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B.Y. CHEN INEQUALITIES FOR BI-SLANT
SUBMANIFOLDS IN SASAKIAN SPACE FORMS

Abstract. In the present paper, we establish Chen inequalities for bi-slant submani-
folds in Sasakian space forms, by using subspaces orthogonal to the Reeb vector field £.

1. Preliminaries: Riemannian invariants

The Riemannian invariants of a Riemannian manifold are the intrinsic
characteristics of the Riemannian manifold. In this section, we recall a string
of Riemannian invariants on a Riemannian manifold introduced in [6].

Let M be a Riemannian manifold. Denote by K () the sectional curva-
ture of M associated with a plane section # C T,M, p € M.

For any orthonormal basis {e1, ey, ..., en} of the tangent space T, M, the
scalar curvature 7 at p is defined by
(1.1) 7(p) =ZK(ei/\ej).
i<y

One denotes by
(1.2) (inf K)(p) = inf{K(7) | * C T, M, dimm = 2},
and one introduces the Chen invariant
(1.3) dm(p) = 7(p) — (inf K)(p).
We recall the following lemma. of Chen [5].
LEMMA 1.1. Let ay1,...,an,c be n+ 1, n > 2, real numbers such that

(iai)Q = (n—l)(iz::la?—*—c).

1=

Then 2a1as > ¢ and the equality holds if and only ifa1+a9 = a3 = ... = a,.
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Let M be an n-dimensional submanifold of a Riemannian manifold M.
We denote by V the Riemannian connection of M. Also, let h be the second
fundamental form and R the Riemann curvature tensor on M. Then the
equation of Gauss is given by

R(X,Y,Z,W)=R(X,Y,Z, W)+
for any vectors X,Y, Z, W tangent to M.

Let p € M and {ey,...,e,} be an orthonormal basis of the tangent space
T, M. We denote by H the mean curvature vector, that is
1 n
(14) Hp) =2 hleser).
i=1

Also, we set
hi; = g(h(ei, €5), €r)
and
“h”2 Z g el? eJ h(e‘h e]))

3,j=1

2. Bi-slant submanifolds in Sasakian manifolds

A (2m + 1)-dimensional Riemannian manifold (M,g) is said to be a
Sasakian manifold if it admits an endomorphism ¢ of its tangent bundle
TM, a vector field £ and a 1-form 7 satisfying:

¢2:_'Id+77®€’ Tl(f)=1, ¢ =0,n0¢=0,
9(8X, ¢Y) = g(X,Y) — n(X)n(Y), n(X) = 9(X, ),
(VX¢)Y = _g(X7 Y)E + TI(Y)X, Vx€ = ¢X)

for any vector fields X,Y on TM, where V denotes the Riemannian con-
nection with respect to g.

A plane section 7 in TPM is called a ¢-section if it is spanned by X and
¢X, where X is a unit tangent vector orthogonal to £. The sectional cur-
vature of a ¢-section is called a ¢-sectional curvature. A Sasakian manifold
with constant ¢-sectional curvature c is said to be a Sasakian space form
and is denoted by M(c). 3

The curvature tensor of M (c) of a Sasakian space form M (c) is given by [1]

RX,Y)Z = S52(g(v, 2)X — (X, 2)Y }+

)Y —n(Y)n(Z)X + g(X, Z)n(Y)E — g(Y, Z)n(X)E+
+9(8Y, Z)¢X ~ g(¢X, Z)¢Y —29(¢X,Y)pZ},
for any tangent vector fields X,Y, Z on M(c).
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As examples of Sasakian space forms we mention R*™*! and $?™+1, with
standard Sasakian structures (see [1]).

DEFINITION. We call a differentiable distribution D on M a slant distribution
if for each = € M and each nonzero vector X € D,, the angle 6p(X) between
¢X and the vector subspace D, is constant, which is independent of the
choice of z € M and X € D,. In this case, the constant angle 6p is called
the slant angle of the distribution D.

DEFINITION. We say that a submanifold M tangent to ¢ is a bi-slant sub-
manifold of M if there exist two orthogonal distributions D; and Dy on M
such that:

i) TM admits the orthogonal direct decomposition TM = D1 ®Da®{£}.

ii) For any i = 1,2, D; is slant distribution with slant angle 6;.

Let 2d; = dim Dy and 2ds = dim Ds.

REMARK. If either d; or ds vanishes, the bi-slant submanifold ia a slant
submanifold. Thus, slant submanifolds (and, therefore, invariant and anti-
invariant submanifolds) are special cases of bi-slant submanifolds.

Invariant and anti-invariant immersions are slant immersions with slant
angle § = 0 and 6 = 7, respectively. A slant immersion which is neither
invariant nor anti-invariant is called a proper slant immersion.

For the properties and examples of bi-slant submanifolds in Sasakian
manifolds, we refer to [2].

For any tangent vector field X to M, we put ¢X = PX + FX, where
PX and FX are the tangential and normal components of ¢ X, respectively.
We denote by

(2.1) IPI? = 3" ¢*(Peise;).
4=1
3. B.Y. Chen inequality
We prove the Chen inequality for bi-slant submanifolds in a Sasakian
space form.

We consider plane sections 7 orthogonal to &.

THEOREM 3.1. Let M be an (n = 2d; + 2d2 + 1) dimensional bi-slant sub-
manifold in a (2m + 1)-dimensional Sasakian space form M(c). Then we
have:

) n—2( n? 2 (c+3)(n+1)
. > — —_ - TN
(3.1) infK>r7 5 {n—l”H” + 1 }

- Q[g’(dl —1) cos? 6; + 3dy cos? 6, — (n — 1)],
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on Dy and
. —-2( n? (c+3)(n+1)
3.1 fK>7-" { 2 ————}—
1) K 27— ES{ A+
(c—1) 2 2
- ——4——[3d1 cos® 01 + 3(da — 1) cos® O — (n — 1)].
on Dy.

The equality case of the inequality (3.1) and (3.1') holds at a pointp € M
if and only if there exists an orthonormal basis {e1,...,en, =€} of T,M and
an orthonormal basis {eny1,...,€2m,€2m+1} Of TIf-M such that the shape

operators of M in M(c) at p have the following forms:

a 0 0 . . .0
(3.2) Appi=|0b 0 . . o0 |, atb=g
0 0 J79 S
W, ki, O . . .0
33) A= h, -k, 0. . 0|, re{n+t2..,2m+1}).
0 0 0,—2

Proof. We recall the Gauss equation for the submanifold M

R(X,Y,2,W) = R(X,Y, Z,W)+g(h(X, W), Y, 2))—g(h(X, Z), h(Y, W)),

forall X,Y,Z, W e I'(TM).
Since M(c) is a Sasakian space form, then we have

(34)  R(X,Y,2,W) = S22 (g(¥, 2)9(X, W) + g(X, Z)g(¥, W)}+
T nXOm(2)g(Y, W) + (Y m(Z)g(X, W) — g(X, Z)n(¥ )g(€, W)+

+9(Y, Z)n(X)g(&, W) — g(8Y, Z)g(¢X, W) + g(¢X, Z)g(Y, W)+
+29(¢X,Y)g(¢Z, W)}, VXY, Z,W eI(TM).
Let p € M and {ey,...,e, = £} an orthonormal basis of T,M and

{€n+t1,---,€2m,€am+1} an orthonormal basis of Tle. For X =Z=¢;,Y =
W =ej, Vi,j € {1,...,n}, from the equation (3.4), it follows that
~ 3
(3.5) R(ei,ej,ei,ej) = CZ (—n+n2)+
c—1 i
+ 1 { -2(n—-1)+3 Z gz(qbei,ej)}.

ij=1
Let M C M(c) be a bi-slant submanifold, dim M = n = 2d; + 2ds + 1.



B.Y. Chen inequalities

We consider an adapted bi-slant orthonormal frame

ey, €ep = oi01 Pey, ... €241,
€3d, = 0591P€2d1—1762d1+17
€2d; 42 = coi% Peag 11y -- -5 €2d142dp—1,
€2d; +2dy = ’C‘O:_ogpe2d1+2d2—1, €2dy +2dp+1 = §-

We have
1 1
g(de1, e3) = 9(4561, mpel) = 50—55;9(4561,1361)

1
s 01g(Pel’ e1) = cosf;

and, in the same way,

9*(dei, eir1) = {Cos 61, fori € {1,...,2d; — 1},

cos? 6y, fori e {2d1 + 1,...,2d; + 2dy — 1}.

Then
n
Z g2 (¢ei, e) = 2(dy cos® ) + da cos? 63).
ij=1
The relation (3.5) implies that
(36) Resesrene;) = So(n? —n)
) - 2n - 1)].
Denoting by
(3.7) 1R]|* = Z g(h(es, €5), h(eis €5)),
i,j=1

from the relation (3.6), one has

c+3
4

(3.8) n(n—1) + <

(d1 cos? 0 + ds cos? 62) — 2n + 2]
=27 —n?|H|? + |Ihl}?,
or equivalently,

(3.9) 27 =n*|H| - |h|?

c+3 c—

+ n(n—1)+

! [6(d) cos? 1 + dg cos? 6g) — 2n 4 2].

183
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If we put
(3.10) e=2r— nn_zl(n—2)||H||2— ct3 n-1)
I 1[6(d1 cos? 0 + do cos? ) — 2n + 2],
we obtain
(3.11) n?|H||? = (n = 1)(e + [|R]1%).

Let pe M, m C T,M, dim7 = 2, 7 orthogonal to §.
We consider two cases:

i) 7 is tangent to D;. We may assume 7 = sp{e1, e2}.
We put e,41 = ﬂg_ﬂ The relation (3.11) becomes

n  2m+1l
(Srr) =e-n{ > 3 r+eh
1,j=1r=n-+41
or equivalently,
n
(3.12) (Zh;;“f
i=1
n "2m+1l n
= (n=D{JMEF"2+ R+ Y D ()P +e)
i=1 i#£7 'r—n+21.,_7 1
By using Lemma 1.1, we derive from (3.12):
n  2m+1
(3.13) 2R R > Y (R4 Y S (R +e
i#j i,j=1r=n42

From the Gauss equation for X = Z = e;,Y = W = e, we obtain

K(m) = + 3cos?6; - Z [AT 1RG5y — (R]9)?] >
r=n+1
> ¢ 1 + 3cos? 8 - CT+§ hn+1 + = Z Z (h
i#j i,j=1r=n+2
2m+1 2m+1 )
+ D Ruhhy— D (h]y)?=
r=n+2 r=n+1
3 1 2mtl
= cl_ + 3cos? 4y - X:(h”"'1 2 Z > (h;)+

r=n+2 1,j>2
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2m-+1

1
T3 Y (hiy +hiy) +Z[hn+l h’”r1 ]"‘%Z
r=n+2 ji>2
3 -1
Zc+ +3005201-c4 +%,
or equivalently,
(3.14) K(r) > 53 4 3c0s?g; - C_;_1+§_
Then
(3.15) infK —1
c+3, , c—1 9 9 } n?(n — 2) 2
{ 3 ( 3 (dq cos® 61 +dy cos® 02) —2n+2] = 1) | HY<.
The last relation implies that
n—2{( n? 9 (c+3)(n+1)
inf K > 71— H A LA S A G
inf K > 7= B2 e+ AR
-1 1
_Le , )[3(d1 cos? 0 + dycos? 83) — (n — 1)] + 3 cos? 6, - ¢ T

il) Similary, if = is tangent to Dy, we obtain

_ 2
o P DR UL

4

- (e ; D) [3(dy cos? 6y + dj cos? 02) — (n—1)] + 3 cos? 0y °-

These relations represent the inequalities to prove.

The case of equality at a point p € M holds if and only if it achieves
the equalities in the previous inequalities and we have the equality in the
Lemma 1.1

Wil =0, Vi#j,4,5>2,
hi; =0, Vi#j,j>2,r=n+1,...,2m+]1,
hi1+h3e=0, Vr=n+2,...,2m+1,

R =Rl =0, Vj>2,
h”J“ h"il =h3t = =htl

We may choose {ej,ez} such that h7y! = 0 and we denote by a =
hi1,b = hog, pu = hn“ =...=hth
It follows that the shape operators take the desired forms.

COROLLARY 3.2. Let M be an n-dimensional contact CR submanifold (6, =
0,62 = §) in a (2m + 1)-dimensional Sasakian space form M(c).
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Then we have:

n— TL2 c n c —
nfK > 7— 22{ ||H||2+(+3)i “)}—( Y i3dy — (n+2)),

n-—1 4
on D1 and
. n—2( n? 2  (c+3)n+1) (c—1)
fK>7— — —(n -
inf K > 7= 222 L AR 2 g ()
on Ds.

In particular if 8; = 89 = 0, for slant submanifolds, one derives

THEOREM 3.3.[7] Let M be an (n = 2k+1)-dimensional 6-slant submanifold
in a (2m + 1)-dimensional Sasakian space form M(c). Then we have:

n—2{( n? 92 (c+3)n+1)) (c—1)
<
oms— {n—lnH”+' 4 }+ 8

[3(n—3) cos? §—2(n—1)].

The equality case of the inequality (3.1) holds at a point p € M if and
only if there ezists an orthonormal basis {e1,...,en = &} of T,M and an
orthonormal basis {en+1,...,€2m,eam+1} of T;'M such that the shape op-

erators of M in J\~4(c) at p have the following forms:

a 0 0 . . .0
Ans1=10 b 0 . . .0 |, a+b=p,
0 0 pln_o
R}, R, 0 . . .0
Ar=| hiy —h7; O . . .0 |, re{n+2,...,2m+1}.
0 O Op—2

COROLLARY 3.4. Let M be an (n = 2k + 1)-dimensional invariant subman-
ifold in a (2m + 1)-dimensional Sasakian space form M(c).
Then we have:
Say < (c+3)(n—2)(n+1) + (c=1)(n— 7).
8 8
COROLLARY 3.5. Let M be an n-dimensional anti-invariant submanifold in
a (2m + 1)-dimensional Sasakian space form M (c).

Then we have:

n—2{ n? IHI? + (c+3)(n+1)}_ (c—l)(n—l).

< -
Om n—1 4 4

- 2
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