

Włodzimierz M. Mikulski

ON SOME NATURAL OPERATORS IN VECTOR FIELDS

Abstract. Given natural numbers m, n, r, s, q with $s \geq r \leq q$ there are two vector bundle functors $T^{r,s,q*} = J^{(r,s,q)}(., \mathbf{R}^{1,1})_0$ and $T^{r,s*} = J^{(r,s)}(., \mathbf{R})_0$ on the category $\mathcal{FM}_{m,n}$ of (m, n) -dimensional fibered manifolds. In the present paper we prove that for natural numbers m, n, r, s, q with $s \geq r \leq q$ and $m \geq 2$ the space of natural operators $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$ lifting a projectable vector field X on Y into a 1-form $A(X)$ on $T^{r,s,q*}Y$ is a $2(q+r)$ -dimensional module over $C^\infty(\mathbf{R}^{q+r})$ and we construct explicitly the basis of this module. We prove also that for natural numbers m, n, r, s with $s \geq r$ and $m \geq 2$ the space of all natural operators $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$ lifting a projectable vector field X on Y into a 1-form $A(X)$ on $T^{r,s*}Y$ is a $2r$ -dimensional module over $C^\infty(\mathbf{R}^r)$ and we construct explicitly the basis of this module.

Introduction

In this paper we consider the following categories over manifolds: the category \mathcal{M}_{f_m} of m -dimensional manifolds and embeddings, the category \mathcal{FM} of fibered manifolds and fibered maps, the category $\mathcal{FM}_{m,n}$ of fibered manifolds with m -dimensional bases and n -dimensional fibers and fibered embeddings, the category \mathcal{VB} of all vector bundles and vector bundle maps.

The notions of bundle functors and natural operators can be found in the fundamental monograph [4].

In [13], we studied the problem how a vector field X on an m -manifold M induces a 1-form $A(X)$ on the r -cotangent bundle $T^{r*}M = J^r(M, \mathbf{R})_0$ of M . This problem is reflected in the concept of natural operators $A : T_{|\mathcal{M}_{f_m}} \rightsquigarrow T^*T^{r*}$. We proved that for natural numbers $m \geq 2$ and r all natural operators $A : T_{|\mathcal{M}_{f_m}} \rightsquigarrow T^*T^{r*}$ form a $2r$ -dimensional module over $C^\infty(\mathbf{R}^r)$. We constructed the basis of this module.

In the present paper we try to extend the result of [13] on fibered manifolds. We study the problem how a projectable vector field X on an (m, n) -

1991 *Mathematics Subject Classification*: 58A20.

Key words and phrases: natural bundle, natural operator.

dimensional fibered manifold Y induces a 1-form $A(X)$ on the (r, s, q) -cotangent bundle $T^{r,s,q*}Y = J^{(r,s,q)}(Y, \mathbf{R}^{1,1})_0$ of Y . This problem is reflected in the concept of natural operators $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$. We prove that for natural numbers m, n, r, s, q with $s \geq r \leq q$ and $m \geq 2$ all natural operators $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$ form a $2(q+r)$ -dimensional module over $C^\infty(\mathbf{R}^{q+r})$. We construct the basis of this module.

In similar way we study the problem how a projectable vector field X on an (m, n) -dimensional fibered manifold Y induces a 1-form $A(X)$ on the (r, s) -cotangent bundle $T^{r,s*}Y = J^{(r,s)}(Y, \mathbf{R})_0$ of Y . This problem is reflected in the concept of natural operators $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$. We prove that for natural numbers m, n, r, s with $s \geq r$ and $m \geq 2$ all natural operators $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$ form a $2r$ -dimensional module over $C^\infty(\mathbf{R}^r)$. We construct the basis of this module.

Natural operators lifting functions, vector fields and 1-form to some bundle functors were used practically in all papers in which problem of prolongations of geometric structures was studied, e.g. [14]. Such natural operators in the case of the (higher order) cotangent bundle functor were studied in [1]—[4], [6]—[11], [13], e.t.c.

From now on the usual coordinates on $\mathbf{R}^{m,n}$, the trivial bundle $\mathbf{R}^m \times \mathbf{R}^n$ over \mathbf{R}^m , are denoted by $x^1, \dots, x^m, y^1, \dots, y^n$.

All manifolds are assumed to be finite dimensional and smooth, i.e. of class C^∞ . Maps between manifolds are assumed to be smooth.

1. The natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$

1.1. The (r, s, q) -cotangent bundle $T^{r,s,q*}$

Let r, s, q, m, n be natural numbers with $s \geq r \leq q$.

The concept of r -jets can be generalized as follows, see [4]. Let $Y \rightarrow M$ and $Z \rightarrow N$ be fibered manifolds. We recall that two fibered maps $f, g : Y \rightarrow Z$ with base maps $\underline{f}, \underline{g} : M \rightarrow N$ determine the same (r, s, q) -jet $j_y^{(r,s,q)}f = j_y^{(r,s,q)}g$ at $y \in Y_x$, $x \in M$, if $j_y^r f = j_y^r g$, $j_y^s(f|Y_x) = j_y^s(g|Y_x)$ and $j_x^q f = j_x^q g$. The space of all (r, s, q) -jets of Y into Z is denoted by $J^{(r,s,q)}(Y, Z)$. The composition of fibered maps induces the composition of (r, s, q) -jets, [4], p. 126.

The vector r -cotangent bundle functor $T^{r*} = J^r(., \mathbf{R})_0 : \mathcal{M}f_m \rightarrow \mathcal{VB}$ can be generalized as follows, see [4], [12]. Let $\mathbf{R}^{1,1} = \mathbf{R} \times \mathbf{R}$ be the trivial bundle over \mathbf{R} . The space $T^{r,s,q*} = J^{(r,s,q)}(Y, \mathbf{R}^{1,1})_0$, $0 \in \mathbf{R}^2$, has an induced structure of a vector bundle over Y . Every $\mathcal{FM}_{m,n}$ -map $f : Y \rightarrow Z$ induces a vector bundle map $T^{r,s,q*}f : T^{r,s,q*}Y \rightarrow T^{r,s,q*}Z$ covering f , $T^{r,s,q*}f(j_y^{(r,s,q)}\gamma) = j_{f(y)}^{(r,s,q)}(\gamma \circ f^{-1})$, $\gamma : Y \rightarrow \mathbf{R}^{1,1}$, $\gamma(y) = 0$. The corre-

spondence $T^{r,s,q*} : \mathcal{FM}_{m,n} \rightarrow \mathcal{VB}$ is a vector bundle functor in the sense of [4]. We call it the (r,s,q) -cotangent bundle functor.

1.2. Examples of natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$

We recall that a projectable vector field on a fibered manifold Y over M is a vector field X on Y such that there exists an underlying vector field \underline{X} on M which is p -related with X , where $p : Y \rightarrow M$ is the bundle projection. The flow of a projectable vector field is formed by \mathcal{FM} -morphisms.

We are going to study the problem how a projectable vector field X on an (m,n) -dimensional fibered manifold Y induces canonically a 1-form $A(X)$ on $T^{r,s,q*}Y$. This problem is reflected in the concept of natural operators $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$ in the sense of [4].

EXAMPLE 1. Let X be a projectable vector field on an (m,n) -dimensional fibered manifold Y . For every $k = 1, \dots, q$ we have map $\overset{(k)}{X} : T^{r,s,q*}Y \rightarrow \mathbf{R}$, $\overset{(k)}{X}(j_y^{(r,s,q)}\gamma) := (X^k\gamma_1)(y)$, $\gamma = (\gamma_1, \gamma_2) : Y \rightarrow \mathbf{R} \times \mathbf{R}$, $y \in Y$, $\gamma(y) = 0$, where $X^k = X \circ \dots \circ X$ (k -times). It is well-defined because if $j_y^{(r,s,q)}\gamma = j_y^{(r,s,q)}\tilde{\gamma}$ then $j_y^q\gamma_1 = j_y^q\tilde{\gamma}_1$. Then for every $k = 1, \dots, q$ we have 1-form $d\overset{(k)}{X}$ on $T^{r,s,q*}Y$. The correspondence $\overset{(k)}{A} : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$, $X \rightarrow d\overset{(k)}{X}$, is a natural operator.

EXAMPLE 2. Let X be a projectable vector field on an (m,n) -dimensional fibered manifold Y . For every $l = 1, \dots, r$ we have map $\overset{((l))}{X} : T^{r,s,q*}Y \rightarrow \mathbf{R}$, $\overset{((l))}{X}(j_y^{(r,s,q)}\gamma) := (X^l\gamma_2)(y)$, $\gamma = (\gamma_1, \gamma_2) : Y \rightarrow \mathbf{R} \times \mathbf{R}$, $y \in Y$, $\gamma(y) = 0$. It is well-defined because if $j_y^{(r,s,q)}\gamma = j_y^{(r,s,q)}\tilde{\gamma}$ then $j_y^r\gamma_2 = j_y^r\tilde{\gamma}_2$. Then for every $l = 1, \dots, r$ we have 1-form $d\overset{((l))}{X}$ on $T^{r,s,q*}Y$. The correspondence $\overset{((l))}{A} : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$, $X \rightarrow d\overset{((l))}{X}$, is a natural operator.

EXAMPLE 3. Let X be a vector field on an (m,n) -dimensional fibered manifold Y . For every $k = 1, \dots, q$ we have 1-form $\overset{<k>}{X} : TT^{r,s,q*}Y \rightarrow \mathbf{R}$ on $TT^{r,s,q*}Y$, $\overset{<k>}{X}(v) = < d_y(X^{k-1}\gamma_1), T\pi(v) >$, $v \in (TT^{r,s,q*})_y Y$, $y \in Y$, $\gamma = (\gamma_1, \gamma_2) : Y \rightarrow \mathbf{R} \times \mathbf{R}$, $\gamma(y) = 0$, $p^T(v) = j_y^{(r,s,q)}\gamma$, $p^T : TT^{r,s,q*}Y \rightarrow T^{r,s,q*}Y$ is the tangent bundle projection, $\pi : T^{r,s,q*}Y \rightarrow Y$ is the bundle projection. The correspondence $\overset{<k>}{A} : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$, $X \rightarrow \overset{<k>}{X}$, is a natural operator.

EXAMPLE 4. Let X be a vector field on an (m, n) -dimensional fibered manifold Y . For every $l = 1, \dots, r$ we have 1-form $\langle \langle l \rangle \rangle_X : TT^{r,s,q*}Y \rightarrow \mathbf{R}$ on $TT^{r,s,q*}Y$, $\langle \langle l \rangle \rangle_X(v) = \langle d_y(X^{l-1}\gamma_2), T\pi(v) \rangle$, $v \in (TT^{r,s,q*})_y Y$, $y \in Y$, $\gamma = (\gamma_1, \gamma_2) : Y \rightarrow \mathbf{R} \times \mathbf{R}$, $\gamma(y) = 0$, $p^T(v) = j_y^{(r,s,q)}\gamma$. The correspondence $\langle \langle l \rangle \rangle_A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$, $X \rightarrow \langle \langle l \rangle \rangle_X$, is a natural operator.

1.3. The $\mathcal{C}^\infty(\mathbf{R}^{q+r})$ -module of natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$

The set of all natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$ is a module over the algebra $\mathcal{C}^\infty(\mathbf{R}^{q+r})$. Actually, if $f \in \mathcal{C}^\infty(\mathbf{R}^{q+r})$ and $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$ is a natural operator, then $fA : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$ is given by $(fA)(X) = f(X^{(1)}, \dots, X^{(q)}, X^{((1))}, \dots, X^{((r))})A(X)$, $X \in \mathcal{X}_{proj}(Y)$, $Y \in Obj(\mathcal{FM}_{m,n})$.

1.4. The classification theorem

The first main result of this paper is the following classification theorem.

THEOREM 1. *For natural numbers r, s, q, m, n with $s \geq r \leq q$ and $m \geq 2$ the $\mathcal{C}^\infty(\mathbf{R}^{q+r})$ -module of all natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$ is free and $2(q+r)$ -dimensional. The natural operators $A, A^{(k)}, A^{((l))}$ and $\langle \langle k \rangle \rangle_A$ for $k = 1, \dots, q$ and $l = 1, \dots, r$ form the basis over $\mathcal{C}^\infty(\mathbf{R}^{q+r})$ of this module.*

The proof of Theorem 1 will occupy Subsections 1.5 and 1.6.

1.5. Some preparations

Let us consider a natural operator $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s,q*}$.

Operators $A^{(1)}, \dots, A^{(q)}, A^{((1))}, \dots, A^{((r))}, \langle \langle 1 \rangle \rangle_A, \langle \langle q \rangle \rangle_A, \langle \langle 1 \rangle \rangle_A, \dots, \langle \langle r \rangle \rangle_A$ are $\mathcal{C}^\infty(\mathbf{R}^{q+r})$ -linearly independent. So, we prove only that A is a linear combination of $A^{(1)}, \dots, A^{(q)}, A^{((1))}, \dots, A^{((r))}, \langle \langle 1 \rangle \rangle_A, \langle \langle q \rangle \rangle_A, \langle \langle 1 \rangle \rangle_A, \dots, \langle \langle r \rangle \rangle_A$ with $\mathcal{C}^\infty(\mathbf{R}^{q+r})$ -coefficients.

The following lemma shows that A is uniquely determined by the restriction $A(\frac{\partial}{\partial x^1})|_{(TT^{r,s,q*})_0} \mathbf{R}^{m,n}$.

LEMMA 1. *If $A(\frac{\partial}{\partial x^1})|_{(TT^{r,s,q*})_0} \mathbf{R}^{m,n} = 0$, then $A = 0$.*

P r o o f. The proof is standard. We use the naturality of A and the fact that any projectable vector field with non-vanishing underline vector field is locally $\frac{\partial}{\partial x^1}$ in some fiber manifold coordinates. \square

So, we will study the restriction $A(\frac{\partial}{\partial x^1})|_{(TT^{r,s,q*})_0} \mathbf{R}^{m,n}$.

LEMMA 2. There are $f_{(1)}, \dots, f_{(q)} \in \mathcal{C}^\infty(\mathbf{R}^{q+r})$ and $f_{((1))}, \dots, f_{((r))} \in \mathcal{C}^\infty(\mathbf{R}^{q+r})$ such that

$$(A - \sum_{k=1}^q f_{(k)} A - \sum_{l=1}^r f_{((l))} A)(\frac{\partial}{\partial x^1})|(VT^{r,s,q*})_0 \mathbf{R}^{m,n} = 0,$$

where $VT^{r,s,q*}Y \subset TT^{r,s,q*}Y$ denotes the vertical subbundle (with respect to the bundle projection $\pi : T^{r,s,q*}Y \rightarrow Y$).

Proof. We have $(VT^{r,s,q*})_0 \mathbf{R}^{m,n} = T_0^{r,s,q*} \mathbf{R}^{m,n} \times T_0^{r,s,q*} \mathbf{R}^{m,n}$,

$$\frac{d}{dt}|_{t=0} (u + tw) = (u, w), \quad u, w \in T_0^{r,s,q*} \mathbf{R}^{m,n}.$$

For $k = 1, \dots, q$ we define $f_{(k)} : \mathbf{R}^{q+r} \rightarrow \mathbf{R}$,

$$f_{(k)}(a, b)$$

$$= A\left(\frac{\partial}{\partial x^1}\right)\left(j_0^{(r,s,q)}\left(\sum_{\tilde{k}=1}^q \frac{1}{\tilde{k}!} a_{\tilde{k}}(x^1)^{\tilde{k}}, \sum_{\tilde{l}=1}^r \frac{1}{\tilde{l}!} b_{\tilde{l}}(x^1)^{\tilde{l}}\right), j_0^{(r,s,q)}\left(\frac{1}{k!}(x^1)^k, 0\right)\right),$$

$$a = (a_1, \dots, a_q) \in \mathbf{R}^q, \quad b = (b_1, \dots, b_r) \in \mathbf{R}^r.$$

For $l = 1, \dots, r$ we define $f_{((l))} : \mathbf{R}^{q+r} \rightarrow \mathbf{R}$,

$$f_{((l))}(a, b)$$

$$= A\left(\frac{\partial}{\partial x^1}\right)\left(j_0^{(r,s,q)}\left(\sum_{\tilde{k}=1}^q \frac{1}{\tilde{k}!} a_{\tilde{k}}(x^1)^{\tilde{k}}, \sum_{\tilde{l}=1}^r \frac{1}{\tilde{l}!} b_{\tilde{l}}(x^1)^{\tilde{l}}\right), j_0^{(r,s,q)}\left(0, \frac{1}{l!}(x^1)^l\right)\right),$$

$$a = (a_1, \dots, a_q) \in \mathbf{R}^q, \quad b = (b_1, \dots, b_r) \in \mathbf{R}^r.$$

We prove the assertion of the lemma.

For simplicity denote $\tilde{A} = A - \sum_{k=1}^q f_{(k)} A - \sum_{l=1}^r f_{((l))} A$.

Consider \mathcal{FM} -morphisms $\gamma, \eta : \mathbf{R}^{m,n} \rightarrow \mathbf{R}^{1,1}$, $\gamma(0) = \eta(0) = 0$. Define $a = (a_1, \dots, a_q) \in \mathbf{R}^q$ by

$$j_0^{(r,q,s)}(\gamma_1(x^1, 0, \dots, 0), 0) = j_0^{(r,s,q)}\left(\sum_{k=1}^q \frac{1}{k!} a_k(x^1)^k, 0\right).$$

Define $b = (b_1, \dots, b_r) \in \mathbf{R}^r$ by

$$j_0^{(r,q,s)}(0, \gamma_2(x^1, 0, \dots, 0)) = j_0^{(r,s,q)}\left(0, \sum_{l=1}^r \frac{1}{l!} b_l(x^1)^l\right).$$

Define $\tilde{a} = (\tilde{a}_1, \dots, \tilde{a}_q) \in \mathbf{R}^q$ by

$$j_0^{(r,q,s)}(\eta_1(x^1, 0, \dots, 0), 0) = j_0^{(r,s,q)}\left(\sum_{k=1}^q \frac{1}{k!} \tilde{a}_k(x^1)^k, 0\right).$$

Define $\tilde{b} = (\tilde{b}_1, \dots, \tilde{b}_r) \in \mathbf{R}^r$ by

$$j_0^{(r,s,q)}(0, \eta_2(x^1, 0, \dots, 0)) = j_0^{(r,s,q)}\left(0, \sum_{l=1}^r \frac{1}{l!} \tilde{b}_l (x^1)^l\right).$$

Using the naturality of \tilde{A} with respect to the homotheties $(x^1, tx^2, \dots, tx^m, ty^1, \dots, ty^n)$ for $t \neq 0$ and putting $t \rightarrow 0$ we obtain

$$\begin{aligned} \tilde{A}\left(\frac{\partial}{\partial x^1}\right)(j_0^{(r,s,q)}\gamma, j_0^{(r,s,q)}\eta) \\ = \tilde{A}\left(\frac{\partial}{\partial x^1}\right)(j_0^{(r,s,q)}(\gamma(x^1, 0, \dots, 0)), j_0^{(r,s,q)}(\eta(x^1, 0, \dots, 0))). \end{aligned}$$

Then we have

$$\begin{aligned} \tilde{A}\left(\frac{\partial}{\partial x^1}\right)(j_0^{(r,s,q)}\gamma, j_0^{(r,s,q)}\eta) &= \sum_{k=1}^q \tilde{a}_k f_{(k)}(a, b) + \sum_{l=1}^r \tilde{b}_l f_{((l))}(a, b) - \\ &\quad - \sum_{k=1}^q f_{(k)}(a, b) \tilde{a}_k - \sum_{l=1}^r f_{((l))}(a, b) \tilde{b}_l = 0. \end{aligned}$$

The proof of Lemma 2 is complete. \square

1.6. Proof of Theorem 1

Replacing A by $A - \sum_{k=1}^q f_{(k)} \overset{(k)}{A} - \sum_{l=1}^r f_{((l))} \overset{((l))}{A}$ we can assume that

$$A\left(\frac{\partial}{\partial x^1}\right)|(VT^{r,s,q*})_0 \mathbf{R}^{m,n} = 0.$$

It remains to show that there exist $g_{<1>} \in \mathbf{R}^q$, $g_{<q>} \in \mathbf{R}^r$, $g_{<<1>>} \in \mathbf{R}^{q+r}$, $g_{<<r>>} \in \mathbf{R}^{q+r}$ with $A = \sum_{k=1}^q g_{<k>} \overset{<k>}{A} + \sum_{l=1}^r g_{<<l>>} \overset{<<l>>}{A}$.

For $k = 1, \dots, q$ define $g_{<k>} : \mathbf{R}^{q+r} \rightarrow \mathbf{R}$,

$$\begin{aligned} g_{<k>}(a, b) &= A\left(\frac{\partial}{\partial x^1}\right)\left(T^{r,s,q*}\left(\frac{\partial}{\partial x^2}\right)\left(j_0^{(r,s,q)}\left(\sum_{\tilde{k}=1}^q \frac{1}{\tilde{k}!} a_{\tilde{k}} (x^1)^{\tilde{k}}\right.\right.\right. \\ &\quad \left.\left.\left. + \frac{1}{(k-1)!} (x^1)^{k-1} x^2, \sum_{\tilde{l}=1}^r \frac{1}{\tilde{l}} b_{\tilde{l}} (x^1)^{\tilde{l}}\right)\right)\right), \end{aligned}$$

$a = (a_1, \dots, a_q) \in \mathbf{R}^q$, $b = (b_1, \dots, b_r) \in \mathbf{R}^r$, where $T^{r,s,q*}X$ denotes the complete lifting (flow prolongation) of a projectable vector field $X \in \mathcal{X}_{proj}(Y)$ to $T^{r,s,q*}Y$.

For $l = 1, \dots, r$ define $g_{<<l>>} : \mathbf{R}^{q+r} \rightarrow \mathbf{R}$,

$$g_{<<l>>} (a, b) = A \left(\frac{\partial}{\partial x^1} \right) \left(T^{r,s,q*} \left(\frac{\partial}{\partial x^2} \right) \left(j_0^{(r,s,q)} \left(\sum_{\tilde{k}=1}^q \frac{1}{\tilde{k}!} a_{\tilde{k}} (x^1)^{\tilde{k}} \right. \right. \right. \\ \left. \left. \left. + \sum_{\tilde{l}=1}^r \frac{1}{\tilde{l}} b_{\tilde{l}} (x^1)^{\tilde{l}} + \frac{1}{(l-1)!} (x^1)^{l-1} x^2 \right) \right) \right),$$

$a = (a_1, \dots, a_q) \in \mathbf{R}^q$, $b = (b_1, \dots, b_r) \in \mathbf{R}^r$.

We prove $A = \sum_{k=1}^q g_{<k>} \overset{<k>}{A} + \sum_{l=1}^r g_{<<l>>} \overset{<<l>>}{A}$.

By Lemma 1 and $A(\frac{\partial}{\partial x^1})|_{(VT^{r,s,q*})_0} \mathbf{R}^{m,n} = 0$ it is sufficient to show

$$A \left(\frac{\partial}{\partial x^1} \right) (T^{r,s,q*}(\partial)(j_0^{(r,s,q)} \gamma)) = \\ = \left(\sum_{k=1}^q g_{<k>} \overset{<k>}{A} + \sum_{l=1}^r g_{<<l>>} \overset{<<l>>}{A} \right) \left(\frac{\partial}{\partial x^1} \right) (T^{r,s,q*}(\partial)(j_0^{(r,s,q)} \gamma))$$

for any \mathcal{FM} -morphism $\gamma : \mathbf{R}^{m,n} \rightarrow \mathbf{R}^{1,1}$, $\gamma(0) = 0$ and any constant projectable vector field ∂ on $\mathbf{R}^{m,n}$. Using the regularity and the naturality of A and $\sum_{k=1}^q g_{<k>} \overset{<k>}{A} + \sum_{l=1}^r g_{<<l>>} \overset{<<l>>}{A}$ with respect to linear $\mathcal{FM}_{m,n}$ -morphisms $\mathbf{R}^{m,n} \rightarrow \mathbf{R}^{m,n}$ preserving $\frac{\partial}{\partial x^1}$ we can assume $\partial = \frac{\partial}{\partial x^2}$. For simplicity denote $\tilde{A} = \sum_{k=1}^q g_{<k>} \overset{<k>}{A} + \sum_{l=1}^r g_{<<l>>} \overset{<<l>>}{A}$.

Consider an \mathcal{FM} -morphism $\gamma = (\gamma_1, \gamma_2) : \mathbf{R}^{m,n} \rightarrow \mathbf{R}^{1,1}$, $\gamma(0) = 0$. Define $a = (a_1, \dots, a_q) \in \mathbf{R}^q$ and $b = (b_1, \dots, b_r) \in \mathbf{R}^r$ by

$$a_k = \frac{\partial^k}{\partial(x^1)^k} \gamma_1(0), \quad b_l = \frac{\partial^l}{\partial(x^1)^l} \gamma_2(0)$$

for $k = 1, \dots, q$ and $l = 1, \dots, r$. Define $\tilde{a} = (\tilde{a}_1, \dots, \tilde{a}_q) \in \mathbf{R}^q$ and $\tilde{b} = (\tilde{b}_1, \dots, \tilde{b}_r) \in \mathbf{R}^r$ by

$$\tilde{a}_k = \frac{\partial}{\partial x^2} \frac{\partial^{k-1}}{\partial(x^1)^{k-1}} \gamma_1(0), \quad \tilde{b}_l = \frac{\partial}{\partial x^2} \frac{\partial^{l-1}}{\partial(x^1)^{l-1}} \gamma_2(0)$$

for $k = 1, \dots, q$ and $l = 1, \dots, r$. Using the naturality of A with respect to the homotheties $(x^1, tx^2, \tau x^3, \dots, \tau x^m, \tau y^1, \dots, \tau y^n)$ for $t, \tau \neq 0$ we get the homogeneity condition

$$tA \left(\frac{\partial}{\partial x^1} \right) \left(T^{r,s,q*} \left(\frac{\partial}{\partial x^2} \right) (j_0^{(r,s,q)} \gamma) \right) = \\ = A \left(\frac{\partial}{\partial x^1} \right) \left(T^{r,s,q*} \left(\frac{\partial}{\partial x^2} \right) (j_0^{(r,s,q)} (\gamma(x^1, tx^2, \tau x^3, \dots, \tau x^m, \tau y^1, \dots, \tau y^n))) \right).$$

This type of homogeneity gives

$$A\left(\frac{\partial}{\partial x^1}\right)\left(T^{r,s,q*}\left(\frac{\partial}{\partial x^2}\right)(j_0^{(r,s,q)}\gamma)\right) = \sum_{k=1}^q g_{<k>}(a,b)\tilde{a}_k + \sum_{l=1}^r g_{<<l>>}(a,b)\tilde{b}_l$$

because of the homogeneous function theorem, [4]. On the other hand (it is easy to observe) we have

$$\tilde{A}\left(\frac{\partial}{\partial x^1}\right)\left(T^{r,s,q*}\left(\frac{\partial}{\partial x^2}\right)(j_0^{(r,s,q)}\gamma)\right) = \sum_{k=1}^q \tilde{a}_k g_{<k>}(a,b) + \sum_{l=1}^r \tilde{b}_l g_{<<l>>}(a,b).$$

The proof of Theorem 1 is complete. \square

2. The natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$

2.1. The (r,s) -cotangent bundle $T^{r,s*}$

Let r, s, m, n be natural numbers with $s \geq r$.

The concept of r -jets can be also generalized as follows, see [4]. Let $Y \rightarrow M$ be a fibered manifold and Q be a manifold. We recall that maps $f, g : Y \rightarrow Q$ determine the same (r,s) -jet $j_y^{(r,s)}f = j_y^{(r,s)}g$ at $y \in Y_x, x \in M$, if $j_y^r f = j_y^r g$ and $j_y^s(f|Y_x) = j_y^s(g|Y_x)$. The space of all (r,s) -jets of Y into Q is denoted by $J^{(r,s)}(Y, Q)$.

The vector r -cotangent bundle functor $T^{r*} = J^r(., \mathbf{R})_0 : \mathcal{M}f_m \rightarrow \mathcal{VB}$ can be also generalized as follows, see [12]. The space $T^{r,s*} = J^{(r,s)}(Y, \mathbf{R})_0$, $0 \in \mathbf{R}$, has an induced structure of a vector bundle over Y . Every $\mathcal{FM}_{m,n}$ -map $f : Y \rightarrow Z$ induces a vector bundle map $T^{r,s*}f : T^{r,s*}Y \rightarrow T^{r,s*}Z$ covering f , $T^{r,s*}f(j_y^{(r,s)}\gamma) = j_{f(y)}^{(r,s)}(\gamma \circ f^{-1})$, $\gamma : Y \rightarrow \mathbf{R}$, $\gamma(y) = 0$. The correspondence $T^{r,s*} : \mathcal{FM}_{m,n} \rightarrow \mathcal{VB}$ is a vector bundle functor in the sense of [4]. We call it the (r,s) -cotangent bundle functor.

2.2. Examples of natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$

We are going to study the problem how a projectable vector field X on an (m, n) -dimensional fibered manifold Y induces canonically a 1-form $A(X)$ on $T^{r,s*}Y$. This problem is reflected in the concept of natural operators $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$ in the sense of [4].

EXAMPLE 5. Let X be a projectable vector field on an (m, n) -dimensional fibered manifold Y . For every $k = 1, \dots, r$ we have map $\overset{(k)}{X} : T^{r,s*}Y \rightarrow \mathbf{R}$, $\overset{(k)}{X}(j_y^{(r,s)}\gamma) := (X^k\gamma)(y)$, $\gamma : Y \rightarrow \mathbf{R}$, $y \in Y$, $\gamma(y) = 0$, where $X^k = X \circ \dots \circ \overset{(k)}{X}$ (k -times). Then for every $k = 1, \dots, r$ we have 1-form $d\overset{(k)}{X}$ on $T^{r,s*}Y$. The correspondence $\overset{(k)}{A} : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$, $X \rightarrow d\overset{(k)}{X}$, is a natural operator.

EXAMPLE 6. Let X be a vector field on an (m, n) -dimensional fibered manifold Y . For every $k = 1, \dots, r$ we have 1-form $\overset{ k }{X} : TT^{r,s*}Y \rightarrow \mathbf{R}$ on $T^{r,s*}Y$, $\overset{ k }{X}(v) = \langle d_y(X^{k-1}\gamma), T\pi(v) \rangle$, $v \in (TT^{r,s*})_Y$, $y \in Y$, $\gamma : Y \rightarrow \mathbf{R}$, $\gamma(y) = 0$, $p^T(v) = j_y^{(r,s)}\gamma$, $p^T : TT^{r,s*}Y \rightarrow T^{r,s*}Y$ is the tangent bundle projection, $\pi : T^{r,s*}Y \rightarrow Y$ is the bundle projection. The correspondence $\overset{ k }{A} : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$, $X \rightarrow \overset{ k }{X}$, is a natural operator.

2.3. The $\mathcal{C}^\infty(\mathbf{R}^r)$ -module of natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$

The set of all natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$ is a module over the algebra $\mathcal{C}^\infty(\mathbf{R}^r)$. Actually, if $f \in \mathcal{C}^\infty(\mathbf{R}^r)$ and $A : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$ is a natural operator, then $fA : T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$ is given by $(fA)(X) = f(\overset{(1)}{X}, \dots, \overset{(r)}{X})A(X)$, $X \in \mathcal{X}_{proj}(Y)$, $Y \in Obj(\mathcal{FM}_{m,n})$.

2.4. The classification theorem

The second main result of this paper is the following classification theorem.

THEOREM 2. *For natural numbers r, s, m, n with $s \geq r$ and $m \geq 2$ the $\mathcal{C}^\infty(\mathbf{R}^r)$ -module of all natural operators $T_{proj|\mathcal{FM}_{m,n}} \rightsquigarrow T^*T^{r,s*}$ is free and $2r$ -dimensional. The natural operators A and $\overset{(k)}{A}$ for $k = 1, \dots, r$ form the basis over $\mathcal{C}^\infty(\mathbf{R}^r)$ of this module.*

Proof. The proof of Theorem 2 is similar to the proof of Theorem 1, but easier. We leave the details to the reader. \square

References

- [1] M. Doušová, J. Kurek, *Liftings of tensor fields to the cotangent bundles*, Proc. Conf. Differential Geom. and Appl., Brno, 1995, pp. 141–150.
- [2] M. Doušová, J. Kurek, *Some geometrical constructions with $(0,2)$ -tensor fields on higher order cotangent bundles*, Ann. Univ. M. Curie-Skłodowska, Sect. A 50 (1996), 43–50.
- [3] M. Doušová, J. Kurek, *Torsions of connections on higher order cotangent bundles*, Czechoslovak Math. J., to appear.
- [4] I. Kolář, P. W. Michor, J. Slovák, *Natural Operations in Differential Geometry*, Springer Verlag, Berlin, 1993.
- [5] I. Kolář, W. M. Mikulski, *Contact elements on fibered manifolds*, Czech. Math. J., to appear.
- [6] J. Kurek, *Natural affinors on higher order cotangent bundle functor*, Arch. Math. Brno (28)(1992), 175–180.

- [7] J. Kurek, *Natural transformations of higher order cotangent bundle functors*, Ann. Polon. Math. 58(1993), 29–35.
- [8] M. Kureš, *Connections and torsions on TT^*M* , Ann. Univ. M. Curie-Skłodowska, Sect. A 55 (2001), 89–101.
- [9] W. M. Mikulski, *Some natural constructions on vector fields and higher order cotangent bundles*, Mh. Math., 117, (1994), 107–119.
- [10] W. M. Mikulski, *Natural functions on $T^*T^{(r)}$ and T^*T^{r*}* , Arch. Math. Brno 31 (1995), 1–7.
- [11] W. M. Mikulski, *Natural transformations transforming functions and vector fields on some natural bundles*, Math. Bohemica 117 (1992), 217–223.
- [12] W. M. Mikulski, *Natural affinors on $(J^{r,s,q}(\cdot, \mathbf{R}^{1,1})_0)^*$* , Comment. Math. Univ. Carolinae 42, 4 (2001), 655–663.
- [13] W. M. Mikulski, *The natural operators $T|_{\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ and $T|_{\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^*T^{r*}$* , Colloq. Math. 93(1) (2002), 55–65.
- [14] K. Yano, S. Ishihara, *Tangent and Cotangent Bundles*, Marcel Dekker, INC., New York, 1973.

INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY

Reymonta 4
KRAKÓW, POLAND
e-mail: mikulski@im.uj.edu.pl

Received January 28, 2002.