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B.-Y. CHEN’S INEQUALITY FOR CR-SUBMANIFOLDS
OF LOCALLY CONFORMAL KAEHLER SPACE FORMS

Abstract. In this article, we investigate sharp inequalities involving é-invariant for
C R-submanifolds in locally conformal Kaehler space forms of constant holomorphic sec-
tional curvature with arbitrary codimension.

1. Introduction

Riemannian invariants are the intrinsic characteristics of the Riemain-
nian manifold. Among all Riemannian invariants, curvature is ”the N°1Rie-
mannian invariant and the most natural” according to M. Berger in [1].
Classically, among the Riemannian curvature invariants, geometers have
been studying sectional, scalar and Ricci curvature.

Recently, in [3] B.-Y. Chen introduced new types of curvature invari-
ants, defining two strings of scalar-valued Riemannian curvature functions,
namely 6(ni,...,ng) and S(nl, ...,ng) for every (ny,...,n) satisfying ny <
n,n; > 2 and ny + ...+ ng < n. For these two strings of Riemannian cur-
vature invariants, one always has trivially d(ni,...,ng) > 3(n1, ey ).
We simply called these invariants the J-invariants. The first string of -
invariants, 6(nj,...,ng), extend naturally the Riemannain invariant intro-
duced in [2]. In [3] B.-Y. Chen studied é-invariants for submanifolds in Rie-
mannian space forms with arbitrary codimension. Also, in [10] A. Oiaga and
I. Mihai investigated §-invarants for slant submanifolds in complex space
forms.

In this paper, we study submanifolds of locally conformal Kaehler space
forms of constant holomorphic sectional curvature with arbitrary codimen-
sion and establish é-invariants for CR-submanifolds in locally conformal
Kaehler space forms.

1991 Mathematics Subject Classification: 53B25, 53C55.
Key words and phrases: é-invariant, scalar curvature, locally conformal Kaehler space

form, CR-submanifold.



190 D.W. Yoon

2. Preliminaries

Let M be a Hermitian manifold with almost complex structure J and a
Hermitian metric g. A Hermitian manifold M is called a locally conformal
Kaehler manifold if each point p € M has an open neighborhood U with a
differentiable map ¢ : U — R such that

(2.1) g =ePgly
is Kaehler metric on U (See [6, 9, 11]). On the other hand, the fundamental
2-form w of M is defined by
(2.2) w(X,Y) = g(JX,Y)
for any tangent vectors X,Y on M.
PROPOSITION 2.1 ([6]). A Hermitian manifold M is a locally conformal
Kaehler manifold if and only if there exists a global closed 1-form « satisfying
(2.3) (Vzw)(X,Y) = B(Y)g(X, Z) - B(X)g(Y, Z)

+aY)w(X, Z) - a(X)w(Y, 2)
for any tangent vectors X,Y,Z on M , where V denotes the Levi-Civita
connection with respect to g and the 1-form 3 is given by B(X) = —a(JX).

The 1-form « is called Lee form and its dual vector field is Lee vector
field. A locally conformal Kaehler manifold having parallel Lee form is said
to be a generalized Hopf manifold. On a locally conformal Kaehler manifold,
a symmetric (0, 2)-tensor P is defined by

(24)  P(X,Y)=~(Txe)Y —a(X)a(¥) + 5llalPg(X,Y),

and another (0, 2)-tensor P by P(X,Y) = P(JX,Y), where {|a|| is the norm
of a with respect to g.

Let M be an n-dimensional submainfold of an m-dimensional locally
conformal Kaehler manifold M. Let ¥ be the induced Levi-Civita connection
of M. Then the Gauss and Weingarten formulas given respectively by

(2.5) VxY =VxY + h(X,Y),
(2.6) VxV = —AyvX + DxV

for vector fields X,Y tangent to M and a vector field V normal to M, where
h denotes the second fundamental form, D the normal connection and Ay
the shape operator in the direction of V. The second fundamental form and
the shape operator are related by

(2.7) g(h(X,Y),V) = g(Av X, Y).
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We also use g for the induced Riemannian metric on M as well as the locally
conformal Kaehler manifold M. Moreover, the mean curvature vector H on
M is defined by H = %traceh.

For an n-dimensional Riemannian manifold M, we denote by K(x) the
sectional curvature of M associated with a plane section 7 C T,M,p € M.

For any orthornormal basis ey, - - -, e, of the tangent space T, M, the scalar
curvature 7 at p is defined by to be
(2.8) T(p) = Z K(e; Nej).
i<j
Let L be a subspace of T,M of dimension » > 2 and {e,---,e,} an or-

thonormal basis of L. We define the scalar curvature 7(L) of the r-plane
section L by

(2.9) T(L) = Z K(eaNeg), 1<a,B<T.
a<f

Given an orthonormal basis {e1, - -, e,} of the tangent space T, M, we sim-
ply denote by 71..., the scalar curvature of the r-plane section spanned by
e1, -+, er. The scalar curvature 7(p) of M at p is nothing but the scalar
curvature of the tangent space of M at p, and if L is a 2-plane section,
7(L) is nothing but the sectional curvature K (L) of L. Geometrically, 7(L)
is nothing but the scalar curvature of the image exp,(L) of L at p under
the exponential map at p. For an integer £ > 0 denote by S(n, k) the finite
set consisting of unordered k-tuples (ni,---,nk) of integers > 2 satisfying
n1 < n and ny + - - +n, < n. Denote by S(n) the set of unordered k-tuples
with k > 0 for a fixed n. For each k-tuple (ny,---,ng) € S(n) the two se-
quences of Riemannian invariants S(ny, - - -, ;) (p) and S(ny, - - -, n)(p) are
defined respectively by

S(ni, -+, nk)(p) = inf{7(L1) + - + 7(Lg)},

(2.10) A

S(na, -+, n)(p) = sup{r(L1) + - - + 7(Lk)},
where Ly, ..., Lj run over all £k mutually orthogonal subspaces of 1, M such
that dimL; = n;,j = 1,...,k. The two strings of Riemannian curvature

invariants &(ny, - -,n)(p) and §(ny, - --,ng)(p) introduced by B.-Y. Chen
in (3] are given by

@2.11) ‘f(nla -, k) (p) = 7(p) - t'>:(n1, -+, ) (D),

6(n1, -, )(p) = 7(p) — S(na, -+, mue) (p).
In terms of these é-invariants, the scalar curvature 7 is nothing but §(0) =
4(0) (with k = 0); moreover, the invariant &5/ introduced in [2] is nothing but
the invariant §(2) (with k = 1,n; = 2). Obviously, one has d(n;,---,ng) >

-

o(n1, - --,ng) for any k-tuple (ny,---,ng) in S(n).
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3. é-invariants of C R-submanifolds

Let M be an n-dimensional submanifold isometrically immersed in an
m-dimensional locally conformal Kaehler manifold M. A locally conformal
Kaehler manifold M is said to be a locally conformal Kaehler space form
if the holomorphic sectional curvature is a real constant c along M. A lo-
cally conformal Kaehler space form will be denoted by M (c). Then, the
Riemannian curvature tensor R on M(c) is given by

(31  RX.Y,ZW)={g(X,W)g(Y,2) - (X, D)g(Y, W)

+ g(JX,W)g(JY,Z) — g(JX,Z)g(JY,W)
—29(JX,Y)g(JZ, W)}

+ %{P(X, W)g(Y, Z) - P(X, Z)g(Y, W)
+ g(X,W)P(Y, Z) — g(X, Z)P(Y,W)}
+ %{P(X, IW)g(JY, Z) - P(X, T Z)g(JY, W)

+9(JX,W)P(Y,JZ) - g(JX, Z)P(Y, W)
—2P(X,JY)g(JZ,W) — 2P(Z, JW)g(JX,Y)},

where R(X, Y, Z, W)= g(R(X,Y)Z, W) and
PX,Y)=P(Y,X), P(X,JY)=-P(JX,)Y), P(JX,JY)=P(X)Y).

The equation of Gauss is given by

R(X,Y,2,W) = R(X,Y, 2, W)+g(h(X, W), (Y, Z))—g(h(X, Z), h(Y, W),

where R is the Riemannian curvature tensor of M.

A submanifold M isometrically immersed in M(c) is called totally real
if the almost complex structure J of M(c) carries each tangent space of M
into its corresponding normal space. For a totally real submanifold M on
M(c) we have w(X,Y) = 0 for vector fields X,Y tangent to M. On the
other hand, a submanifold M of a locally conformal Kaehler space form
M(c) is called a CR-submanifold if there exists a differentiable distribu-
tion D : ¢ — D, C T,M on M satisfying the following conditions : (i)
D is holomorphic i.e., JD, = D, for each x € M and (ii) the comple-
mentary orthogonal distribution D1 : z — D} C T, M is totally real, i.e.,
JD} C TS M for each z € M. For any vector field X tangent to M, we
put

X=TX+FX,
where TX and FX belong to the distribution D and D, respectively.
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_ Let M be a C'R-submanifold of a locally conformal Kaehler space form
M/(c). Then, the equation of Gauss on M is given by

(32 g(RX,Y)Z,W) = £{g(X,W)g(¥, Z) - g(X, Z)g(¥, W)

+ g(JTX, W)g(JTY, Z) — g(JTX, Z)g(JTY, W)
—29(JTX,Y)g(JTZ,W)}

+ 3{o(X, W)P(Y, 2) — (¥, W)P(X, 2)
+ P(X,W)g(Y, Z) — P(Y,W)g(X, Z)}
+ %{P(X, JTW)g(JTY, Z) — P(X, JTZ)g(JTY, W)

+g(JTX, WYP(Y,JTZ) - g(JTX, Z)P(Y,JTW)
—29(JTZ,W)P(X,JTY) —2P(Z,JTW)g(JTX,Y)}
+g(h(X, W), h(Y, Z)) — g(h(X, Z), (Y, W))
for any vector fields X, Y, Z, W tangent to M.
Let {e1, e, --,e,} be an orthonormal basis for T, M such that {eg,- -,

ed,eq+1 = Jei, -+, e2q = Jeq} is the basis of D and {eg441,---,en} is the
basis of D+. Then, the scalar curvature 7 of M at p is obtained by

(33)  2r(p) = w2 llH* ~ ||pl + gn(n — 1)(c+ 60) + (e~ 20),

where ||H||? and ||h||? are the squared mean curvature and the squared
norm of the second fundamental form, and we put o = % i, P(ei,e;) and
2d = dimD.

We give the following lemma for later use.

LEMMA 3.1 ([2]). Let a1,---,an,b be n+ 1 (n > 2) real numbers such that

(ia,.):(n_l)(;am).

Then, 2a1a9 > b, with the equality holding if and only if a1 + as = a3 =
e — an_

For each (nj,---,nk) € S(n), let ¢(n1,---,nk) and b(ny,---,ng) denote
the positive constants given by

n?(n+k—1-3 nj)

(3-4) clns, ) = 2(n+k—Yn;)

k
(3.5) b, k) = 3 (mn— 1) = Yoy~ 1)).
j=1
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THEOREM 3.2. Let M be an n-dimensional CR-submanifold of an m-dimen-
sional locally conformal Kaehler space form M (¢) of constant holomorphic
sectional curvature c. Then, for any point p € M and any plane section
m C T,M, we have

n—2/( n? 1 3
3.6 < 242 Zdlc — 2).
(36) o< (n_1||H|| +4(n+1)(c+6a)>+4d(c %)

The equality holds at a point p € M if and only if there exists an orthonormal
basis {e1, - ,en} for T,M and an orthonormal basis {ent1, -, eam} for
TI;LM such that (a) m = Span{ei, ez} (b) the shape operator A, = A,.,r =
n+1,---,2m, take the following forms :

a 00 ... 0
0 b0 ... 0
(3.7) App1=10 0 ¢ ... 0 |,

o
=T
o
o

e dr O 0
d —¢ 0 0
(3.8) A, =10 0 O 0
0 0 0 0

where a +b=c and ¢,,d, € R.

Proof. Let p be a point of M and let # be a plane section contained
in the tangent space T,M of M at p. We choose an orthonormal basis
{e1,ea,--,en} for T,M such that {e1,---,eq,eqy1 = Jer,---,e9q = Jeg}
is the basis of D and {egqy1,---,en} is the basis of D and {en41, -, e2m}
for the normal space Tle at p such that e; and es generate the plane sec-
tion m and the normal vector e, is in the direction of the mean curvature
vector H. Then the equation of Gauss gives

c 3
(3.9) K(m)=K(eiNep) = 1 + i + gt
+ Y Rk — (A1 - Y (hDy)*
r=n-+42 r=n+2
We put
n?(n — 2)

(3.10) n=27— I|H||? - %n(n —1)(c+60) - gd(c - 20).

n—1
Substituting (3.3) into (3.10), we have
(3.11) n?||H|* = (n = 1)(||l* +n),
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in other words,

n

(&u»(}jg@+1) (n— 1(§:Uw+12+§:mgHy+-§f ji(m92+n)

i=1 7] r=n+2i,j=1

Thus, we have

(3.13) K(nm )>4+ 3,41 5+ Z > {(r] }+ ST ()2

r=n+1;>2 z;éj >2
1 2m
2
+— Z Z 2 Z(§1+h52)-
r—n+2 4,7>2 r=n+2

Making use of (3.10), we get (3.6).
Suppose the equality of (3.6) holds. Then, the terms involving Af;’s in
(3.13) vanish at the same time and thus

Rt =hpt =0, RETT =0, i#j>2
1 =hy; =hi;=0, r=n+2,---,2m;i,j >3,
hiij+h5 =0, r=n+2---,2m.
Moreover, we may choose e; and e such that 75" = 0. Also, Lemma 3.1

implies that
hn+1 hn+1 hn+1 e — hn—i—l.

Therefore, the shape operator A, (7 =n+1,---,2m) take the form (3.7)
and (3.8). The converse is obvious. a

COROLLARY 3.3 ([9]). Let M be an n-dimensional totally real submanifold
of an m-dimensional locally conformal Kaehler space form M(c) of constant
holomorphic sectional curvature c. Then we have

n—2/ n? 1
S <n—1 +Z(n+1)(c+60)).
The equality holds at a point p € M if and only if there exists an orthonormal
basis {e1, ,en} for T,M and an orthonormal basis {ent1,---,€am} for

TI;LM such that (a) m = Span{e1,e2} (b) the shape operator A, = A, ,7 =
n+1,---,2m, take the following forms :
a 00 ... O
0 0o ...
An+1 = 0 c ... ,

o
(e

o
Lo
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e dr O 0
dr —¢ O 0
A,=10 0 0 0
0 0 O 0

where a + b =c and ¢,,d, € R.

‘THEOREM 3.4. Let M be an n-dimensional CR-submanifold of an m-dimen-

sional locally conformal Kaehler space form M(c) of constant holomorphic

sectional curvature c. Then we have

c+60
4

3
(3.14) 8(ny,---,nx) Sc(ng, -, )| H|? +b(ng, - - -, nk) + Zd(c— 20)

for any k-tuple (n1,---,n;) € S(n).
The equality case of inequality (3.14) holds at a point p € M if and

only if there exists an orthonormal basis ey, - - -, eam at p such that the shape
operators of M in M(c) at p take the following forms:
AT ... 0
(3.15) A=+ 0 | r=n+1,--,2m,
0 ... A}
0 pwrl

where I is an identity matriz and A} are symmetric nj X n; submatrices
such that

(3'16) tTace(A{) — .. = t'race(AZ) = Uy

Proof. Let M be a CR-submanifold of a locally conformal Kaehler space
form M/(c) of constant holomorphic sectional curvature c.

If k = 1, this was done in Theorem 3.2. Hence, we assume k > 1.

Let (ny,---,nk) € S(n). Put
3

||H]|? = Sd(c—20).

n?(n+k—1-3Y n;)
(n+k-3n;)

(3.17) n=27-— %n(n— 1)(c+60) -

Substituting (3.3) in (3.17), we have
(3.18) n?|H|? =+ kI, y=n+k= n;

From here on, the calculations run parallel to those in the proof of Theorem
3.2in [7]; note however that 7 is defined differently. Using the same notations
we also arrives at the same inequality (3.17) in [7], but with n now given
by (3.17) instead. This immediately leads to the inequalities (3.14). Also
the conditions for the equality-case can be read off in the same way, thus
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finishing the proof of Theorem 3.4. This completes the proof. O

COROLLARY 3.5 ([7]). Let M be an n-dimensional totally real submanifold
of an m-dimensional locally conformal Kaehler space form M/(c) of constant
holomorphic sectional curvature c. Then we have
c+ 60

4

§(n1, - i) < e(ny, -+, ne)|[HI2 + b(na, -+, ni)

for any k-tuple (n1,---,n) € S(n).

The equality holds at a point p € M if and only if there exists an or-
thonormal basis ey, . . ., €am at p such that the shape operators of M in M (o)
at p take the following forms:

AT ... 0
Dot 0
A"': 0 AZ ) r=n+1,---,2m,
0 el

where I is an identity matriz and each A; are symmetric nj Xn; submatrices
such that

trace(A]) = --- = trace(A}) = pr.
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