y APL))
n=1

n=1
(see the proof of Theorem 3.1), under which p,, A p,, = 0 for all n; # ns.
By o-additivity of w we obtain

wzVy) =Y w((@Vy)Aps) = Y w(zApa)+ Y _(¥AP) = w(z)+w(y),
n=1 n=1 n=1

which proves that w is a valuation.
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(ii) By Lemma 4.2, w is subadditive, which gives

(Vo) =V (V 20) i 5t = 5ot
n=1 n=1 k=1 k=1 n=1

forallz, € E,n=1,2,..., a8 i Tk T Vo Zn.

THEOREM 4.5. Every (o)-continuous state w on a complete atomic distribu-
tive effect algebra E is a valuation. Moreover, E is isomorphic with a di-
rect product [0,ag] X [0,ap] where ag € C(E) is such that w(ag) = 0 and
the restriction w|jp,q;) is a faithful o-additive valuation on the effect algebra
[0, ag).

Proof. Set Ao = {.’L‘ eFE | w(a:) = 0}, ap = VA(), K= {K g Ao I K is
finite} and zx = \/ K for all K € K. Then K is directed by set inclusion
and for the net (zx)kex we have zg T ao.

Assume that p € E is an atom of E with p < ap. By Theorem 3.1,
E is (o)-continuous, which gives zx Ap T ap A p = p and hence there
exists Ko € K such that p = zx, Ap. Let Ko = {z1,...,2,}. Then p =
pAVizi = Vi p A z; and hence there exists ig € {1,...,n} such that
p < z;,. It follows that w(p) < w(z;,) = 0. Let n, = ord(p). As F is
complete, we have n, < oo and w(npp) = npw(p) = 0. This implies that
npp < ag. By [21] there is a set {a, | o € £} of distinct atoms and positive
integers ko such that ap = P cs kala = Vaee kala £ Vaes Nan@a < ao,
where ng, = ord(as). As n, a, € C(E) for every a € &, we conclude
that ao = Vg Nan8a € C(E). Further, by Lemma 4.3 the (o0)-continuity
of w implies w(ag) = w (Bueg kata) = W(V{Back kata | K C & is
finite}) = V{> ,cc w(kata) | K C € is finite } = 0, because w(as) = 0 for
every a € €. Thus w(ag) = 1.

Letz € E,z # 0. Then z = (zAap)V(zAap) = (zAao)P(zAap) because
ag A ag = 0. This implies that w(z) = w(z A ag) + w(z A ag) = w(z A ag).
By assumptions, w is (0)-continuous on E and hence also the restriction
wljo,a] is an (o)-continuous map. Further, because ay € C(E) for every
z,y € E with z < y' we have (z® y) A ag = (z A ap) ® (y A ay) which
gives w((z A ab) & (y A ah)) = w((z © y) Aah) = w(z ) = w(z) +w(y) =
w(z A ap) +w(y A ag) and hence w|jp o} is an (0)-continuous faithful state
on [0, ag]. By Lemma 4.3 and Theorem 4.4 we conclude that wljp,q;] is a o-
additive valuation on [0, ag]. This implies that for z,y € E with zAy = 0 we
have w(zVy) = w((zVy)Aaf) = w((zAah)V(yAap)) = w(zAah)+w(yAay) =
w(z) + w(y) which proves that w is a valuation on E.

Recall the following result from Rie¢anova [21].
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THE SMEARING THEOREM. For every complete (0)-continuous atomic effect
algebra (E;®,0,1) the following conditions are equivalent:

(1) There is a state on the orthomodular lattice
S(E)={z € E|zAz =0}

(2) There is a state on E.
(3) There is an (0)-continuous state on E.

Note that a proof that S(E) is an orthomodular lattice can be found
in [9].

Combining the preceeding theorems about atomic distributive effect
algebras and the Smearing Theorem we obtain the following statement:

THEOREM 4.6. On every Archimedean atomic distributive effect algebra E
there ezists an (0)-continuous valuation.

Proof. Denote by E aMacNeille completion of E and identify E with ¢(E),
wherep: B — Eis the embedding. By Theorem 3.1, E is a complete atomic
and (o)-continuous effect algebra in which S(F) = C(FE), because FE is dis-
tributive. As C(E is a complete atomic Boolean algebra, by the Smearing
Theorem there exists an (o0)-continuous state & on E. By Theorem 4.5, & is
an (o)-continuous valuation on E. Thus also the restriction @|g has these
properties, because E inherits all suprema and infima existing in E.

COROLLARY 4.7. On every Archimedean atomic MV -effect algebra (MV -
algebra) there ezxists an (0)-continuous valuation.

5. Homomorphisms of effect algebras

The following definitions of a homomorphism and a homomorphic image
for effect algebras are particular cases of corresponding definitions for partial
algebras introduced in [5].

DEFINITION 5.1. A mapping w from an effect algebra (E;®g,0g, 1) into
an effect algebra (F';®p,0F, 1F) is called a homomorphism (more precisely
effect algebra-homomorphism) if w(z ®g y) = w(z) Brw(y) forall z,y € E
with z < ¢; and w(lg) = 1r. A homomorphism w is called full if w(z) ®F
w(y) = w(2), z,y, z € E implies that there exist a, b, ¢c € FE with w(a) = w(z),
w(b) = w(y), w(c) = w(z) and a®g b = c. F is called a homomorphic image
of E if there exists a full homomorphism of F onto F'.

Evidently, a homomorphism w from an effect algebra E into the unit
interval [0, 1] of reals (in which we definea®@b=a+biffa+b<1)isa
state on E, and conversely. Moreover, a o-homomorphism (ie.,z, Tz in E
implies w(z,) T w(z) in F, n € N) in the case F = [0,1] is a probability
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on E. If F is a Boolean o-algebra of subsets of a nonempty set €2, the
o-homomorphism w : E — F is called an observable on F. Recall here that
every orthomodular lattice L (including Boolean algebras) becomes an effect
algebraif we put a®b=avbiffa <¥.

The aim of this section is to show that every complete atomic distributive
effect algebra E is a homomorphic image of a complete atomic modular
ortholattice regarded as effect algebra.

LEMMA 5.2. (i) Every finite chain is a homomorphic image of a finite
Boolean algebra regarded as effect algebra.

(ii) The distributive diamond is a homomorphic image of a finite modular
ortholattice MOq (Chinese Lantern) regarded as effect algebra.

Proof. (i) Assume that the effect algebra E is a finite chain. Then E =
{0,a,2a,...,n,a} where nga = 1. Assume that B is a Boolean algebra with
ne atoms, A = {aj,a2,...,an,}. Then B is isomorphic with the family
P(n,) of all subsets of the set A. We define a mapping w : B — E by the
formula w(F) = |F|a, for every F C P(n,) with cardinality |F|. Clearly w
is a full homomorphism of B onto E.

(ii) Assume that F is the distributive diamond {0, a, b, 1} where 1 = 2a =
2b. Let L = {0,z,2',y,y’, 1} be a Chinese Lantern [10]. Then L is a modular
ortholattice. Define w : L — E putting w(z) = w(z') = a, w(y) = w(y’) = b,
w(0) = 0 and w(l) = 1. Then, evidently, w is a full homomorphism of L
onto E.

THEOREM 5.3. Every complete atomic distributive effect algebra E is a ho-
momorphic image of a complete atomic modular ortholattice L regarded as
effect algebra.

Proof. Let Ag(g) = {p» | 5 € H} be the set of all atoms of the cen-
ter C(E) of E. By Theorems 2.2 and 3.1, E is isomorphic with the direct
product [],.c 5[0, p,] under which,for every s € H, [0, p,.] is either a finite
chain or the distributive diamond. Let for every x € H, D,, be the finite
Boolean algebra or the Chinese Lantern and w,, : D,, — [0, p,] be the ho-
momorphism of D,, onto [0, p,] defined in the proof of Lemma 5.2. Clearly
L = [],.c Ds is a complete atomic effect algebra, which is a modular or-
tholattice. Define a mapping w : [],.c g Dsx — [1,.cg[0; P»] by the formula
W ((Ts)seH) = (We(Zs)),ceqy for every (z.)xen € [1,.cq Ds- Evidently,
for z,y € [],.cpy D» With £ < 3’ we have £ = (Z,)xeH, ¥ = (Ys)seH
where z,., Y, € D, with z,, < y/, for all 5 € H. Hence w,(z,. s yx) =
Wie(Tse) D Wie(yx) < ps because p,, € C(E). It follows that w(z &L y) =
W((ZTx Os Yu)ecH) = (Wse(Ts O Yse)xeH) = (Wi(Zx) ® wx(yx))xel-[ =
w(z) ® w(y), which proves that w is a homomorphism. Further, if v €
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[1,.cu{0,p.] then v = (v,.),ccg Where v, € [0,p,.] for all 5 € H and hence
there is z,, € D,, with w(z,) = v,. This implies that v = w ((Zx)xen)
which proves that w is a surjection. Since w,, is a full homomorphism for
every » € H, we conclude that w is full.

Finally note that the distributive diamond cannot be a homomorphic
image of a Boolean algebra, because every homomorphism w : E — F
of effect algebras E and F maps a compatible pair of elements onto a
compatible pair. This is because z,y € E are compatible iff there are
u,v,z € EF such that ¢ = u@®gp 2, y = v®g 2z and u g v O z is
defined, which gives w(z) = w(u) Bf w(z), w(y) = w(v) & w(z) and
w(u®g v ®OE 2) = w(u) Of w(v) OF w(z).

COROLLARY 5.4. A complete atomic distributive effect algebra E is an MV -
effect algebra iff E is a homomorphic image of a Boolean algebra regarded
as effect algebra.
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