

Dragoș Cioroboiu

B.Y. CHEN INEQUALITIES FOR BI-SLANT SUBMANIFOLDS IN SASAKIAN SPACE FORMS

Abstract. In the present paper, we establish Chen inequalities for bi-slant submanifolds in Sasakian space forms, by using subspaces orthogonal to the Reeb vector field ξ .

1. Preliminaries: Riemannian invariants

The Riemannian invariants of a Riemannian manifold are the intrinsic characteristics of the Riemannian manifold. In this section, we recall a string of Riemannian invariants on a Riemannian manifold introduced in [6].

Let M be a Riemannian manifold. Denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_p M$, $p \in M$.

For any orthonormal basis $\{e_1, e_2, \dots, e_n\}$ of the tangent space $T_p M$, the scalar curvature τ at p is defined by

$$(1.1) \quad \tau(p) = \sum_{i < j} K(e_i \wedge e_j).$$

One denotes by

$$(1.2) \quad (\inf K)(p) = \inf\{K(\pi) \mid \pi \subset T_p M, \dim \pi = 2\},$$

and one introduces the Chen invariant

$$(1.3) \quad \delta_M(p) = \tau(p) - (\inf K)(p).$$

We recall the following lemma of Chen [5].

LEMMA 1.1. *Let a_1, \dots, a_n, c be $n+1$, $n \geq 2$, real numbers such that*

$$\left(\sum_{i=1}^n a_i \right)^2 = (n-1) \left(\sum_{i=1}^n a_i^2 + c \right).$$

Then $2a_1 a_2 \geq c$ and the equality holds if and only if $a_1 + a_2 = a_3 = \dots = a_n$.

1991 *Mathematics Subject Classification:* 53C40, 53B25, 53D15.

Key words and phrases: bi-slant submanifold, Chen inequality, mean curvature, Sasakian space form.

Let M be an n -dimensional submanifold of a Riemannian manifold \tilde{M} . We denote by ∇ the Riemannian connection of M . Also, let h be the second fundamental form and R the Riemann curvature tensor on M . Then the equation of Gauss is given by

$$\begin{aligned}\tilde{R}(X, Y, Z, W) &= R(X, Y, Z, W) + \\ &+ g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)),\end{aligned}$$

for any vectors X, Y, Z, W tangent to M .

Let $p \in M$ and $\{e_1, \dots, e_n\}$ be an orthonormal basis of the tangent space $T_p M$. We denote by H the mean curvature vector, that is

$$(1.4) \quad H(p) = \frac{1}{n} \sum_{i=1}^n h(e_i, e_i).$$

Also, we set

$$h_{ij}^r = g(h(e_i, e_j), e_r)$$

and

$$\|h\|^2 = \sum_{i,j=1}^n g(h(e_i, e_j), h(e_i, e_j)).$$

2. Bi-slant submanifolds in Sasakian manifolds

A $(2m + 1)$ -dimensional Riemannian manifold (\tilde{M}, g) is said to be a *Sasakian manifold* if it admits an endomorphism ϕ of its tangent bundle $T\tilde{M}$, a vector field ξ and a 1-form η satisfying:

$$\begin{cases} \phi^2 = -Id + \eta \otimes \xi, \eta(\xi) = 1, \phi\xi = 0, \eta \circ \phi = 0, \\ g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \eta(X) = g(X, \xi), \\ (\tilde{\nabla}_X \phi)Y = -g(X, Y)\xi + \eta(Y)X, \tilde{\nabla}_X \xi = \phi X, \end{cases}$$

for any vector fields X, Y on $T\tilde{M}$, where $\tilde{\nabla}$ denotes the Riemannian connection with respect to g .

A plane section π in $T_p \tilde{M}$ is called a ϕ -section if it is spanned by X and ϕX , where X is a unit tangent vector orthogonal to ξ . The sectional curvature of a ϕ -section is called a ϕ -sectional curvature. A Sasakian manifold with constant ϕ -sectional curvature c is said to be a *Sasakian space form* and is denoted by $\tilde{M}(c)$.

The curvature tensor of $\tilde{M}(c)$ of a Sasakian space form $\tilde{M}(c)$ is given by [1]

$$\begin{aligned}\tilde{R}(X, Y)Z &= \frac{c+3}{4}\{g(Y, Z)X - g(X, Z)Y\} + \\ &+ \frac{c-1}{4}\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi + \\ &+ g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z\},\end{aligned}$$

for any tangent vector fields X, Y, Z on $\tilde{M}(c)$.

As examples of Sasakian space forms we mention \mathbb{R}^{2m+1} and S^{2m+1} , with standard Sasakian structures (see [1]).

DEFINITION. We call a differentiable distribution \mathcal{D} on M a *slant distribution* if for each $x \in M$ and each nonzero vector $X \in \mathcal{D}_x$, the angle $\theta_{\mathcal{D}}(X)$ between ϕX and the vector subspace \mathcal{D}_x is constant, which is independent of the choice of $x \in M$ and $X \in \mathcal{D}_x$. In this case, the constant angle $\theta_{\mathcal{D}}$ is called the *slant angle* of the distribution \mathcal{D} .

DEFINITION. We say that a submanifold M tangent to ξ is a *bi-slant* submanifold of \tilde{M} if there exist two orthogonal distributions \mathcal{D}_1 and \mathcal{D}_2 on M such that:

- i) TM admits the orthogonal direct decomposition $TM = \mathcal{D}_1 \oplus \mathcal{D}_2 \oplus \{\xi\}$.
- ii) For any $i = 1, 2$, \mathcal{D}_i is slant distribution with slant angle θ_i .

Let $2d_1 = \dim \mathcal{D}_1$ and $2d_2 = \dim \mathcal{D}_2$.

REMARK. If either d_1 or d_2 vanishes, the bi-slant submanifold is a slant submanifold. Thus, slant submanifolds (and, therefore, invariant and anti-invariant submanifolds) are special cases of bi-slant submanifolds.

Invariant and *anti-invariant immersions* are slant immersions with slant angle $\theta = 0$ and $\theta = \frac{\pi}{2}$, respectively. A slant immersion which is neither invariant nor anti-invariant is called a *proper slant immersion*.

For the properties and examples of bi-slant submanifolds in Sasakian manifolds, we refer to [2].

For any tangent vector field X to M , we put $\phi X = PX + FX$, where PX and FX are the tangential and normal components of ϕX , respectively. We denote by

$$(2.1) \quad \|P\|^2 = \sum_{i,j=1}^n g^2(Pe_i, e_j).$$

3. B.Y. Chen inequality

We prove the Chen inequality for bi-slant submanifolds in a Sasakian space form.

We consider plane sections π orthogonal to ξ .

THEOREM 3.1. *Let M be an $(n = 2d_1 + 2d_2 + 1)$ dimensional bi-slant submanifold in a $(2m + 1)$ -dimensional Sasakian space form $\tilde{M}(c)$. Then we have:*

$$(3.1) \quad \inf K \geq \tau - \frac{n-2}{2} \left\{ \frac{n^2}{n-1} \|H\|^2 + \frac{(c+3)(n+1)}{4} \right\} - \frac{(c-1)}{4} [3(d_1-1) \cos^2 \theta_1 + 3d_2 \cos^2 \theta_2 - (n-1)],$$

on \mathcal{D}_1 and

$$(3.1') \quad \inf K \geq \tau - \frac{n-2}{2} \left\{ \frac{n^2}{n-1} \|H\|^2 + \frac{(c+3)(n+1)}{4} \right\} - \frac{(c-1)}{4} [3d_1 \cos^2 \theta_1 + 3(d_2-1) \cos^2 \theta_2 - (n-1)].$$

on \mathcal{D}_2 .

The equality case of the inequality (3.1) and (3.1') holds at a point $p \in M$ if and only if there exists an orthonormal basis $\{e_1, \dots, e_n = \xi\}$ of $T_p M$ and an orthonormal basis $\{e_{n+1}, \dots, e_{2m}, e_{2m+1}\}$ of $T_p^\perp M$ such that the shape operators of M in $\tilde{M}(c)$ at p have the following forms:

$$(3.2) \quad A_{n+1} = \begin{pmatrix} a & 0 & 0 & \dots & \dots & 0 \\ 0 & b & 0 & \dots & \dots & 0 \\ 0 & 0 & & \mu I_{n-2} & & \end{pmatrix}, \quad a+b=\mu,$$

$$(3.3) \quad A_r = \begin{pmatrix} h_{11}^r & h_{12}^r & 0 & \dots & \dots & 0 \\ h_{12}^r & -h_{11}^r & 0 & \dots & \dots & 0 \\ 0 & 0 & & 0_{n-2} & & \end{pmatrix}, \quad r \in \{n+2, \dots, 2m+1\}.$$

Proof. We recall the Gauss equation for the submanifold M

$$\tilde{R}(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)),$$

for all $X, Y, Z, W \in \Gamma(TM)$.

Since $\tilde{M}(c)$ is a Sasakian space form, then we have

$$(3.4) \quad \begin{aligned} \tilde{R}(X, Y, Z, W) &= \frac{c+3}{4} \{ -g(Y, Z)g(X, W) + g(X, Z)g(Y, W) \} + \\ &+ \frac{c-1}{4} \{ -\eta(X)\eta(Z)g(Y, W) + \eta(Y)\eta(Z)g(X, W) - g(X, Z)\eta(Y)g(\xi, W) + \\ &+ g(Y, Z)\eta(X)g(\xi, W) - g(\phi Y, Z)g(\phi X, W) + g(\phi X, Z)g(\phi Y, W) + \\ &+ 2g(\phi X, Y)g(\phi Z, W) \}, \quad \forall X, Y, Z, W \in \Gamma(TM). \end{aligned}$$

Let $p \in M$ and $\{e_1, \dots, e_n = \xi\}$ an orthonormal basis of $T_p M$ and $\{e_{n+1}, \dots, e_{2m}, e_{2m+1}\}$ an orthonormal basis of $T_p^\perp M$. For $X = Z = e_i, Y = W = e_j, \forall i, j \in \{1, \dots, n\}$, from the equation (3.4), it follows that

$$(3.5) \quad \begin{aligned} \tilde{R}(e_i, e_j, e_i, e_j) &= \frac{c+3}{4} (-n + n^2) + \\ &+ \frac{c-1}{4} \{ -2(n-1) + 3 \sum_{i,j=1}^n g^2(\phi e_i, e_j) \}. \end{aligned}$$

Let $M \subset \tilde{M}(c)$ be a bi-slant submanifold, $\dim M = n = 2d_1 + 2d_2 + 1$.

We consider an adapted bi-slant orthonormal frame

$$\begin{aligned} e_1, e_2 &= \frac{1}{\cos \theta_1} Pe_1, \dots, e_{2d_1-1}, \\ e_{2d_1} &= \frac{1}{\cos \theta_1} Pe_{2d_1-1}, e_{2d_1+1}, \\ e_{2d_1+2} &= \frac{1}{\cos \theta_2} Pe_{2d_1+1}, \dots, e_{2d_1+2d_2-1}, \\ e_{2d_1+2d_2} &= \frac{1}{\cos \theta_2} Pe_{2d_1+2d_2-1}, e_{2d_1+2d_2+1} = \xi. \end{aligned}$$

We have

$$\begin{aligned} g(\phi e_1, e_2) &= g\left(\phi e_1, \frac{1}{\cos \theta_1} Pe_1\right) = \frac{1}{\cos \theta_1} g(\phi e_1, Pe_1) \\ &= \frac{1}{\cos \theta_1} g(Pe_1, Pe_1) = \cos \theta_1 \end{aligned}$$

and, in the same way,

$$g^2(\phi e_i, e_{i+1}) = \begin{cases} \cos^2 \theta_1, & \text{for } i \in \{1, \dots, 2d_1-1\}, \\ \cos^2 \theta_2, & \text{for } i \in \{2d_1+1, \dots, 2d_1+2d_2-1\}. \end{cases}$$

Then

$$\sum_{i,j=1}^n g^2(\phi e_i, e_j) = 2(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2).$$

The relation (3.5) implies that

$$\begin{aligned} (3.6) \quad \tilde{R}(e_i, e_j, e_i, e_j) &= \frac{c+3}{4}(n^2 - n) \\ &+ \frac{c-1}{4}[6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2(n-1)]. \end{aligned}$$

Denoting by

$$(3.7) \quad \|h\|^2 = \sum_{i,j=1}^n g(h(e_i, e_j), h(e_i, e_j)),$$

from the relation (3.6), one has

$$\begin{aligned} (3.8) \quad \frac{c+3}{4}n(n-1) + \frac{c-1}{4}[6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2] \\ = 2\tau - n^2\|H\|^2 + \|h\|^2, \end{aligned}$$

or equivalently,

$$\begin{aligned} (3.9) \quad 2\tau &= n^2\|H\|^2 - \|h\|^2 \\ &+ \frac{c+3}{4}n(n-1) + \frac{c-1}{4}[6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2]. \end{aligned}$$

If we put

$$(3.10) \quad \varepsilon = 2\tau - \frac{n^2}{n-1}(n-2)\|H\|^2 - \frac{c+3}{4}n(n-1) - \frac{c-1}{4}[6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2],$$

we obtain

$$(3.11) \quad n^2\|H\|^2 = (n-1)(\varepsilon + \|h\|^2).$$

Let $p \in M$, $\pi \subset T_p M$, $\dim \pi = 2$, π orthogonal to ξ .

We consider two cases:

i) π is tangent to \mathcal{D}_1 . We may assume $\pi = sp\{e_1, e_2\}$.

We put $e_{n+1} = \frac{H}{\|H\|}$. The relation (3.11) becomes

$$\left(\sum_{i=1}^n h_{ii}^{n+1} \right)^2 = (n-1) \left\{ \sum_{i,j=1}^n \sum_{r=n+1}^{2m+1} (h_{ij}^r)^2 + \varepsilon \right\},$$

or equivalently,

$$(3.12) \quad \begin{aligned} & \left(\sum_{i=1}^n h_{ii}^{n+1} \right)^2 \\ &= (n-1) \left\{ \sum_{i=1}^n [(h_{ii}^{n+1})^2 + \sum_{i \neq j} (h_{ij}^{n+1})^2] + \sum_{r=n+2}^{2m+1} \sum_{i,j=1}^n (h_{ij}^r)^2 + \varepsilon \right\}. \end{aligned}$$

By using Lemma 1.1, we derive from (3.12):

$$(3.13) \quad 2h_{11}^{n+1}h_{22}^{n+1} \geq \sum_{i \neq j} (h_{ij}^{n+1})^2 + \sum_{i,j=1}^n \sum_{r=n+2}^{2m+1} (h_{ij}^r)^2 + \varepsilon.$$

From the Gauss equation for $X = Z = e_1, Y = W = e_2$, we obtain

$$\begin{aligned} K(\pi) &= \frac{c+3}{4} + 3 \cos^2 \theta_1 \cdot \frac{c-1}{4} + \sum_{r=n+1}^{2m+1} [h_{11}^r h_{22}^r - (h_{12}^r)^2] \geq \\ &\geq \frac{c+3}{4} + 3 \cos^2 \theta_1 \cdot \frac{c-1}{4} + \frac{1}{2} \sum_{i \neq j} (h_{ij}^{n+1})^2 + \frac{1}{2} \sum_{i,j=1}^n \sum_{r=n+2}^{2m+1} (h_{ij}^r)^2 + \frac{\varepsilon}{2} + \\ &+ \sum_{r=n+2}^{2m+1} h_{11}^r h_{22}^r - \sum_{r=n+1}^{2m+1} (h_{12}^r)^2 = \\ &= \frac{c+3}{4} + 3 \cos^2 \theta_1 \cdot \frac{c-1}{4} + \frac{1}{2} \sum_{i \neq j} (h_{ij}^{n+1})^2 + \frac{1}{2} \sum_{r=n+2}^{2m+1} \sum_{i,j>2} (h_{ij}^r)^2 + \end{aligned}$$

$$\begin{aligned}
& + \frac{1}{2} \sum_{r=n+2}^{2m+1} (h_{11}^r + h_{22}^r)^2 + \sum_{j>2} [(h_{1j}^{n+1})^2 + (h_{2j}^{n+1})^2] + \frac{\varepsilon}{2} \geq \\
& \geq \frac{c+3}{4} + 3 \cos^2 \theta_1 \cdot \frac{c-1}{4} + \frac{\varepsilon}{2},
\end{aligned}$$

or equivalently,

$$(3.14) \quad K(\pi) \geq \frac{c+3}{4} + 3 \cos^2 \theta_1 \cdot \frac{c-1}{4} + \frac{\varepsilon}{2}.$$

Then

$$\begin{aligned}
(3.15) \quad \inf K - \tau & \geq \frac{c+3}{4} + 3 \cos^2 \theta_1 \cdot \frac{c-1}{4} - \\
& - \left\{ \frac{c+3}{8}(n^2-n) + \frac{c-1}{8}[6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n+2] \right\} - \frac{n^2(n-2)}{2(n-1)} \|H\|^2.
\end{aligned}$$

The last relation implies that

$$\begin{aligned}
\inf K & \geq \tau - \frac{n-2}{2} \left\{ \frac{n^2}{n-1} \|H\|^2 + \frac{(c+3)(n+1)}{4} \right\} - \\
& - \frac{(c-1)}{4} [3(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - (n-1)] + 3 \cos^2 \theta_1 \cdot \frac{c-1}{4}.
\end{aligned}$$

ii) Similary, if π is tangent to \mathcal{D}_2 , we obtain

$$\begin{aligned}
\inf K & \geq \tau - \frac{n-2}{2} \left\{ \frac{n^2}{n-1} \|H\|^2 + \frac{(c+3)(n+1)}{4} \right\} - \\
& - \frac{(c-1)}{4} [3(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - (n-1)] + 3 \cos^2 \theta_2 \cdot \frac{c-1}{4}.
\end{aligned}$$

These relations represent the inequalities to prove.

The case of equality at a point $p \in M$ holds if and only if it achieves the equalities in the previous inequalities and we have the equality in the Lemma 1.1

$$\begin{cases} h_{ij}^{n+1} = 0, & \forall i \neq j, i, j > 2, \\ h_{ij}^r = 0, & \forall i \neq j, i, j > 2, r = n+1, \dots, 2m+1, \\ h_{11}^r + h_{22}^r = 0, & \forall r = n+2, \dots, 2m+1, \\ h_{1j}^{n+1} = h_{2j}^{n+1} = 0, & \forall j > 2, \\ h_{11}^{n+1} + h_{22}^{n+1} = h_{33}^{n+1} = \dots = h_{nn}^{n+1}. \end{cases}$$

We may choose $\{e_1, e_2\}$ such that $h_{12}^{n+1} = 0$ and we denote by $a = h_{11}^r, b = h_{22}^r, \mu = h_{33}^{n+1} = \dots = h_{nn}^{n+1}$.

It follows that the shape operators take the desired forms.

COROLLARY 3.2. *Let M be an n -dimensional contact CR submanifold ($\theta_1 = 0, \theta_2 = \frac{\pi}{2}$) in a $(2m+1)$ -dimensional Sasakian space form $\tilde{M}(c)$.*

Then we have:

$$\inf K \geq \tau - \frac{n-2}{2} \left\{ \frac{n^2}{n-1} \|H\|^2 + \frac{(c+3)(n+1)}{4} \right\} - \frac{(c-1)}{4} [3d_1 - (n+2)],$$

on \mathcal{D}_1 and

$$\inf K \geq \tau - \frac{n-2}{2} \left\{ \frac{n^2}{n-1} \|H\|^2 + \frac{(c+3)(n+1)}{4} \right\} - \frac{(c-1)}{4} [3d_1 - (n-1)],$$

on \mathcal{D}_2 .

In particular if $\theta_1 = \theta_2 = \theta$, for slant submanifolds, one derives

THEOREM 3.3. [7] *Let M be an $(n = 2k+1)$ -dimensional θ -slant submanifold in a $(2m+1)$ -dimensional Sasakian space form $\tilde{M}(c)$. Then we have:*

$$\delta_M \leq \frac{n-2}{2} \left\{ \frac{n^2}{n-1} \|H\|^2 + \frac{(c+3)(n+1)}{4} \right\} + \frac{(c-1)}{8} [3(n-3) \cos^2 \theta - 2(n-1)].$$

The equality case of the inequality (3.1) holds at a point $p \in M$ if and only if there exists an orthonormal basis $\{e_1, \dots, e_n = \xi\}$ of $T_p M$ and an orthonormal basis $\{e_{n+1}, \dots, e_{2m}, e_{2m+1}\}$ of $T_p^\perp M$ such that the shape operators of M in $\tilde{M}(c)$ at p have the following forms:

$$A_{n+1} = \begin{pmatrix} a & 0 & 0 & \dots & \dots & 0 \\ 0 & b & 0 & \dots & \dots & 0 \\ 0 & 0 & & & \mu I_{n-2} & \end{pmatrix}, \quad a+b=\mu,$$

$$A_r = \begin{pmatrix} h_{11}^r & h_{12}^r & 0 & \dots & \dots & 0 \\ h_{12}^r & -h_{11}^r & 0 & \dots & \dots & 0 \\ 0 & 0 & & & 0_{n-2} & \end{pmatrix}, \quad r \in \{n+2, \dots, 2m+1\}.$$

COROLLARY 3.4. *Let M be an $(n = 2k+1)$ -dimensional invariant submanifold in a $(2m+1)$ -dimensional Sasakian space form $\tilde{M}(c)$.*

Then we have:

$$\delta_M \leq \frac{(c+3)(n-2)(n+1)}{8} + \frac{(c-1)(n-7)}{8}.$$

COROLLARY 3.5. *Let M be an n -dimensional anti-invariant submanifold in a $(2m+1)$ -dimensional Sasakian space form $\tilde{M}(c)$.*

Then we have:

$$\delta_M \leq \frac{n-2}{2} \left\{ \frac{n^2}{n-1} \|H\|^2 + \frac{(c+3)(n+1)}{4} \right\} - \frac{(c-1)(n-1)}{4}.$$

References

- [1] D. E. Blair, *Contact manifolds in Riemannian geometry*, Lecture Notes in Math. 509, Springer, Berlin, 1976.
- [2] J. L. Cabrerizo, A. Carriazo and L. M. Fernandez, *Slant submanifolds in Sasakian space forms*, Glasgow Math. J. 42 (2000), 125–138.
- [3] B. Y. Chen, *Geometry of Slant Submanifolds*, Katholieke Universiteit Leuven, 1990.
- [4] B. Y. Chen, *Slant immersions*, Bull. Austral. Math. Soc. 41 (1990), 135–147.
- [5] B. Y. Chen, *Some pinching and classification theorems for minimal submanifolds*, Arch. Math. 60 (1993), 568–578.
- [6] B. Y. Chen, *Some new obstructions to minimal and Lagrangian isometric immersions*, Japan. J. Math. 26 (2000), 105–127.
- [7] D. Cioroboiu and A. Oiaga, *B.Y. Chen inequalities for slant submanifolds in Sasakian space forms*, Rend. Circ. Mat. Palermo 51(2002), to appear.
- [8] F. Defever, I. Mihai and L. Verstraelen, *B.Y. Chen's inequality for C-totally real submanifolds in Sasakian space forms*, Boll. Un. Mat. Ital. 11 (1997), 365–374.
- [9] A. Lotta, *Slant submanifolds in contact geometry*, Bull. Math. Soc. Roumanie 39 (1996), 183–198.
- [10] I. Mihai, *Ricci curvature of submanifolds in Sasakian space forms*, J. Austral. Math. Soc. 72 (2002), 247–256.
- [11] A. Oiagă, *Ricci curvature of totally real submanifolds in locally conformal Kaehler space forms*, Analele Univ. Bucureşti 49 (2000), 69–76.
- [12] A. Oiagă and I. Mihai, *B.Y. Chen inequalities for slant submanifolds in complex space forms*, Demonstratio Math. 32 (1999), 835–846.
- [13] K. Yano and M. Kon, *Structures on Manifolds*, World Scientific, Singapore, 1984.

UNIV. POLITEHNICA OF BUCHAREST
 DEPARTMENT OF MATHEMATICS I
 Splaiul Independenței 313
 77206 BUCHAREST, ROMANIA
 E-mail: tiabaprov@pcnet.ro

Received December 28, 2001.

