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B. -Y. CHEN'S INEQUALITY F O R CR-SUBMANIFOLDS 
OF LOCALLY CONFORMAL K A E H L E R SPACE FORMS 

Abstract . In this article, we investigate sharp inequalities involving ¿-invariant for 
C.R-submanifolds in locally conformal Kaehler space forms of constant holomorphic sec-
tional curvature with arbitrary codimension. 

1. Introduction 
Riemannian invariants are the intrinsic characteristics of the Riemain-

nian manifold. Among all Riemannian invariants, curvature is "the 7V°1 Rie-
mannian invariant and the most natural" according to M. Berger in [1]. 
Classically, among the Riemannian curvature invariants, geometers have 
been studying sectional, scalar and Ricci curvature. 

Recently, in [3] B. -Y. Chen introduced new types of curvature invari-
ants, defining two strings of scalar-valued Riemannian curvature functions, 
namely <5(ni , . . . , n^) and <5(ni , . . . , n^) for every ( n i , . . . , n^) satisfying n\ < 
n, rij > 2 and n\ + . . . + n^ < n. For these two strings of Riemannian cur-
vature invariants, one always has trivially S ( n i , . . . , n^) > S ( n i , . . . , n^). 
We simply called these invariants the 5-invariants. The first string of 5-
invariants, ¿ ( r a i , . . . , n^), extend naturally the Riemannain invariant intro-
duced in [2], In [3] B. -Y. Chen studied ¿-invariants for submanifolds in Rie-
mannian space forms with arbitrary codimension. Also, in [10] A. Oiaga and 
I. Mihai investigated 5-invarants for slant submanifolds in complex space 
forms. 

In this paper, we study submanifolds of locally conformal Kaehler space 
forms of constant holomorphic sectional curvature with arbitrary codimen-
sion and establish ¿-invariants for CiZ-submanifolds in locally conformal 
Kaehler space forms. 

1991 Mathematics Subject Classification: 53B25, 53C55. 
Key words and phrases: ¿-invariant, scalar curvature, locally conformal Kaehler space 

form, CR-submanifold. 



190 D. W. Yoon 

2. Preliminaries 
Let M be a Hermitian manifold with almost complex structure J and a 

Hermitian metric g. A Hermitian manifold M is called a locally conformal 
Kaehler manifold if each point p 6 M has an open neighborhood U with a 
differentiate map <fi : U —• R such that 

(2.1) 9* = e-2*g\u 

is Kaehler metric on U (See [6, 9, 11]). On the other hand, the fundamental 
2-form w of M is defined by 

(2.2) w(X,Y) = g(JX,Y) 

for any tangent vectors X, Y on M. 

PROPOSITION 2.1 ([6]). A Hermitian manifold M is a locally conformal 
Kaehler manifold if and only if there exists a global closed 1 -form a satisfying 

(2.3) (Vz«0(X, Y) = f3(Y)g(X, Z) - (3{X)g{Y, Z) 
+ a(y)w(X, Z) - a{X)w(Y, Z) 

for any tangent vectors X,Y,Z on M, where V denotes the Levi-Civita 
connection with respect to g and the 1-form ¡3 is given by (3(X) = —a(JX). 

The 1-form a is called Lee form and its dual vector field is Lee vector 
field. A locally conformal Kaehler manifold having parallel Lee form is said 
to be a generalized Hopf manifold. On a locally conformal Kaehler manifold, 
a symmetric (0, 2)-tensor P is defined by 

(2.4) P(X,Y) = -(Vx«)y - a(X)a(Y) + g{X,Y), 

and another (0,2)-tensor P by P(X, Y) — P{JX, V), where ||a|| is the norm 
of a with respect to g. 

Let M be an n-dimensional submainfold of an m-dimensional locally 
conformal Kaehler manifold M. Let V be the induced Levi-Civita connection 
of M. Then the Gauss and Weingarten formulas given respectively by 

(2.5) S7xY = VxY + h(X,Y), 

(2.6) VXV = -AVX + DXV 

for vector fields X, Y tangent to M and a vector field V normal to M, where 
h denotes the second fundamental form, D the normal connection and Ay 
the shape operator in the direction of V. The second fundamental form and 
the shape operator are related by 

(2.7) g(h(X,Y),V) = g(AvX,Y). 
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We also use g for the induced Riemannian metric on M as well as the locally 
conformal Kaehler manifold M. Moreover, the mean curvature vector H on 
M is defined by H = -traceh. J n 

For an n-dimensional Riemannian manifold M , we denote by K( ir ) the 
sectional curvature of M associated with a plane section 7r c TpM,p € M. 

For any orthornormal basis e\, • • •, en of the tangent space TpM, the scalar 
curvature r at p is defined by to be 

(2.8) r(p) = Y / K { e i Ae , ) . 
i<j 

Let L be a subspace of TPM of dimension r > 2 and {e i , • • •, e r } an or-
thonormal basis of L. We define the scalar curvature t(L) of the r-plane 
section L by 

(2 .9 ) T(L) = Y,K(ea Aep), 1 <a,f3<r. 

a<f3 

Given an orthonormal basis {e i , • • •, en} of the tangent space TpM, we sim-
ply denote by T\...R the scalar curvature of the r-plane section spanned by 
e i , - - - ,e r . The scalar curvature r (p) of M at p is nothing but the scalar 
curvature of the tangent space of M at p, and if L is a 2-plane section, 
T(L) is nothing but the sectional curvature K(L) of L. Geometrically, t ( L ) 
is nothing but the scalar curvature of the image expp (L) of L at p under 
the exponential map at p. For an integer k > 0 denote by <S(n, k) the finite 
set consisting of unordered fc-tuples (ni, • • •, n^) of integers > 2 satisfying 
ni < n and n\ -\ (- n^ < n. Denote by <S(n) the set of unordered /c-tuples 
with k > 0 for a fixed n. For each fc-tuple (ni, • • •, n^) 6 S(n) the two se-
quences of Riemannian invariants S(ni, • • •, and <S(ni, • • •, are 
defined respectively by 

(2 10) 5 (ni , - - - ,n f c ) (p ) = in f { r ( L i ) + --- + r (L f c ) } , 

S(ni, nk)(p) = sup{r (L i ) -| 1- r (L f c ) } , 

where Li,...,Lk run over all k mutually orthogonal subspaces of TpM such 
that dimLj = r i j , j = The two strings of Riemannian curvature 
invariants i (n i , • • • ,nk)(p) and S(n\, • • • ,rik)(p) introduced by B.-Y. Chen 
in [3] are given by 

^ <5(ni, • • •, nk){p) = r(p) - <S(ni, • • • ,n fc)(p), 

i (m,---,njfc)(p) = r(p) — <S(ni, • • •, nfc)(p). 

In terms of these ¿-invariants, the scalar curvature r is nothing but ¿(0) = 
<5(0) (with k = 0); moreover, the invariant 6m introduced in [2] is nothing but 
the invariant 6(2) (with k = 1, ni = 2). Obviously, one has 6(ni, • • •, nk) > 
<5(ni, • • • ,nfc) for any fc-tuple (ni, • • • in S(n). 
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3. ¿-invariants of Ci?-submanifolds 
Let M be an n-dimensional submanifold isometrically immersed in an 

m-dimensional locally conformal Kaehler manifold M . A locally conformal 
Kaehler manifold M is said to be a locally conformal Kaehler space form 

if the holomorphic sectional curvature is a real constant c along M . A lo-
cally conformal Kaehler space form will be denoted by M(c ) . Then, the 
Riemannian curvature tensor R on M ( c ) is given by 

(3.1) R(X, Y, Z, W) = g(X, W)g(Y, Z) - g(X, Z)g(Y, W) 

+ g(JX, W)g(JY, Z) - g(JX, Z)g{JY, W) 

-2 g(JX,Y)g(JZ,W)} 

+ ^{P(X, W)g(Y, Z) - P(X, Z)g(Y, W) 

+ g{X, W)P(Y, Z) - g(X, Z)P(Y, W)} 

+ \{P(X, JW)g(JY, Z) - P(X, JZ)g{JY, W) 

+ g{JX, W)P(Y, JZ) - g{JX, Z)P(Y, JW) 

- 2P(X, JY)g(JZ, W) - 2P(Z, JW)g(JX, Y)}, 

where R(X, Y, Z, W) = g(R(X, Y)Z, W ) and 

Y) = P(Y, X), P(X, JY) = —P(JX, Y), P(JX, JY) = P(X, Y). 

The equation of Gauss is given by 

R(X, Y, Z, W) = R(X, y, Z, W)+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)), 

where R is the Riemannian curvature tensor of M. 

A submanifold M isometrically immersed in M ( c ) is called totally real 

if the almost complex structure J of M(c) carries each tangent space of M 

into its corresponding normal space. For a totally real submanifold M on 
M ( c ) we have w(X, Y) = 0 for vector fields X, Y tangent to M. On the 
other hand, a submanifold M of a locally conformal Kaehler space form 
M(c ) is called a CR-submanifold if there exists a differentiate distribu-
tion D : x —> Dx C TXM on M satisfying the following conditions : (i) 
D is holomorphic i.e., JDX — Dx for each x G M and (ii) the comple-
mentary orthogonal distribution : x —» Dx C TXM is totally real, i.e., 

C T^M for each x e M. For any vector field X tangent to M, we 
put 

X = TX + FX, 

where TX and FX belong to the distribution D and D1, respectively. 
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Let M be a Cii-submanifold of a locally conformal Kaehler space form 
M(c). Then, the equation of Gauss on M is given by 

(3 .2 ) g(R(X, Y)Z, W) = g(X, W)g(Y, Z) - g(X, Z)g(Y, W) 

+ g(JTX, W)g(JTY, Z) - g(JTX, Z)g(JTY, W) 

- 2 g(JTX,Y)g(JTZ,W)} 

+ g(X, W)P(Y, Z) - g(Y, W)P(X, Z) 

+ P(X, W)g(Y, Z) - P(Y, W)g(X, Z)} 

+ P(X, JTW)g(JTY, Z) - P(X, JTZ)g(JTY, W) 

+ g(JTX, W)P(Y, JTZ) - g{JTX, Z)P(Y, JTW) 

- 2g{JTZ, W)P(X, JTY) - 2P(Z, JTW)g(JTX, y ) } 

+ g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)) 

for any vector fields X, Y, Z, W tangent to M. 
Let {ei, e2, • • •, e n } be an orthonormal basis for TpM such that {ei, • • •, 

ed, ed+1 = J e i , • • •, e2d = Jed} is the basis of D and {e2d+1, • • •, e n } is t he 
basis of Then, the scalar curvature r of M at p is obtained by 

(3.3) 2r(p) = n2\\H\\2 - ||/i||2 + ^ n ( n - l )(c + 6a) + | d ( c - 2a), 

where | | i i | | 2 and \\h\|2 are the squared mean curvature and the squared 
norm of the second fundamental form, and we put a = - Ya=i P{e%i ei) a n d 
2d = dinxD. 

We give the following lemma for later use. 

LEMMA 3 . 1 ([2]) . Let a i , • • • ,an,b be n + 1 (n > 2) real numbers such that 

( ¿ a t ) 2 = ( n - l ) ( £ a 2 + 6). 
¿=i ¿=i 

Then, 2a\a2 > b, with the equality holding if and only if ai + a2 = as = 
••• = an. 

For each (n j , • • •, n^) € S(n), let c(ni, • • •, n^) and b(ni, • • •, n^) denote 
the positive constants given by 

/q A\ , \ n2(n + k - 1 - X > j ) ( 3 " 4 ) c ( n l ? ' ' ' i nfc) = 2 ( n + fc_£n.)J » 

1 fc 

(3.5) 6 ( n b • • •, nfc) = - (n(n - 1) - ^ n ^ n j - 1)). 
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THEOREM 3.2. Let M be an n-dimensional CR-submanifold of an m-dimen-
sional locally conformai Kaehler space form M(c) of constant holomorphic 
sectional curvature c. Then, for any point p e M and any plane section 
7r C TPM, we have 

(3.6) 5 M < ^ ( ¿ H i / I P + ±(n + l)(c + 6a)) + \d{c - 2a). 

The equality holds at a point p E M if and only if there exists an orthonormal 
basis {ei, • • •, en} for TpM and an orthonormal basis {en+i, • • •, e 2 m} for 
TpM such that (a) ir = Span{ei,e2} (b) the shape operator Ar = Aer,r = 
n + 1, • • •, 2m, take the following forms : 

(a 0 0 .. . 0 \ 
0 b 0 .. . 0 

(3.7) An+l = 0 0 c . 0 

U 0 0 .. c I 
(c r dr 0 . .. 0 \ 

d r -Cr 0 . .. 0 
(3.8) 0 0 0 . .. 0 

\ o 0 0 . .. 0 / 
where a + b = c and cr, dr E IR. 

P r o o f . Let p be a point of M and let ir be a plane section contained 
in the tangent space TpM of M at p. We choose an orthonormal basis 
{ei, e2) • • •, en} for TpM such that {ei, • • •, ed, ed+i = Jei, • • •, e2d = Jed} 
is the basis of D and {e2d+i, • • •, en} is the basis of D1- and {en+\, • • •, m} 
for the normal space T^M at p such that e\ and generate the plane sec-
tion 7r and the normal vector e n + i is in the direction of the mean curvature 
vector H. Then the equation of Gauss gives 

(3.9) K(tt) = K(ei A e2) = | + ¿a + h^Hg1 

+ £ ^1^22 - (^2+1)2 - E ( h n) 2 -
r=n+2 r=n+2 

We put 

(3.10) V = 2r- ^ " ^ l l g l l 2 - \n(n - l)(c + 6a) - \d{c - 2a). 

Substituting (3.3) into (3.10), we have 

(3.11) n2\\H\\2 = (n-mh\\2 + ri), 
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in other words, 
n 2m n 

(3.12) ( £ ( ^ + 1 ) ) = ( n - i ) ( B ^ + 1 ) 2 + E ( ^ + 1 ) 2 + E 
i^j r=n+2i,j=l i=1 

Thus, we have 

¿=i 

o 2m * 
( 3 . 1 3 ) A - ( t t ) + ¡ a + I + £ £ { ( ^ - ) 2 + + 5 £ ( K ; 1 ) ' 

r=n+lj>2 

1 2m i 2m 
+ ^ £ + 5 E W l + ^22)2-

r = n + 2 i,j>2 r = n + 2 

Making use of (3.10), we get (3.6). 
Suppose the equality of (3.6) holds. Then, the terms involving s in 

(3.13) vanish at the same time and thus 

^ + 1 = ^ + 1 = 0, = 0, i ^ j > 2 , 
h\j = h2j = = r = n + 2, • • - , 2 m ) i , j > 3, 

^ii + ^22 =
 T = n + 2, • • •, 2m. 

Moreover, we may choose ei and e2 such that h ^ 1 — 0. Also, Lemma 3.1 
implies that 

+ = ^33+1 = ' ' ' = 
Therefore, the shape operator Ar ( r = n + 1, • • •, 2m) take the form (3.7) 
and (3.8). The converse is obvious. • 

COROLLARY 3 . 3 ( [ 9 ] ) . Let M be an n-dimensional totally real submanifold 
of an m-dimensional locally conformal Kaehler space form M(c) of constant 
holomorphic sectional curvature c. Then we have 

n 2 

&M < 
n - 2 n" .. — ,2 1 

n_i\\H\\' + -(n+l)(c+6a)). 

The equality holds at a point p 6 M if and only if there exists an orthonormal 
basis {ei, • • •, en} for TpM and an orthonormal basis {e„+i , • • •, e2m} for 
TpM such that (a) 7r = Span{e\,e2} (b) the shape operator Ar = Aer,r = 
n + 1, • • •, 2m, take the following forms : 

(a 0 0 . . . 0 \ 
0 b 0 . . 0 

Ari+l 0 0 c . 0 

u 0 0 . • c / 
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/ CT dr 0 . 
• 0 \ 

dr -cr 0 . . 0 
A.f — 0 0 0 . . 0 

\ 0 0 0 . • 0 ) 
where a + b = c and cr,dr 6 R. 

THEOREM 3.4. Let M be an n-dimensional CR-submanifold of an m-dimen-
sional locally conformai Kaehler space form M(c) of constant holomorphic 
sectional curvature c. Then we have 

(3.14) ¿(ni, • • •, nfc) ^ c(ni, • • •, nk)\\H\\2 + b(n1; • • • ,nk) 
c + 6a 3 

+ -d(c-2a) 

for any k-tuple (ni, • • • ,nk) € S(n). 
The equality case of inequality (3.14) holds at a point p € M if and 

only if there exists an orthonormal basis e\, • • •, e2m at p such that the shape 
operators of M in M(c) at p take the following forms: 

(A\ . . . 0 \ 

0 (3.15) 
o 

r = n + 1, • • •, 2m, 

V o fir!/ 
where I is an identity matrix and Aj are symmetric rij x rij submatrices 
such that 

(3.16) trace{A\) = • • • = trace(Ark) = fir. 

Proof . Let M be a CR-submanifold of a locally conformai Kaehler space 
form M(c) of constant holomorphic sectional curvature c. 

If k — 1, this was done in Theorem 3.2. Hence, we assume k > 1. 
Let (ni, • • • ,nk) € S(n). Put 

1 , n 2 ( w + f c _ 1 _ E w j ) | | m | 2 
(3.17) 77 = 2 t - j n ( n - 1)(c + 6a) - " V I ' , ' I WHW2 ~ ~2(7)• 

Substituting (3.3) in (3.17), we have 

(3.18) n2||tf||2 = 7(77 + \\h\\2), 1 = n + k-Yjnj. 

Prom here on, the calculations run parallel to those in the proof of Theorem 
3.2 in [7]; note however that 77 is defined differently. Using the same notations 
we also arrives at the same inequality (3.17) in [7], but with 77 now given 
by (3.17) instead. This immediately leads to the inequalities (3.14). Also 
the conditions for the equality-case can be read off in the same way, thus 
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finishing the proof of Theorem 3.4. This completes the proof. • 

COROLLARY 3 . 5 ( [ 7 ] ) . Let M be an n-dimensional totally real submanifold 
of an m-dimensional locally conformal Kaehler space form M(c) of constant 
holomorphic sectional curvature c. Then we have 

<5(ni,---,nfc) ^ c(ni, • • • ,nk)\\H\\2 + b(ni, • • • ,nk)—-— 

for any k-tuple (ni, • • • , n^) € S(n). 
The equality holds at a point p € M if and only if there exists an or-

thonormal basis ei,..., m at p such that the shape operators of M in M(c) 
at p take the following forms: 

\ 
0 

(A\ 

A r — 

0 

0 
0 fiTI 

\ 

r = n + !,•••, 2m, 

where I is an identity matrix and each Aj are symmetric nj x nj submatrices 
such that 

trace{A\) trace(AT
k) = ¡j,t. 
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