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Bruno de Malafosse

SETS OF SEQUENCES THAT ARE STRONGLY -BOUNDED
AND MATRIX TRANSFORMATIONS
BETWEEN THESE SETS

Abstract. In this paper we are giving some new properties of the operator of first-
difference mapping a space sr into itself and we are dealing with the spaces s-r(Ah)
and s-((A*)"). Next are given some properties of the spaces wr (A, x), ér(A,u, N, ')
generalizing the space woo(A) and the space coo(A) of sequences that are strongly bounded.
Then are given some properties of matrix transformations between these spaces.

1. Introduction, notations and preliminary results
In this work, we shall use the infinite linear system of the form:

“+00
(1) Zanm$m=bn n=12....
m=1

where the sequences (anm)n,m>1 and (bp)n>1 are given, (z,)n,>1 being the
unknown sequence. This system is equivalent to the single matrix equation

(2) AX = B,

where A = (@nm)n,m>1, 7 being the index of the n-th row, m the one of
the m-th column, n and m being integers greater than 1; X = (z,)n>1 and
B = (bp)n>1 are one-column matrices.

A Banach space E of complex sequences with the norm || - ||z is a BK
space if each projection P, : X — P, X is continuous. Let s is the set of all
sequences. For any sequence 7 = (7,)p>1 such that 7, > 0 for every n, we
denote by s, the Banach space

3) st ={(2n)n21 € 8| Tn = O(7n) n — oo},
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normed by

) 1], = sup(221).
n>1

n

We denote by S, the Banach algebra

(5) S, = {A = (Gnm)nm1 | sup(i larm] ;_m> < oo},

n- m=1 n
normed by

© 1415, = sup( 3 founl 22).

n

If |[I - Allg. < 1, we shall say that A € I';. S; being a unital algebra,
we have the useful result: if A € T';, A is invertible in the space S;, and for
every B € s;, equation (2) admits a unique solution in s;, given by

(7) X = i(] — A)'B.
i=0

If 7 = (r™)n>1, I'r, Sr and s, are replaced by Iy, S, and s, respectively
(see [2], [4-8]). When r = 1, we obtain the space of all bounded sequences

[ = S1.

For any subset E of s, we put
(8) AE={Yes/3IXeFE Y =AX}
If I is a subset of s, we shall denote
9) FA)=F4={Xes /Y =AX € F}.

We can see that F(A) = A™'F. If A maps E into F, we write that A €
(E, F), see [3]. Remark that A € (s;,s;) iff A€ S;.

2. Some properties of the operator A”* for h real
2.1. Properties of A" relatively to s,
The well-known operator A(:s — s where h is an integer > 1, is repre-
1 O
sented by the infinite lower triangular matrix A? where A= -1 1

O

This definition can be generalized to the case when h is a real, see [1, 17]. For
this, recall that we can associate to any power series f(z) = Y32 ax2z* de-
fined in the open disk |z|] < R the upper triangular infinite matrix
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A= ¢(f) € Uo<r<r Sr defined by

ap a1 a2
ap a; .
So(f) - O ao . ’

(see [7], [13]). Practically we shall write ¢[f(z)] instead of ¢(f). We have

LEMMA 1. i) The map ¢ : f — A is an isomorphism from the algebra of
the power series defined in |z| < R, into the algebra of the corresponding
matrices A.

i) Let f(z) = SR oapz¥, with ag # 0, and assume that ﬂlgj =

S pa,2* admits R > 0 as radius of convergence. We then have

o(7)=len e U s.

f O<r<R/
So, if h € R — N, we denote

Chtk— _h(— (—hak—

( iy 1): Mcht D). (htk=1) o
k A

<—h+kk_1):1 if k= 0.

If we write A* = A*, we have for any h € R

(A*)r = of(1 - 2)] = so[ki;(‘h PR o <

We deduce that if AP = (Thm )n,m>1,

(—h +n—m-—1
n—m

0 if m >n.

ifm<n
(10) Tnm = ) =7

Using the isomorphism ¢, we get:

PROPOSITION 1. ([7]) i) The operator represented by A is bijective from s,
into itself, for every r > 1 and AT is bijective from s, into itself, for all r,
O<r<l.

i) At is surjective and not injective from s, into itself, for all 7 > 1.

i) Vr # 1 and for every integer h > 1 (A1)Ps, = s,.

i) We have successively

a) If h is a real > 0 and h & N, then A" maps s, into itself when r > 1
but not for 0 < r < 1.
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If -1 < h < 0, then A" maps s, into itself when r > 1 but not forr = 1.

B)Ifh >0 and h & N, then (A1) maps s, into itself when 0 < r <1
but not if r > 1.

If =1 < h < 0, then (AT)? maps s, into itself for 0 < r < 1 but not for
r=1.

v) For a given integer h > 1, we have successively

Vr>1:A4¢€ (s,(A"),s,) & SUPp>1(Xmei |@am| T™ ") < 00,
vr €]0,1[: A € (s,((AT)P),s,) & SUP,>1{ D=t [Gam| T™™) < 0.

vi) For every integer h > 1

s1.C 51(A") Cspny,., € () 5
- r>1
2.2. Properties of well-known operators mapping s, into itself

In this subsection we shall consider the well-known operators C'(A) and
A(X), see [15], [11]. We shall see that these operators are obtained from
A and A~! = X. Then we establish some properties of the spaces s.,(Ah),
[*°(C(7)) and of the sequence C(7)7.

Put U = {(un)n>1/ un #0Vn}. If A= (Ay)n>1 € U, we have

1/M 0]
1/Ae 1/A2
Cc(\) = . . .
1/ /A 1/
If £ = (&n)n>1 is a given sequence, we put D¢ = ({n0nm)nm>1, Where

Onm = 0 for n # m, and 6,, = 1 for all n. One gets C(A) = Dy/5E. Since
Tt = (102 2") = p(1L;) with |2| < 1, ¥ is the lower infinite triangular
matrix all of whose entries below the main diagonal are equal to 1. Further,
(C(\)~!=Z71Dy = AD,. If we let A(X) = AD,, then

A1 Ag
AN = . ,
0 —An-1 An

is the inverse of C()).
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Further, we shall say that £ = ({n)n>1 EVI‘ if
Tm ( n-t ) <1
n—oo

Note that A € I'¢| implies £ € I'. Now we can express the following

PROPOSITION 2. i) 7 € T if and only if there is an integer ¢ > 1 such that

v4(T) = sup (Tn—l) <L

n>q+1 Tn

it) If T € T, we deduce the following properties

a) A is bijective from s, into itself.

B) There is an integer ¢ > 1, and two reals M > 0 and k > 1, for which
Tn > ME"™ foralln>q+1.

7) 1°(C(r) = sr.

0) C(r)T € 1.

e) For any positive integer h, we have s, (A") = s;.

111) We get successively

a)

3:(A) = s & 1°(C(7)) = 5: & C(T)T € I*°.

B) Let h be any fized integer > 1 and assume that (7'"‘1)7122 € I°°, then

s+ (AN = 5, & 1®°(C(1)) = s,  C(7)T € I°°.
Proof. i) If 7 € T, | = limp—,00(™=L) < 1 and infy>1(74(7)) < 1. Hence

Tn
there exists €9, 0 < eg < 1—1 and an integer go such that [ < v4,(7) < I +¢y,
which proves the necessary condition. Conversely, if there exists ¢ > 1 such

that v4(7) < 1, then

Tn

. T Tn—1
Inf(74(7)) = ,};ngo( ) <L

Assertion ii) First let us prove that 7 € I’ implies that A is bijective
from s, into itself. Denote for any integer ¢ > 1 by £(@ the infinite matrix

[A(q)]—l o)

O

where A@ is the finite matrix whose elements are those of the g first rows
and of the ¢ first columns of A. We get Y@A = (@nm)nm>1, With ap, =1
for all n, appn—q1 = —1 for all n > ¢+ 1, and a,,m = 0 otherwise. We see that
if 7 € T, there exists an integer ¢ > 1 such that

1T = EDAs, = 74(7) < 1.
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For all B € s,, we see that (9B € s,. Then equation AX = B being
equivalent to (2(9A)X = £(9B admits only one solution in s, for all B €
sr. This proves that A is bijective from s, into itself.

Now, from i) we deduce that if 7 € ' there exists an integer ¢ > 1
and a real s, with 0 < » < 1, for which n > ¢ + 1 implies TLT;—I < e
Then 7, > -74%7 for n > g+ 1, and we obtain ), in which & = 1/ and
M = 1454,

Let us prove that 7 € T implies ). First we have (C(7))™! = AD,. It is
obvious that D is bijective from [*° into s, and as we have seen above A
is bijective from s; into itself. Then {*°(C(7)) = AD,I® = As; = s;.

7 € I’ implies C(7)7 € [*°. Indeed, since 7 € I" equation

AX =,

(where T € s;) admits in s, the unique solution X = 3¥.7. This means that
Il%" = O(1) as n — oo and we conclude that C(7)r € [*°.

Since 7 € T implies «), we deduce that A" is bijective from s into itself.
Then s,(A") = s, and 7 € T implies ).

Assertion iii) &). Since the matrix A is lower triangular, we deduce that
sr(A) = s; iff A is bijective from s; to s,. From the identities s, = D,I*®
and (C(71))~! = A(r), we deduce that

sr(A) = s; © Asr = s, © A(T)™® =17(C(1)) = s7.

Now let us show that C(7)r € [ iff [*°(C(r)) = s,. First prove that
if C(m) € 1% then I*®°(C(7)) = s;. Take X = (z,)n € *°(C(7)). Then
C(m)X €1, ie. X € A(7)l*. Hence there exists (by), € [*° such that X =
(Tnbn — Ta—1bn—1)n>1, With the convention by = 0. And since C(7)7 € I*®
implies that 2= = O(1) (n — oo) then

Tn

Ty
Tn n
and X € s;. This proves that [*°(C(7)) C s;.
Now let us show that s, C [®°(C(7)). Let X € s,. If weput Y = (yn)n =
C(7)X and if [C(7)7], denotes the n-th coordinate of C(7)r, there is a real
M such that

Tn—1

bp—1 =0(1) n— o0

1 & M
lyn| = |— Za:k < — ZTk = M[C(T)T], Vn.
™ k=1 k=1

We conclude that Y € [ since C(7)7 € [ and X € [*°(C(7)). Finally, if
1°(C(1)) = s, then 7 € I°°(C(7)) and C(7)7 € I*°. This achieves the proof
of iii) ).
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Assertion iii) B). First, note that if (%), 5, € I°, then A € S; and
A € (sr,5;). From iii) a) we see that it is enough to prove that s, (A") = s,
iff s;(A) = s;. If s;(A) = s, we deduce that A is bijective from s, to s,
since the map X — AX is injective. This implies that A* is bijective from
s; to s, and s,(A") = s,. Conversely, suppose that s,(A?) = s,. First, we
see that AP~1s, C s,, since (%=2) > € 1°° implies that As; C s,. On the
other hand for any given B € s, the equation A"X = B admits a unique
solution in s, and

(11) B =A(AM1X) € As,.

This proves that s; C As;. Finally, As; = s, and A is bijective from s, to
sr, which gives the conclusion.

REMARK 1. The converse of the property "7 € I implies C(7)7 € [*” in
the previous proposition is false. Let us show that there is 7 € I" such that
C(7)T € 1*. Indeed, let ¢ > 1 and consider the sequence (7,,)n>1 defined by

¢k ifn =2k,
Tn =
¢k ifn=2k+1.

We see that sup,,>.41 (72=2) =1 for all ¢ > 1. On the other hand we get

Tn

2p P P p+1 P_ (-1
Ym=) ity = S Sl for all p.
i=1 i=1 i=1

(-1
Then

2p
1 1
— E 7 < CL
Top =5 (-1
Doing analogous calculations, we get

2p+1
1 P

T < k- 1-
This proves that C(7)T € I*°.
From iii) in Proposition 2 it can be easily seen that if there is 7 € I" such
that C(7)r € I*°, then s,(A) =*°(C(7)) = s;.

REMARK 2. Note that the sequence used in the previous remark satisfies 8
in ii). It is enough to take ¢ > x2.

2.3. Other properties of (A1)" relatively to s,

In order to express other usefull results on the operators A? and (A¥+)*
for h real, we need to recall the next result, see [2], [8].
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Let A(t1,t2,...tp), p € N, be the matrix obtained from A by addition
of the following rows:

t1 = (tim)m>1, t2 = (tam)m>1y- - - tp = (tpm)m>1
with g, #0 (kK =1,2,..,p), tij € R, that is

t11 - . tim
tp1 - - lom
A(tl, t2, e tp) = a1l - - G1m
anl1 - - Qnm

Similarly put

B(uy,ug, ... up) = (uy,. .. up, by, ba,...)*
and

n(uy, ug, ... up) = (u1,...4p,0,0,...)"

We shall use the matrix Dy = D(al—l)n, where a/! are the inverses of the

diagonal elements of the matrix A(t1,t2,...tp). Then we get:
PROPOSITION 3. ([8]) Let T = (1), Tn > 0 Vn, be a sequence such that
(12)  DgA(tr,te, ... tp) €y and DgB(ug,ug,...,up) € sr.

Then
i) the solutions of AX = B in the space s, are:

X = [DarA(t1,ta, - 1))  DarB(ut, ug, . .. up) u1,ug, .. ..U € C.

it) The linear space Ker AN s, of the solutions of AX = 0 in the space
s, is of dimension p and is given by

KerAN s, = span{X1, Xo,.....Xp)
where
Xy, = [A(t1, tg, .. . 1) "' 0(0,0,...,1,0,...0), k=1,2,....p,
1 being the k-th term of the p-tuple.
In the following we shall use the sequences e, = (0, ..,1,...), (where 1 is
in the n-th position), e = (1,1,...) and
{V1 =et, Vo= (A4} AL, .. ), V3 = (0,43, 4%,.. ), ...
Vu=(0,0,..., A" An-1 o An-l )L

n—1?
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A{ = Z%F’ with 0 < j < 7, being the number of permutations of 7 things
taken j at a time. We obtain:

1

THEOREM 1. i) Let h be a real. For everyr > rp = —ZTEJTH—, we have
2ThT 1

sr(AP) = s,.
it) We get successively

a) Let h be an integer > 1 and take r > rif = ﬁ;— Then
2k -1

s (AT =s,.
Furthermore for any B € s,, the equation
(13) (ANY'X =B
admits in s, infinitely many solutions given by
h
X=2Zy+ ZuiVi uy, us,..., up being arbitrary scalars,

i=1

where
Zo = [(A")) (e, (~1)en)] B, ...,0).

B) Let h be a real > 0 and denote by q the greatest integer strictly less
than h+ 1. Then dim Ker((AT)*) = q and

Ker((AY)") = span(V4,...,V,).
Proof. Assertion i). We deduce from (10) that

17— A%ls, = sup (:;11 L '&,ﬁ ;;+ L Tnl_m)
_ i lh(h=1)...(h—k+1)| 1
—k=1 k! rk
< i |h|(|h|+1)-}c-'(|h|+k—1)rik'
k=1 '
Then, for r > rp, In(1— 1) > —ﬁ“ﬁ% and

N 1\ /A
||I—A||S,g(1——) —1<1.
T

We conclude that A” is bijective from s, into s, and sr(Ah) = 5.
ii) a) Let
A} = [(AY)((-1) e, .-, (=1)Pen).
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% is lower triangular with non-zero coefficients on the main diagonal. For
any real r > r;f, we have

I = (=D)AL |s, = §h 1 (h> = (1+ 1)h 1«1
RllSy = rk \ k r '
From Proposition 3 we deduce that

dim Ker((AT)") (s, = h.

Further, we can easily verify that the h vectors Vi, Vs ,.., V} are linearly
independent and belong to Ker((A*)*)s,. Hence V1, V» ,.., V,, form a
basis of this space. Moreover

Zo = (A},)7'B(0,0,...,0) € s,
is a particular solution of equation (13). Then the solutions of this equation
are given by
h
X = (AL)_IB(ul, Uy . v vy uh) =2+ ZuiVi ui,usg,....uy € R.

i=1
ii) B) It is well-known [1] that Ker((A1)") is the set of all the sequences
(Py—1(n))n>1, Py—1 being an arbitrary polynomial of degree less than g —
1. Then dim Ker((AT)*) = ¢ and since V1, Va,..., V, € Ker((AT)") are
linearly independent, we conclude that Ker((AT)*) = span(Vy, Va, ..., Vp).

3. Generalization of the sets of sequences that are strongly
T-bounded
In this section we recall some properties of the sequence spaces that are
strongly T-bounded. Next we give definitions of the matrices ZX()\, p) and
C(M, ) generalizing the matrices A()) and C()) and we deal with the spaces
Wr (A, 1), E{A, 1, X', 1') generalizing the well-known space of sequences that
are strongly bounded.

3.1. Sequence spaces that are strongly 7-bounded

For every sequence X = (zp)n, we define | X| = (|zn|)n>1. For A € U,
put
(14) wr(A) ={X €s/ CA)(X]) € s}
If there exist A and B > 0, such that A < 7, < B for all n, we get the
well-known space wr()\) = weo(A), (see [15]). If s, is replaced by co, it is
written that w,(X) = wo(X).

Consider now for A € U, X € s the space

(15) (W X) = {X €5/ COY|AN)X]) € s,}.
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When A = X we shall write ¢, (\) for short. ¢,()) is called the set of se-
quences that are strongly 7-bounded [9]. If s; is replaced by co, ¢, (}) is
written co(A) and is called the set of sequences that are strongly convergent
to 0. Similarly when s; is replaced by I, co(A) = coo(A) is called the set of
sequences that are strongly bounded [11], [15], [14]. We can also define the
set ¢(A) of sequences that are strongly convergent by
cA\)={X €s /X —le" € cy()\) for some [ € C}.
We have the next result, where A\, N € U .

THEOREM 2. ([9]) i) Assume that TA € . Then c.(A, X') is a BK space with
respect to ||| . We have

S 1Al

TN
(16) er(MX) =5 (CANAN)) =s_15 and ¢ (A) =s;.

T ~
ii) Assume that x = sup,>o (Hil)\n_—ll-) < oo and define the sequence
E=(n)n by 0 <& <1/x and & = T—1|An—1| for alln > 2. Then
sr(CA)AT) = s¢.

Moreover for any B € s, equation (C(\)AT)X = B, admits in s¢ infinitely
many solutions given by

X = [(DAC(VAY)(—e))]"HDrB)(u), for all scalars u.

REMARK 3. Note that ii) in the previous theorem follows from Proposition
3 in Section 2.

We can deduce from the preceding the next results [9].

COROLLARY 1. i) Assume that TA € T,
a- If xe U, XN € U with (X)), -» oo, then

er(AN) # 1°°.

b- If X € sy and X' € sy, then (M, X) = s;.
it) Suppose that (|An|)n is increasing and T € T', then

cT(A,)J):sT]]_:T,[ and ¢, (X) = s,

ii1) Let R be a real strictly greater than 1. If we suppose that A € T, then

cr(MX) = sRCAN)) = 52,

iv) If 0 < &1 < [sup,zs ()] ™, then I°(C(N)AY) = s¢.

REMARK 4. If we assume that 7 € I°° the space ¢,;(\, X') cannot be written

in the form s¢, ( = ((n)n being a sequence satisfying (, > 0 Vn. However,
it is the case for [°(C(\)AT).
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We can assert the following result concerning matrix transformations, &
being the sequence defined in ii) of Theorem 2. Using the property,

[o o] Tm
7 v nm| )
(17) Ae(sr,s)@s%p(mz:lm 2 ><oo

n

where 7 = (Tp)n, v = (Un)n With v, and 7, > 0 for all n, (see [9]), we get
(87, 8y) = Srn, where

1 00
S‘r,v = {A = (anm)n,mZI/Sup (—( Z |anm| Tm)) < OO}
n>1 N\, el
So, we obtain

COROLLARY 2. ([9])

— 1 | A
A€ (5:(C)A"),5.) ¢ 509 (lamt| L 4+ 3 Janm| 221l o
n>1

" m=2 Un

3.2. Generalization to the spaces w;(\, p) and & (A, p, N, u')
Let A = (/\n)nZI eUand p= (Nn)nZl- We write

A1 o)
—p1 A2

A p) = : :
O —Hn-1 An

If we put pr, = -‘/(—:, it can be easily seen that if

COum) = (A )™t = (Cnm)nm21,
we get

ifm=n,

Cnm =

A -

n—1 .

II o ifm<n,
k=m
0 otherwise.

Note that A(A, A) = A(X) and C(\, A) = C(A). We can define the set
@y (A p) = {X €5/ CO\p)(IX)) € 57},
that is

T p) = {X €s/ Ain[|acn| +,§ (:ljlpk) lmm|] —O0(r) n— oo}.
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For any sequences A, X' = (A)n>1 € U, p and p' = (u,)n>1 we define also
the set

GO X,y = (X es/ COm(BN,uK)X]) € s}
and using the convention py = 0 we obtain X € & (A, p, X, ) iff

1 n—1 ,n-1
Tn = T |/\;1,-'En _)u"ln—lmn—ll =+ z ( H Pk)l/\:nzm _:ll’:n—lmm—1|:| = O(Tn)

m=1 “k=m
n — oo.
It can be easily seen that w, (A, A) = w,(A), &AM N, X) = ¢, (A, X) and
cr(AA) = ¢ (N), see [9)].
Now, in order to generalize Theorem 2, we define for any sequence 7, the
set

d,. = {X = (wn)nZI/ JLH&(l.’Ean:_—l) < 1}

n
Observe that e € ®, implies that 7 € I'. Now, for A\, ' € U, p and ' € s,
consider the following conditions:

(18) <“”‘1> €&,
)‘n n>2
’
(19) <,u7_1> € (I)|/\|‘r'
n—1 TLZZ

THEOREM 3. i) For any given A € U, u € s such that (18) holds, we have

Wr (A, b)) = Sjjr-

ii) Assume that (18) and (19) hold for any given \, N € U, p and i’ € s.
Then & (A, u, N, ') is a BK space with respect to the norm ||||s| N and
Tr T
é;'(Aa Hy )‘/a :u’l) = Sl%l-r'

o~

Proof. i) Put A"()\, u) = A(A, p)Dyyy in order to obtain all the diagonal
entries of A”(A, 1) equal to 1. We see that the map X — D)X is bijective
from s, into s)y|,;. Consider now the infinite matrix

A"\ wi@=t o
(B w)]@ = 1 ,
0]
where [A”(), )] is the finite matrix whose entries are those of the g first

rows and of the g first columns of A”(\, u). We get [E”(], p)](q) A p) =
(@nm)n,m>1, With ann, = 1 for all n, apn—1 = —pn—1 for n > ¢+ 1, and
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anm = 0 otherwise. From (18) we deduce that there is ¢ > 1 such that

A1 | T
(20) 1 = [Z"O\ QA" @) llspyy, = SUP (Ipn-1| - 1)
n>q+1 n Tn
= sup ( il Tn_l) <1
n>q+1 An Tn

For every B € s)y,, we see that [E"()\,p)](‘” B € s))r. Furthermore, equa-
tion A”(A, u)X = B being equivalent to
(=7, )] @ A"\ WX = [\, w)]9@ B,

we deduce that the equation A”(\ p)X = B admits only one solution in
sjzjr for all B € s|y,. This proves that A”(), i) is bijective from s, into

itself. We conclude that A(X, ) = A”(A, 1) Dy is bijective from s, into S|Alr
and

wr(A\p) ={X €5/ |X| € A\ w)sr = sppjr} = 8apr

if) We see that X € & (A, u, X, ') iff |A(N, )X | € B(A,u)sr. And since

(18) holds we deduce from i) that A(), u)s, = s)a|r- Reasoning as above we
see that the map X — Dy X is bijective from 5|13} into sy, and from (19)
A

Tie
"1)<1.
Tn

Then, A(N, ') is bijective from Py into s||,. Finally, for any given X,
A

there exists ¢ > 1 such that

An—l
An

I
|

/

n—1

1) I - [E//(,\I,#/)](Q) A”(N’,Ufl)“sw\v = sup (

n>q+1

we get
X ee(\pX,w) & AN, 1) X] € A, p)s:
equivalent to

X € AN, iAW, w)sy = AN, 1)) sy, = S| |

This concludes the proof.
We deduce the following

3.3. Matrix transformations

Here we give some properties of matrix transformations mapping E into
F where E is either one of the spaces s, or wr;(A,u) or & (A, u, N, ') and
F is either one of the spaces s, or wWu(&,n) or é-(&,m,&,7).

Now, consider the following supplementary hypotheses:

@) (%) %
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77' 1
(23) ( & _1>n>2 € Qo

For any given sequences A, &, N, ¢ € U, u, ¢/, 1, 7' € 5, v = (W)n>1,
v = (Vn)n>1, @ = (@n)n>1 and 7 with v,, vpn, an and 7, > 0 Vn, we obtain
the following

THEOREM 4. i) Under (22), we get:

A€ (5yBalbn) & ( Ifnmz_mmm) 03

it) under (18), we have:

A € (wr (A, 1), Sy @sup( ( Z |@nmA mITm)> 00;
iti) under (18) and (22), we have
A @00, 726, 1) 2 (i (3 fomdnl 7)) < o

i) under (22) and (23), we have

A (spaatern &) e sup (L (3 tammlm) ) < o0

Ignlan m=1
v) under (18) and (19), we obtain
Ae (G N, 1), sy) & su (1 <i a Am T, ))<00'
T s y )5 Sv nZI; Un = nm)\;n m )

vi) under (18), (22) and (23):

A€ (@00, E(6m &) > sup (el al (Danm nltm) ) < oo

|énl an m=1
o)) <oo

Am

o))<

nm/\_,'

vii) under (18), (19) and (22):

€ (& (A X, 1), Wa(§;m)) « sup (|£nl an<

00
n>1 Z

m=1

anm )\,
viti) under (18), (19), (22) and (23):

’ 00

Ae (e (A, ,)\',',E;,,','@su(lﬁnl( a
(& XNy ), ealé,n €5n)) s (o m2:1
Proof. i) If (22) holds w,(§,7n) = s|¢|o and from (19)

A€ (37, 13;(5,77)) < A€ S’Y:|fl°"
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ii) From (18) wr (A, ) = s)5, and we conclude as in i). iii) Under (18),
(22) and i) in Theorem 10, we get w, (A, u) = sz- and Wa(€,n) = Sigla-
Then

Ae (13;()‘,#),@(5,77)) S Ae S|/\|T,[§|aa
hence we obtain iii).

iv) From (22), (23) and ii) in Theorem 3, we get ¢5(£,n,&',7) = 516 |-

Then ¢
— ’onNY
(s’)’a Ca(§7 7’7§ » 7 )) - S'Y’l'éfla.

v) As in iv) (18) and (19) imply ¢; (A, u, N, u') = 5|3 |r and

~ ! ! _
(C‘r()‘a 1, A y 1 )? Sv) = Sl}/\TIT»”'

vi) (18) implies that w, (A, p) = s, (22) and (23) imply that
62(5,77) S,, 77') = 3|E§rla- Hence

(@;(A, /‘)7&:(577’78’ 77’)) = S|,\|'r,|§r|a'

Similarly we get vii).
Finally, since (18) and (19) imply & (A, g, N, p') = 5|3 |r and (22) and
A

(23) imply ca(&, 1,8, 1) = 5|5 o We conclude that
3

~ N Ny
(CT()‘,P‘))‘ ) )7 Ca(fﬂ?,f 1 )) - S!%""vléfla’

which gives viii).
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