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Zdenka Riecanová 

DISTRIBUTIVE ATOMIC EFFECT ALGEBRAS 

A b s t r a c t . Motivated by the use of fuzzy or unsharp quantum logics as carriers of 
probability measures there have been recently introduced effect algebras (D-posets). We 
extend a result by Greechie, Foulis and Pulmannova of finite distributive effect algebras 
to all Archimedean atomic distributive effect algebras. We show that every such an ef-
fect algebra is join and meet dense in a complete effect algebra being a direct product 
of finite chains and distributive diamonds. This proves that every such effect algebra has 
a MacNeille completion being again a distributive effect algebra and both these effect 
algebras are continuous lattices. Moreover, we show that every faithful or (o)-continuous 
state (probability) on such an effect algebra is a valuation, hence a subadditive state. 
Its existence is also proved. Finally, we prove that every complete atomic distributive 
effect algebra E is a homomorphic image of a complete modular atomic ortholattice re-
garded as effect algebra and E is an MV-effect algebra (MV-algebra) if and only if it is 
a homomorphic image of a Boolean algebra regarded as effect algebra. 

1. Introduction and basic definitions 
Recently, effect algebras as carriers of probability measures in the "quan-

tum probability theory" have been introduced (Foulis and Bennett [4]). In 
the fuzzy-probability setting an equivalent (in some sense) structure, D-
poset was introduced (F. Kopka [11]). Thus elements of these structures 
represent quantum events or fuzzy events which have yes-no character that 
may be unsharp or imprecise. Unfortunately, there are effect algebras (D-
posets) admitting no states hence also no probabilities. Moreover, a state or 
probability a; on a lattice effect algebra E need not be subadditive. It was 
proved in Riecanova [20] that u> is subadditive iff it is a valuation. 

The existence of (o)-continuous states on Archimedean modular atomic 
effect algebras was proved in Riecanova [16]. But not all of them are also 
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subadditive. Further, it is well known that on MV-eSect algebras, which are 
distributive lattices derived from iWV-algebras, every state is subadditive 
(see [8] and [16]). On the other hand distributive effect algebras need not 
be MV-effect algebras. Nevertheless, as we are going to show, all faithful 
states (probabilities) on them are subadditive (cr-subadditive). Further, for 
Archimedean atomic distributive effect algebras we prove: (1) the existence 
of a MacNeille completion, (2) the existence of a valuation, (3) the existence 
of a modular ortholattice as a homomorphic pre-image. 

A model for an effect algebra is the standard effect algebra of positive self-
adjoint operators dominated by the identity on a Hilbert space. In general 
form, an effect algebra was introduced in [4]. 

DEFINITION 1.1. A structure (£;©,() , 1) is called an effect-algebra if 0, 1 
are two distinct elements and © is a partially defined binary operation on 
E which satisfies the following conditions for any a, b, c G E: 

(Ei) 6 © a = a © 6 i f a © 6 i s defined, 
(Eii) (a®b)®c = a®(b®c) if one side is defined, 

(Eiii) for every a € P there exists a unique b 6 P such that a © b = 1 
(we put a' = b), 

(Eiv) if 1 © a is defined then a — 0. 

We often denote the effect algebra (E\ ©, 0,1) briefly by E. Moreover, if 
we write a © b = c for a, b, c € E, then we mean both that a © ft is defined 
and a © b = c. In every effect algebra E we can define the partial operation 
© and the partial order < by putting 

a < b and bQa — c iff a © c is defined and a © c = b. 

Since affic = a©d implies c = d, the © and the < are well defined. If E with 
the defined partial order is a lattice (a complete lattice) then (E; ©, 0,1) is 
called a lattice effect algebra (a complete effect algebra). 

Recall that a set Q C E is called a sub-effect algebra of the effect algebra 
E if: 

(i) 1 € Q, 
(ii) if out of elements a, b, c € E with a © b = c two are in Q then 

a,b,c€ Q. 
Assume that (Ei\ ©i, 0i, l i ) and (£2; ©2,02,12) are effect algebras. An 

injection <p : E\ —* E2 is called an embedding iff tp(l 1) = I2 and for a,b E E\ 
we have o < b' iff tp(a) < (<p(b))' in which case v?(a©i i>) = <p(a) ©2 <p(b). We 
can easily see that then <f(Ei) is a sub-effect algebra of E2 and we say that 
Ei and <p(E\) are isomorphic, or that E\ is up to isomorphism a sub-effect 
algebra of E2. We usually identify E\ with <p{E{). 
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We say that a finite system F = (afc)£=1 of not necessarily different 
elements of an effect algebra (E; ©, 0,1) is ©-orthogonal if ai © 02 © • • • © a n 

n 
(written 0 Ojt or 0 F) exists in E. Here we define ai © a^ © • • • © an = 

k=1 n—1 n—1 
(ai © <Z2 © • • • © a n _ i ) © a n supposing that 0 afc exists and ® o^ < a'n. 

fc=1 fc=i 
An arbitrary system G = (aK)KeH of not necessarily distinct elements of E 
is called ©-orthogonal if 0 K exists for every finite K C G. We say that for 
a ©-orthogonal system G = (Ok)kGH the element 0 G exists iff V { © K I 
K C G finite} exists in E and then we put 0 G = V { 0 K \ K C G finite} 
(we write G\ C G iff there is Hi C H such that G\ = (aK)Keff1). 

An effect algebra (E; ©, 0,1) is called Archimedean if for no nonzero 
element e 6 E the elements ne = e © ©e • • • © e (n times) exist for all 
n 6 N. An Archimedean effect algebra is called separable if every ©-ortho-
gonal system of elements of E is at most countable. We can show that every 
complete effect algebra is Archimedean [15]. 

For an element x of an effect algebra E we write ord(x) = 00 if nx exists 
for every n € N. We write ord(a;) = nx € N if nx is the greatest positive 
integer such that nxx exists in E. Clearly, in an Archimedean effect algebra 
nx < 00 for every x 6 E. 

For more details we refer the reader to (Dvurecenskij and Pulmannova 
[3]) and the references given there. We review only a few properties without 
proof. 

LEMMA 1 .2 . Elements of an effect algebra (E; © , 0 , 1 ) satisfy the properties: 

(i) a © 6 is defined i f f a <b', 
(ii) a < a® b, 

(iii) if a © 6 and a\/b exist then a A 6 exists and a © b = (a A 6) © (a V 6), 
(iv) a © 6 < a © c iffb<c and a © c is defined, 
(v) a © 6 = 0 i f f a = b, 

(vi) if u < a, v <b and a © 6 is defined then u®v is defined, 
(vii) if E is a lattice and a,b < c' then (a V b) © c = (a © c) V (b © c). 

2. Algebraic properties of atomic distributive effect algebras 
It is well known that lattice effect algebras are a common generalization 

of orthomodular lattices and MV-algebras (see [10], [1], [2], [7], [8]). As 
posets, MV-algebras are distributive lattices. 

DEFINITION 2.1. A lattice effect algebra is called distributive iff, as a poset, 
it forms a distributive lattice. 
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Recall that elements x and y of a lattice effect algebra are called com-
patible (written x «-» y) if x V y = x © (y © (x A y)). If every two elements of 
E are compatible then E is called an MV-effect algebra. Every MV-effect 
algebra M can be organized into an MV-algebra by extending partial oper-
ation © onto the total binary operation © by putting x(&y = x © (x' A y) for 
all x,y 6 M (Kopka and Chovanec [12]). In a lattice effect algebra E every 
maximal subset M C E of mutually compatible elements is a sub-lattice and 
a sub-effect algebra of E. In fact M is an MV-effect algebra called block of 
E. Moreover, E is a union of its blocks (Riecanova [17]). Every MV-effect 
algebra (hence every block of a lattice effect algebra) is distributive. On the 
other hand there are distributive effect algebras which are not MV-effect 
algebras. The smallest one is a distributive diamond E = {0, a, b, 1} in which 
1 = 2a = 2b. Evidently elements a, b are not compatible because a A b = 0 
and a©(6©(aA&)) is not defined in E. Hence E is not an MV-effect algebra. 
The five-element effect algebra E = {0, a, b, c, 1} in which 1 = a © c = 2b 
is not distributive because a V b = 2b = 1 but aAc = bAc = 0 and hence 
(a V b) A c (a A c) V (b A c). We will call it a non-distributive diamond. 

Every finite chain 0 < a < 2 a < . . . < l = n o a i s a distributive effect 
algebra in which every pair of elements is compatible, hence it is an MV-
effect algebra. 

An element a of an effect algebra E is called an atom if 0 < b < a implies 
6 = 0 and E is called atomic if for every x 6 E, x ^ 0 there is an atom o E E 
with a < x. Clearly every finite effect algebra is atomic. Greechie, Foulis and 
Pulmannova [6] have proved that every finite distributive effect algebra E 
is a cartesian product of finite chains and distributive diamonds. Here we 
extend this result onto Archimedean atomic distributive effect algebras. 

The notion of a central element of an effect algebra E has been introduced 
in [6]. In [13] it was proved that an element z E E is central iff for every 
x E E there exist elements x A z and x A z' for which x = ( i A z ) V ( i A z ' ) . 
It follows that 1 = z V Z7, which is equivalent with the condition z A z' = 0. 
Thus for a distributive effect algebra E the set of all central elements of E 
(called a center of E) is C(E) = {z E E \ z Az' = 0}. In every effect algebra 
E the center C(E) is a Boolean algebra [6]. Moreover, C(E) is a sub-lattice 
and a sub-effect algebra of E and for every Q C C(E) such that q = V Q 
exists in E we have q E C(E), [18]. 

T H E O R E M 2.2. Let a be an atom of an Archimedean atomic distributive effect 
algebra E with ord(a) = na. Then 

(i) naa E C(E) and ka ^ C(E) for all positive integers k < na. 
(ii) For every x E E with a < x < naa there is a positive integer k such 

that x = ka. 
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(iii) [0, naa] = {0, a , . . . , n a a} i f f there is no atom 6 / a with b < naa; 
otherwise na = 2 and there is a unique atom b ^ a with b < naa in which 
case 2b = 2a, hence [0, naa] = {0, a, b, 2a = 26} is a distributive diamond. 

(iv) n a a is an atom ofC(E). 
(v) C{E) is atomic and for every atom p 6 C(E') there is an atom b 6 E 

with p = ni,6. 

P r o o f. (i) If k < na then a©/ca is defined which implies that a < (ka)A(ka)'. 
Hence ka fi C(E). Further, a A (naa)' = 0 as otherwise a A (n0a)' = a which 
gives a © (naa) is defined, a contradiction. Thus a © (n0a)' = a V (naa)'. If 
na >2 then (2a) © (n t ta)' = a © (a V (naa)') = (a © a) V (o © (naa)') = (2a) V 
(naa)' which gives that (2a) A (naa)' = 0. By induction (naa) A (naa)' = 0 
which gives n a a 6 C{E). 

(ii) Let a < x < ka. Then {a, 2a , . . . , n aa, x} is a set of pairwise compati-
ble elements and hence there is a block M of E such that {a, 2a , . . . , n aa, x} 
C M (see [17]). Because x < a © a © . . . © a (fc-times), we conclude using 
the Riesz decomposition property for JWV-algebras that x = la for some 
positive integer I. 

(iii) By (ii) [0, naa] = {0, a , . . . , n a a} iff there is no atom 6 ^ a with 
6 < naa. Assume to the contrary that there is an atom 6 ^ a with 6 < naa. 
Then a < a V 6 < naa which by (ii) gives a V 6 = la for some positive integer 
I. Since E is also a modular lattice, intervals [a, a V 6] and [a A 6,6] are 
isomorphic [5, p. 212], which gives that [a, Za] and [0,6] axe isomorphic. It 
follows that I = 2, as 6 is an atom. Moreover, intervals [6, a V 6] and [a A 6, a] 
are isomorphic, which gives that [6,2a] and [0, a] are isomorphic. It follows 
that there is an atom c such that 6© c = 2a, as a is an atom. Evidently c / a 
because a ^ 6. If c ^ 6 then {0, a, 6, c, 2a} is a non-distributive diamond, a 
contradiction. Hence c = 6 and thus 2a = 26. Assume n a > 2. Then 3a = 
(26)©a = 6©(6©a) = 6©(6Va) = (6©6)V(6ffia) = 26V(6Va) = 26Va, which 
implies that (26) A a = 0, a contradiction. We conclude that na = n*, = 2 
and [0, naa] = {0, a, 6,2a = 26} is a distributive diamond. 

(iv) This is clear by (iii) and (i). 
(v) Assume that z G C(E), z / 0. Then there exists an atom 6 6 E 

with b<z. Moreover, nbb = ((n&6) A z) V ((nbb) A z'). If (nbb) A z ' ^ 0 then 
(n&6) A z' = nbb because (nbb) A z' € C{E) and nbb is an atom of C(E) by 
(iv). But then 6 < z A z', a contradiction. Thus nbb = (nbb) A z which gives 
nbb < z. Clearly, if z is an atom of C(E) then nbb = z. 

3. MacNeille completions of distributive atomic effect algebras 
It is well known that every poset (P; <) has the MacNeille completion 

(completion by cuts). By J. Schmidt [22] the MacNeille completion of a 
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poset P is any complete lattice P into which the poset P can be supremum 
and infimum densely embedded, i.e., for each x 6 P there are Q,M C P 
such that x = V <p{M) = /\ <p(Q), where <p : P —• P is the embedding. We 
usually identify P with <p(P). 

A complete effect algebra (E, ©, 0,1) is called a MacNeille completion of 
an effect algebra (E; ©, 0,1) if, up to isomorphism, E is a sub-effect algebra 
of E and, as posets, E is a MacNeille completion of E. 

It is known that there are (even finite) effect algebras the MacNeille 
completion of which are not again effect algebras [15]. 

For an effect algebra E and p € C(E) the interval [0,p] is an effect 
algebra with inherited ©-operation and the unit element p (see [6] and [13]). 
An effect algebra E is called order continuous ((o)-continuous for brevity) 
if for any net (xa)ae£ °f elements of E such that xai < xa2 for all a i < a.?, 
and Vqg£ xQ = x (written xa ] x) we have Vae£ ( X a A y) = x A y for all 
y 6 E [16]. An (o)-continuous effect algebra E is a continuous lattice in 
order convergence. 

Recall that a direct product Yi^eH ^ effect algebras Ex, we mean 
a Cartesian product with "coordinatewise" defined ©, 0 and 1 (see [6] and 
[16]). 

THEOREM 3.1. For an atomic Archimedean distributive effect algebra E, let 
AC{E) = {Px I x £ H} be the set of all atoms of the center C(E) of E. 
Let E = n>ce//[0>P*\] direct product of effect algebras [0,px], x G H. 
Then 

(i) E is a complete atomic distributive effect algebra which is a Mac-
Neille completion of the effect algebra E. 

(ii) If E is complete then E is isomorphic with Fixe//IP) P*]-
(iii) E and E are (o)-continuous lattices. 

P r o o f . Because C(E) is a Boolean algebra, we have \ Z x e H P x = 1- As 
C(E) = B(E) n S(E), where B{E) = {y € E \ y ~ a; for all x € E} and 
S(E) = {x G E | x A x' = 0}, we have px <-> x for all x € H and x € E. By 
[9] we obtain that x = x A ( \ / x e i i P * ) = V^etfC1 A P*) = ®*eH(x AP*r), 
because p*) = V^eif(a : AP«) f°r every finite K C H. Conversely, 

if x = e E then we have for x\ ± X2, x^ < pxi < p'^ < x'^ and 
hence x^ © x„2 = x^ V x„2. By induction \ J x H = xx for every 
finite K C H. By definition of 0 we have VxeH = x>* 

Assume that x,y € E with x < y'. Then x Ap H < y' A p * < y' Vp'^ = 
(y A p„)'. As x = (x A p„) © (a: A p'J and y = (y A p„) © (y A j/J) we have 
x © y = ((* A © (y A p„)) V ((x A p'J © (y A p'x), because p„ A p'„ = 0 
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and (x A p'J © (y A p'J < p'^. Thusjx ® J/) A = ( i A p* ) © (y A p*). 
We conclude that the map ip : E E, defined by (p(x) = (x A p^)>egH for 
every a; € E, is an embedding. We identify E with <p(E). Then evidently E 

is supremum dense (hence also infimum dense) in E. This proves that E is 
the MacNeille completion of E. Further, for every XQ G H and every atom 
O'xo — Px0 the element (x^xeH G E such that xXQ = ao and xx = 0 for all 
x ^ XQ is an atom of E. It follows that E is atomic. 

(ii) This follows by part (i) 
(iii) Because [0,Px]xeij are finite lattices, hence (o)-continuous lattices. 

As E inherits all infima and suprema existing in E, we conclude that E is 
(o)-continuous. 

COROLLARY 3.2. (i) Every atomic Archimedean distributive effect algebra is 
sub-directly decomposed into finite chains and distributive diamonds. 

(ii) An atomic distributive effect algebra has a MacNeille completion that 
is again a distributive effect algebra iff it is Archimedean. 

Proo f , (i) follows from Theorems 2.2 and 3.1. Assertion (ii) is a conse-
quence of Theorem 3.1 and the fact that every complete effect algebra is 
Archimedean [15]. 

4. States, probabilities and valuations 
Recall that a map ui : E —> [0,1] is called a (finitely additive) state on 

an effect algebra E if w ( l ) = 1 and x < y' =>• ui(x © y) = U J ( X ) + U>(y); UJ is 

called (o)-continuous if xa^*x = > oj(xa) —* u){x). Here for a net (xa)a&£ 

of elements of E we write xa-Qx if there exist nets (ua)aes, (va)aes such 
that ua < xa < va for all a G £ and ua ] x and % { i . A state u> is 
called a-additive (or a probability) if oj xn^ = X^^Li w ( xn) for every 

©-orthogonal sequence (xn)^=1 for which xn exists in E. A state ui 
on E is called faithful if U>(x) = 0 = > x = 0. A state UJ on a lattice effect 
algebra E is called a valuation if x A y = 0 u>(x V y) = 0. 

LEMMA 4.1. (i) A state UJ on a lattice effect algebra E is a valuation iff 
u(a V b) + u>(a A b) — u(a) + u(b) for all a, b€ E. 

(ii) If there exists a faithful state on an effect algebra E then E is 
separable. 

The proof can be found in [20]. 
We say that a state on a lattice effect algebra E is subadditive if u>(x\Jy) < 

U J ( X ) + uj(y) for all x, y e E. I f w x xn) < UJ(xn) for all xn G E 

with V~=1 xn € E then UJ is called a-subadditive. 
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Note that every valuation on a lattice effect algebra E is subadditive. On 
the other hand, a state on a lattice ̂ effect algebra E need not be subadditive. 
In Riecanova [20] it has been proved: 

L E M M A 4 . 2 . A state on a lattice effect algebra is subadditive iff it is a valu-
ation. 

The proof of the following Lemma is a routine verification. 

L E M M A 4 . 3 . Let E be a lattice effect algebra and u> be a state on E. If u is 
faithful (or E is separable) then the following conditions are equivalent: 

(i) u> is a-additive, 
(ii) xn | 0 = » u{xn) | 0, 

(iii) I „ f l = i > w(x„) t u(x), 
(iv) u) is (o)-continuous, 
(v) U > ( ® G) = V ( 5 Z X E F ^ix) | F C G M finite} for every ©-orthogonal 

system G for which 0 G exists in E. 

In this section we show that on every Archimedean atomic distributive 
effect algebra E there exists a valuation and that every faithful or (o)-
continuous state on E is a valuation. 

T H E O R E M 4 . 4 . If u) is a faithful probability on an Archimedean atomic 
distributive effect algebra E then 

(i) u> is a valuation, 
(ii) UJ is a-subadditive. 

P r o o f , (i) As u is faithful, the effect algebra E is separable (see [20]), hence 
the set AQ(E) of all atoms of the center C(E) of E is at most countable. 
Set AC(E) = {Pn | N = 1 , 2 , . . . } By Theorem 2.2, every interval [0, pn] 
is either a finite chain or the distributive diamond, hence every state on 
[0,p„] is a valuation. It follows that for every restriction u>|[o)Pn] its multiple 

is a valuation. 
Assume that x,y G E with x A y = 0. Then 

oo oo 
* V y = ©(* V y) A Pn = © ( ( * A Pn) V (y A P n ) ) 

n=l n=l 
(see the proof of Theorem 3.1), under which pni A p„2 = 0 for all n\ / n2. 
By c-additivity of u> we obtain 

00 00 00 

W(x V y) = J^o;((a;Vj/) Ap„) = u>(x Ap„) + Ap„) = LO(X) + w(y), 
n=l n=l n=l 

which proves that a; is a valuation. 
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(ii) By Lemma 4.2, u> is subadditive, which gives 
oo oo n n oo 

w ( V X n ) = w ( V ( V X k ) ) - J ^ X ^ ® * ) = 
7 1 = 1 n = 1 fc=l fc=l n = l 

for all xn G E, n = 1 , 2 , . . . , as Vfc=i xk T V^Li xn-

T H E O R E M 4.5. Every (o) -cont inuous state u on a complete atomic distribu-
tive effect algebra E is a valuation. Moreover, E is isomorphic with a di-
rect product [0, ao] x [0, Oo] where do € C(E) is such that u>(ao) = 0 and 
the restriction u>|[o a'j is a faithful a-additive valuation on the effect algebra 

[0X1-

P r o o f . Set A0 = {x E E \ w(x) = 0} , a0 = \Mo, K = {K C A0 \ K is 
finite} and xk = \J K for all K G K. Then K, is directed by set inclusion 
and for the net (xx)KeK we have XK T ao-

Assume that p G E is an atom of E with p < ao. By Theorem 3.1, 
E is (o)-continuous, which gives XK A p | «o A p = p and hence there 
exists KQ G K such that p = XK0 A p• Let KQ = { z i , . . . , xn}. Then p = 
p A \/r=i xi ~ Vr=i P A xi and hence there exists iq € { 1 , . . . , n } such that 
V 5: xio- ^ follows that c<j(p) < oj(xi0) = 0. Let np = ord(p). As E is 
complete, we have np < oo and u>{npp) = npu>(p) = 0. This implies that 
npp < ao. By [21] there is a set {aa | a € £ } of distinct atoms and positive 
integers ka such that ao = 0 a g f kaaa = \fae£ kaaa < \jae£ naaaa < ao, 
where naa = ord(aQ). As naaaa G C(E) for every a G £, we conclude 
that ao = V Q e £ n a o a a G C(E). Further, by Lemma 4.3 the (o)-continuity 
of u implies u>(a0) = tu ( 0 Q e f kaaa) = u>(\/{@aeK kaaa \ K C £ is 
finite}) = | K C £ is finite } = 0, because u>(aa) = 0 for 
every a e £ . Thus u>(a'0) = 1. 

Let x € E, x ^ 0. Then x = {xl\ao)\l{x= (xAao)©(a:Aao) because 
ao A a'o = 0. This implies that u(x) = a>{x A ao) + w(x A a'0) = u(x A a'0). 
By assumptions, u is (o)-continuous on E and hence also the restriction 
wl[o,aj,] is a n (o)-continuous map. Further, because a'0 6 C(E) for every 
x,y G E with x < y' we have (x © y) A a'o = (x A a'0) © (y A a'0) which 
gives CJ((X A ao) © (y A a'0)) = U((x © y) A a£,) = U{x © y) = UJ(X) + a>{y) = 
ui{x A aj,) + u>(y A a'0) and hence is a n (o)-continuous faithful state 
on [0, Oq]. By Lemma 4.3 and Theorem 4.4 we conclude that w|[o,a£] is a a-
additive valuation on [0, a^]. This implies that for x,y G E with x A y = 0 we 
haveai(rrVy) = uj((x\/y)Aa'0) = w((xAao)V(yAao)) = u^irAa^-hJ^Aa^) = 
UJ(X) + u>(y) which proves that a; is a valuation on E. 

Recall the following result from Riecanova [21]. 
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T H E SMEARING THEOREM. For every complete (o)-continuous atomic effect 
algebra (E] ©, 0,1) the following conditions are equivalent: 

(1) There is a state on the orthomodular lattice 
S(E) = { I 6 £ | X A I ' = 0}. 

(2) There is a state on E. 
(3) There is an (o)-continuous state on E. 

Note that a proof that S(E) is an orthomodular lattice can be found 
in [9], 

Combining the preceeding theorems about atomic distributive effect 
algebras and the Smearing Theorem we obtain the following statement: 

THEOREM 4.6. On every Archimedean atomic distributive effect algebra E 
there exists an (o)-continuous valuation. 

P r o o f . Denote by E a MacNeille completion of E and identify E with <p(E), 
where ip : E —• E is the embedding. By Theorem 3.1, E is a complete atomic 
and (o)-continuous effect algebra in which S(E) = C(E), because E is dis-
tributive. As C(E is a complete atomic Boolean algebra, by the Smearing 
Theorem there exists an (o)-continuous state UJ on E. By Theorem 4.5, u5 is 
an (o)-continuous valuation on E. Thus also the restriction Q\E has these 
properties, because E inherits all suprema and infima existing in E. 

COROLLARY 4.7 . On every Archimedean atomic MV-effect algebra (MV-
algebra) there exists an (o)-continuous valuation. 

5. Homomorphisms of effect algebras 
The following definitions of a homomorphism and a homomorphic image 

for effect algebras are particular cases of corresponding definitions for partial 
algebras introduced in [5]. 

DEFINITION 5 . 1 . A mapping u> from an effect algebra (E;®e ,®e , 1e) into 
an effect algebra (F; (BF,®F,1F) is called a homomorphism (more precisely 
effect algebra-homomorphism) if u(x (&EV) — u(x) ©F for all x,y € E 
with x < y'\ and OJ{1 E) = IF- A homomorphism U; is called full if u(x) ®F 
u>(y) = w(z), x,y,z € E implies that there exist a, 6, c 6 E with cj(a) = u>(x), 
u>(b) = u>(y), CJ(C) = u}(z) and a (BE b — c. F is called a homomorphic image 
of E if there exists a full homomorphism of E onto F. 

Evidently, a homomorphism u from an effect algebra E into the unit 
interval [0,1] of reals (in which we define a © 6 = a + 6 i f f a + 6 < 1) is a 
state on E, and conversely. Moreover, a a-homomorphism (i.e., xn f x in E 
implies u>(xn) | u>(x) in F, n e N) in the case F = [0,1] is a probability 
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on E. If E is a Boolean a-algebra of subsets of a nonempty set il, the 
cr-homomorphism u>: E —> F is called an observable on F. Recall here that 
every orthomodular lattice L (including Boolean algebras) becomes an effect 
algebra if we put a © b = a V b iff a < b'. 

The aim of this section is to show that every complete atomic distributive 
effect algebra E is a homomorphic image of a complete atomic modular 
ortholattice regarded as effect algebra. 

LEMMA 5.2. (i) Every finite chain is a homomorphic image of a finite 
Boolean algebra regarded as effect algebra. 

(ii) The distributive diamond is a homomorphic image of a finite modular 
ortholattice MO2 (Chinese Lantern) regarded as effect algebra. 

Proof , (i) Assume that the effect algebra E is a finite chain. Then E = 
{0, a, 2a, . . . , naa} where nao = 1. Assume that B is a Boolean algebra with 
ntt atoms, A = {ai ,a2, . . . , aUa}. Then B is isomorphic with the family 
P(na) of all subsets of the set A. We define a mapping u> : B —• E by the 
formula w(F) = |F|a, for every F C P(na) with cardinality \F\. Clearly u> 
is a full homomorphism of B onto E. 

(ii) Assume that E is the distributive diamond {0, a, 6,1} where 1 = 2a = 
26. Let L = {0, x, x', y, y', 1} be a Chinese Lantern [10]. Then L is a modular 
ortholattice. Define u>: L —> E putting w(x) = u>(x') = a, u>(y) = u(y') = b, 
w(0) = 0 and u>(l) = 1. Then, evidently, u> is a full homomorphism of L 
onto E. 

THEOREM 5.3. Every complete atomic distributive effect algebra E is a ho-
momorphic image of a complete atomic modular ortholattice L regarded as 
effect algebra. 

Proof . Let Ac(e) = {P* I x € H} be the set of all atoms of the cen-
ter C(E) of E. By Theorems 2.2 and 3.1, E is isomorphic with the direct 
product n*ei/[0)P*] UQder which,for every x € H, [0,px] is either a finite 
chain or the distributive diamond. Let for every x € H, Dx be the finite 
Boolean algebra or the Chinese Lantern and : D* —> [0, be the ho-
momorphism of D* onto [0,px.] defined in the proof of Lemma 5.2. Clearly 
L = n*etf is a complete atomic effect algebra, which is a modular or-
tholattice. Define a mapping u> : D* y FIxeH^iP*^ by the formula 
w = for every (x„)xeH 6 YIXGH Evidently, 
for x,y e tl„€iIDx with x < y' we have x = (x„)xeH, V = 
where € D* with xx < y'x for all *c € H. Hence y*) = 

© wx(j/x) < px because px € C(E). It follows that u>{x ©£ y) = 
u ((** ©„ = ©x yx)xeH) = (Unix*) © ui<(y><))>ieH = 
u>(x) © w(y), which proves that w is a homomorphism. Further, if v G 
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I ! t h e n v = (v^xeH where G [0,p„] for all x G H and hence 
there is xH G D* with u>(xx) = vx. This implies that v = u> ((X^^^H) 
which proves that a; is a surjection. Since us* is a full homomorphism for 
every x G H, we conclude that LJ is full. 

Finally note that the distributive diamond cannot be a homomorphic 
image of a Boolean algebra, because every homomorphism u> : E —• F 
of effect algebras E and F maps a compatible pair of elements onto a 
compatible pair. This is because x,y G E are compatible iff there are 
u,v,z G E such that x = U (BE z, Y = V (BE Z and u (BE V ®E Z is 
defined, which gives w(x) = u(u) (BF ^(Z), u;(y) = u>(v) (BF v(Z) and 
UI(U®E ^ ®E z) — U>(U) (BF <*>(V) (BP W(Z). 

COROLLARY 5.4. A complete atomic distributive effect algebra E is an MV-
effect algebra iff E is a homomorphic image of a Boolean algebra regarded 
as effect algebra. 
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