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CONVOLUTIONS OF ERLANG AND OF PASCAL
DISTRIBUTIONS WITH APPLICATIONS TO RELIABILITY

Abstract. The main aim of the paper is to give a generalization of the results given
by Sen and Balakrishnan in [7]. The results obtained are used to calculate the reliability
of some class of systems.

1. Introduction

The distribution of the sum of n independent exponentially distributed
random variables with different parameters p; (¢ = 1,2,...,n) is given in [2],
[3], [4] and [7]. In this paper, we give the distribution of this sum without
the assumption that all the parameters u; are different. We use the fact
that the sum of k£ independent identically distributed exponential random
variables with parameter 1 has an Erlang distribution with k& degrees of
freedom and parameter y, i.e. Erl(k, u). Thus, grouping the components of
the sum which have the same parameter u, the problem reduces to one of
finding the distribution of the sum of independent random variables having
Erlang distributions. This problem will be considered in Section 2.

All of the above problems are the special cases of the general case of
a sum of independent random variables with gamma distributions. A for-
mula for such a sum was provided by Mathai [5] in 1982. This formula is
significantly complicated even in the case when random variables are expo-
nentially distributed. Sen and Balakrishnan [7] describe it as “substantially
messy” then derive it again in the particular case, when all random vari-
ables are exponentially distributed and intensities are all distinct from each
other. For completeness, the formulae provided by Mathai will be presented
in Section 3.

A similar problem for a sum of random variables with geometric distri-
bution, where all the parameteres are different is considered in [7]. In this
paper, we give the distribution of the sum of n independent random variables
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having geometric distributions with not necessarily different parameters g;
(t=1,2,...,n). It is well known that the sum of k independent random vari-
ables from the same geometric distribution with parameter g has a Pascal
distribution with parameters k& and q i.e. Pasc(k,q) (see [1] for example).
Hence a suitable grouping of the components of the sum which have the
same parameter ¢; reduces this problem to one of finding the distribution of
the sum of independent random variables having Pascal distributions. This
problem will be considered in Section 4.

In Section 5, using the results obtained in the previous sections, we give
some examples of applications to reliability.

In the next sections we use the formula for the nth derivative of a product
of m functions. This is the well known Leibniz formula:

(m) — nt (k) (k) (km)
(1) (viva...vm) k1+u§cm=n Tkal kmlvl Vg U™
k1,y.,km >0

The Laplace transform of a positive random variable X with probability
density function (pdf) fx(t) is defined by

[e o]

2) f&) =T (fx @) =Ee™X = { e~ (t) dt.

0
We denote the inverse transform by

3) T (f(s)) = fx (®).

The probability generating function (pgf) for a discrete random variable
X defined on the nonnegative integers is given by
(4) Px(s)=Es* =3 s"fx (k),
k=0
where fx (k) =Pr(X =k)and k=0,1,...,.
The probabilities fx (k) are obtained by differentiating the pgf k& times,
setting s = 0 and dividing by k!

k
(5) fx (k) = o Py (s)

s=0"

2. Convolution of Erlang distributions

Let Y; be independent random variables with exponential distributions,
ie. Pr(Y; >t)=e#t i=1,2,...,r. The parameters p; do not have to be
different. We would like to obtain the distribution of the random variable

(6) X=YV1+Ya+...+Y,.
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Assume, that there are n different parameters from among w1, p2,. .., tr,
where 1 < n < r. Without loss of generality, we can assume that these
different parameters are uy, ug, . . ., fin. The components of the sum (6) are
grouped with respect to the parameter p; of the distribution. Let k; denote
the number of the components with the same parameter y;, where k1 + k2 +

..+ k, = r. The random variable X; is defined as the sum of components
having the same parameter p;. It is known, that the random variable X; has
an Erlang distribution Erl (k;, p;), i.e. its density is of the form

0 fort <0
ki ki1
— .lt 1
(7) fx. (t) { %e—mt for ¢ > 0.

Then one can write the sum (6) as a sum of independent random variables
having Erl (k;, u;) distributions (i = 1,2,...,n) i.e.

(8) X=X1+Xo+... + X,

where p; # p; for ¢ # j.

THEOREM 1. The pdf of the random variable X defined by (8) is given by

(9) Zu; ‘“’tZ(]_n.
kH—nl—l #fl
X Z H ( )(Hl )kH-m ’

ni+..+np=k;—j =1 Hi
n;=0 I#4

fort >0 and fx (t) =0 fort <O0.

Proof. The Laplace transform of the random variable X; is of the form

T (fx 0) = (£ )ki .

S+ u;

Since the X; are independent, then
n n
(10) fx () =T (x @) =[Tw [T +p)™ .
i=1 =1

The function fx (s) is a proper rational function. This function can be rep-
resented as a sum of partial fractions in the following manner:

(11) fx (s) = ZZ

i=1j= 1(s+:u‘1
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where the constants c;; are given by the formula

1 . dk"—j ~ ks
(12) %= =) PR W g (fx (s) (s + pi) ) ;
where i = 1,2,...,n and j = 1,2,...,k;. Now, we calculate the constants
cij. Substuting (10) into (12) we can write

'Hl Ki® dki-i m .

o = i —ki
(13) = (ki — j)! sBr—nm dski—J g (s+p)™ -
I#i

Since

d™ (s + )™ (k=1 1
— e = (D! T
dsmt n (54 p)™™™
then using the Leibniz formula (1), we obtain

dki-7 P _ky
(14) 75 I s+ )

I#i

==t > (—1)ki—jﬁ(k1+nz—1)( 1

T kit
ni+...+nn=k;i—j =1 ™ s+ /‘Ll) e
n;=0 I#1
Substituting (14) into (13) we have

n

(15) ey =[[u¥ (-D)H

i=1

n
kl +n -1 1
« 2 I ) e—
ni+...tnn=k;—j I=1 ! (1 — i)
n;=0 I#1

Since T~1 is a linear operator and

1y e
P
s+ pi (]—1)!e

then
1(} " -1 it
(16) x®=T" (1) =X carye™"
i=1j=1 | :
Substituting (15) into (16), we obtain the assertion. O
If ky = kg = ... =k, = 1 i.e. all the parameters p; are different, then

we obtain formula (9) from paper [7].
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3. Results of Mathai

In [5], Mathai gives formulae for the pdf of the random variable X =
Y14Ys...4Y,, where Y; are independent gamma random variables in general
and some particular cases. Since in the previous section we considered only
the case of Erlang distribution, we shall give below the Mathai’s formulae
in such case only.

THEOREM 2 (Mathai[5]). The pdf of random variable X defined by (8) is
given by

Jj J—
(17) fX (t (H ( ,U,z ) Z —uit Z ( 1) bz]t'
i=1 j=1 J - 1)

fort>0 and fx (t) =0 fort <0. Coeﬁ‘icients bij are given by

ki—j—1

ki—j—1\ (kimj—l1-1) =1\ ,(1-1-13) A;
e (e ()
7 ,lzzzl L Z la (ki —3)!
where .
A= [T (i - m)™,
=1
Ii
AP = (1)Ul ke (s — )T,

=1
I
The formula (17) is very complex, thus Sen and Balakrishnan in [7] derive
the pdf directly, not from Theorem 2. In Section 2, we proceed similarly,
Theorem 1 is derived not from [5] as a particular case but directly as in [7],
using however quite different methods to obtain a more general result and
a relatively simple formula.

4. Convolution of Pascal distributions
Let Y7,Y3,...,Y, be independent geometric random variables with pf

fr, K)=Pr(Yi=k)=(1-¢)*q, k=0,1,2,...
The parameters ¢; do not have to be different. We would like to obtain the
distribution of the random variable
(18) X="+Ye+...+Y.

Assume, that there are n different parameters from among qi,qe,...,¢r,
where 1 < n < r. Without loss of generality, we can assume that these
different parameters are qi, ¢z, . . ., g. The components of the sum (18) are
grouped with respect to the parameter g; of the distribution. Let r; denote
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the number of the components in the sum (18) with the same parameter g;,
where ry +r2+ ... 4+ 1, =7 (1; > 1). We denote the sum of r; components
with geometric distribution Geo(q;) by X;. It is known, that the random
variable X; has a Pascal distribution Pasc (r;,¢;), i.e. its pf is of the form

i+k—1
R G IR LN SRR
;—
(see [1] for example). Then one can represent the sum (18) as a sum of inde-
pendent random variables having Pasc (4, ¢;) distributions (¢ = 1,2,...,n),
ie.
(20) X=X1+Xo+...+Xn,

where ¢; # g; for ¢ # j.
THEOREM 3. The pf of variable X defined by (20) is given by

(21) = 3 H(”*’“ Na-ara

k1+...4kn=ki=1
Proof. The pgf of the Pasc (i, q;) distribution is of the form

Px, (s) = (l_quz )Ti,

where p; = 1 — ¢; and s < 1/p;. Since the X; are independent, then the pgf
of X is given by

(22) Px (s) = ﬁ a f‘[ (1—sps)™™ .
i=1 i=1

Using formula (5), we obtain

x (k) = i H lm%ld_sz H (1—sp;)™ .

From the Leibniz formula (1), we have

(23 o > el O (=)™
T \L—spi t
k' s—»O Ky otk k1! ce kn! =1 ds
Substituting
dk: e [ritki—1 kilp
k: (1 - Spi) t= K,
dski k; (1 — sp;)t™

into formula (23), we have

k! o (ritki—1 ki pl
k'Hq LY kl!...kn!igl( ks )(1_ oAk

Ry spi)
and, after simple computations, we obtain the assertion. m]
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Ifrp =...=7r, =1 then n = r. In this case the pf of X is given in
[7]. However, the geometric distribution of X; in this paper is given by the
following formula:

in (k)z(l_qi)knlqia k=172a

5. Application to reliability

In this section, we give an application to the reliability of a simple system
with replacements.

Let a system consist of n identical and independent devices:

E= {61,62,...,6n}.
One device of E works and other elements are in reserve.

Each device can be repaired k—1 times, hence we have k working periods
for each element. Assume that all repairs are immediate, but after the ith
repair the device is worse than the device after the (¢ — 1)th repair (a new
has had O repairs). Hence, we can assume that after the ith repair the time
to the next failure has an exponential distribution with parameter y; and
ti+1 > pi- After the kth failure the device is replaced by a new one.

Let X;; be the working time of the ith device after the (j — 1) repair.
Hence,

Y= X
Jj=1
is the total working time of the ith device and

Z=iYi
i=1

is the working time of the system. Denoting

n
X; =Y Xy,
i=1

one can express Z as a sum of k nonidentical Erlang random variables X;, X;
has an Erlang distribution E'rl (n, y;), k= 1,...,n, rather than of identical
general Erlang random variables. Therefore, we can apply Theorem 1.

References

[1] N. L. Johnson, S. Kotz (1969), Discrete Distributions, Wiley, New York.

[2] N. L. Johnson, S. Kotz, N. Balakrishnan (1994), Continuous Univariate Distri-
butions — 1, Wiley, New York.

[3] W. Kordecki (1997), Reliability bounds for multistage structures with independent
components, Stat. Probab. Lett. 34, pp. 43-51.



238 H. Jasiulewicz, W. Kordecki

[4] M. V. Lomonosov (1974), Bernoulli scheme with closure, Problems Inform. Trans-
mission 10, pp. 73-81.

[6] A. M. Mathai, (1982), Storage capacity of a dam with gamma type inputs, Ann. Inst.
Statist. Math. 34, pp. 591-597.

[6] S. M. Ross (1993), Introduction to Probability Models, 5th ed. Academic Press, New
York.

[7] A.Sen,N.Balakrishnan (1999), Convolution of geometrics and a reliability problem,
Stat. Probab. Lett. 43, pp. 421-426.

INSTITUTE OF MATHEMATICS

WROCLAW UNIVERSITY OF TECHNOLOGY
Wybrzeze Wyspianskiego 27

50-370 WROCLAW, POLAND

Received July 9, 2001; revised version July Ist., 2002.



