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Bruno de Malafosse 

SETS OF SEQUENCES THAT A R E STRONGLY r - B O U N D E D 
A N D M A T R I X T R A N S F O R M A T I O N S 

B E T W E E N THESE SETS 

Abstract . In this paper we are giving some new properties of the operator of first-
difference mapping a space sT into itself and we are dealing with the spaces sT(A'1) 
and Sr( (A + ) ' 1 ) . Next are given some properties of the spaces iu t(A ,//), cT(A, fi, A', fx') 
generalizing the space Woo(A) and the space Coo(A) of sequences that are strongly bounded. 
Then are given some properties of matrix transformations between these spaces. 

1. Introduction, notations and preliminary results 
In this work, we shall use the infinite linear system of the form: 

+ o o 

(1) ^ ] o,nmxm = bn n = 1 , 2 , . . . . 
m = l 

where the sequences (anm)n,m>l and (6n)n>i are given, (xn)„>i being the 
unknown sequence. This system is equivalent to the single matrix equation 

(2) AX = B, 

where A = (anrn)n^m>i, n being the index of the n-th row, m the one of 
the m-th column, n and m being integers greater than 1; X = (xn)n>i and 
B = {bn)n>l are one-column matrices. 

A Banach space E of complex sequences with the norm || • ]]_£ is a BK 
space if each projection Pn : X —> PnX is continuous. Let s is the set of all 
sequences. For any sequence r = (rn)n>i such that r„ > 0 for every n, we 
denote by sT the Banach space 

(3) sT = {(xn)„>i G s | xn = 0 ( r n ) n oo}, 
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normed by 

(4) p r | | S T = s u p ( ^ 
n > l V T n 

We denote by ST the Banach algebra 

(5) ST = \ A = (anm)nm>i | supi Y] \anm\ — ) < oo I, 
I n > l rn J J 

normed by 

(OO V 

E w - . - m=1 T n J 

If ||/ — ^4||st < 1, we shall say that i e T t . 5 t being a unital algebra, 
we have the useful result: if A € r r , A is invertible in the space ST, and for 
every B £ sT , equation (2) admits a unique solution in sT, given by 

oo 
(7) X = Y^I~A)iB-

i=0 

If r = ( r n ) n > i , r T , ST and sT are replaced by r r , Sr and sr respectively 
(see [2], [4-8]). When r = 1, we obtain the space of all bounded sequences 
l°° = si . 

For any subset E of s, we put 

(8) AE = {Y e s / 3X e E Y = AX}. 

If F is a subset of s, we shall denote 

(9) F(A) = Fa = {X es / Y = AX € F}. 
We can see that F(A) = A~XF. If A maps E into F, we write that A e 
(E, F), see [3]. Remark that A € (sT, sT) iff A € ST. 

2. Some properties of the operator Ah for h real 
2 .1 . Propert ies of Ah relatively to sT 

The well-known operator A s where h is an integer > 1, is repre-
( l O \ 

sented by the infinite lower triangular matrix Ah where A = — 1 1 

This definition can be generalized to the case when h is a real, see [1, 17]. For 
this, recall that we can associate to any power series f ( z ) — YlkLo a k z k de-
fined in the open disk |z| < R the upper triangular infinite matrix 
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A = <p{f) e Uo<r<fl Sr defined by 

/ ao ai a2 
a0 a\ 

O ao 

\ • 

(see [7], [13]). Practically we shall write <p[f(z)] instead of <p(f). We have 

LEMMA 1. i) The map if : / —> A is an isomorphism from the algebra of 
the power series defined in \z\ < R, into the algebra of the corresponding 
matrices A. 

ii) Let f(z) = Y^k=oakzk; with ao ^ 0, and assume that = 
J2kLoa'kzk admits R' > 0 as radius of convergence. We then have 

<p(i) = [v(f)]~1e U sr. 
0 <r<R' 

So, if h E R — N, we denote 
( f-h + k - 1\ _ -h(-h + l)...(-h + k - l ) 

k ) ~ k\ 
'-h + k-V 

k = 1 

If we write A4 = A + , we have for any h £ R 

i- / 
k (A+)fc = ?[ ( l " * ) * ] = ¥ > £ ( H + k Mzfc 

fe=0 

if k > 0, 

if k = 0. 

for Iz\ < 1. 

We deduce that if Ah = (rn m)n i m> i , 

(10) W — * 
—h + n — m — . 

n — m 
0 

if m < n, 

if m > n. 

Using the isomorphism ip, we get: 

P R O P O S I T I O N 1. ( [7] ) i) The operator represented by A is bijective from sr 

into itself, for every r > 1 and A + is bijective from sr into itself, for all r, 
0 < r < 1. 

ii) A + is surjective and not injective from sr into itself, for all r > 1. 
Hi) Vr ^ 1 and for every integer h > 1 ( A + ) h s r = sT. 
iv)We have successively 
a) If h is a real > 0 and h $ N, then Ah maps sr into itself when r > 1 

but not for 0 < r < 1. 
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If — 1 < h < 0, then Ah maps sr into itself when r > 1 but not for r = 1. 
¡3) If h > 0 and h $ N, then (A +) ' 1 maps sT into itself when 0 < r < 1 

but not if r > 1. 
If — 1 < h < 0, then (A+)h maps sr into itself for 0 < r < 1 but not for 

r = 1. 
v) For a given integer h > 1, we have successively 

'n) < oo, 
I rm-n) < oo. 

f Vr > 1 : A G (sr(Ah), sr) s u p n > 1 ( E ~ = i |<w| r 
{ Vr G]0, l[:Ae ( s r ( (A+) h ) , sr) * s u p ^ d ) ^ 

in] For every integer h > 1 

51 C si(A f c) C s { n h ) n ^ C f l s r . 
r>l 

2.2. Properties of well-known operators mapping sT into itself 
In this subsection we shall consider the well-known operators C(A) and 

A(A), see [15], [11]. We shall see that these operators are obtained from 
A and A - 1 = E. Then we establish some properties of the spaces sT(Ah), 
1°°(C(T)) and of the sequence C(T)T. 

Put U = { (« n )n>i / UNYIO Vn}. If A = (An)n>i G U, we have 

( 1/Ai 
1/A2 1/A2 

C(A) = 

1/A„ 

O 

l/K l/K 

\ 

\ • / 

If £ = (£n)n>i is a given sequence, we put = (£„5„m)n,m>l, where 
&nm = 0 for n / m, and 5n n = 1 for all n. One gets C{A) = D ^ E . Since 
EÉ = yd^^Lo-2;n) = lzl < 1, E is the lower infinite triangular 
matrix all of whose entries below the main diagonal are equal to 1. Further, 
(C(A))-1 = E ~ l D x = ADx. If we let A(A) = AD x , then 

A(A) = 

( Ai 
- A i 

O 

A2 

O \ 

is the inverse of C(A). 
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Further, we shall say that £ = (£n)n>i € T if 

lim < 1. 

Note that A € implies £ G I\ Now we can express the following 

PROPOSITION 2. i) r € r if and only if there is an integer q > 1 such that 

-T 7 9 ( t ) = sup f - T " < 1. 
I><7+1 \ Tn 

ii) If T ET, we deduce the following properties 

а) A is bijective from sT into itself 

(3) There is an integer q > 1, and two reals M > 0 and K > 1, for which 

RN > MKn for all n > q + 1. 

L) 1°°(C(T)) = sT. 
б) C ( t ) t € l°°. 

e) For any positive integer h, we have sT(Ah) = sT. 

Hi) We get successively 

a) 

s T ( A ) = sT Z°°(C(r)) = sT C ( r ) r € l°°. 

¡3) Let h be any fixed integer > 1 and assume that (^r1)n>2 e then 

sT{AH) = sT& 1°°(C(T)) = SR& C(T)T E 

P r o o f , i) If r € T, I = I imn_ + 0 0 ( : !^ i ) < 1 and in f g>i ( 7 , ( r ) ) < 1. Hence 
there exists eo, 0 < eo < 1 — I and an integer qo such that I < 7 g o ( r ) < l + £o, 
which proves the necessary condition. Conversely, if there exists q > 1 such 
that 7 q ( r ) < 1, then 

n—>00 \ inf(7q{r)) = Jim. < 1. 

Assertion ii) First let us prove that r 6 T implies that A is bijective 
from sT into itself. Denote for any integer q > 1 by S ^ the infinite matrix 

/ [A(9)]-

O 

O \ 

/ 
where A ^ is the finite matrix whose elements are those of the q first rows 
and of the q first columns of A . We get E ^ A = (anm)niTn> 1, with ann = 1 
for all n, an „_ i = —1 for all n > q + 1, and anm = 0 otherwise. We see that 
if r € r , there exists an integer q > 1 such that 

| | / - S W A | k = 7 g ( r ) < l . 
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For all B G sT, we see that Then equation A X = B being 
equivalent to ( S W A ) ! = admits only one solution in sT for all B G 
sT. This proves that A is bijective from sT into itself. 

Now, from i) we deduce that if r G T there exists an integer q > 1 
and a real x, with 0 < x < 1, for which n > q + 1 implies ^zk < ^ 

TTL 

Then r n > -^rqxq for n > q + 1, and we obtain /?), in which n = 1/x and 
M = Tqxq. " 

Let us prove that r G T implies 7). First we have ( C ( r ) ) - 1 = AD T . It is 
obvious that Dr is bijective from l°° into sT and as we have seen above A 
is bijective from sT into itself. Then Z°°(C(r)) = ADTl°° = AsT = sT. 

t € T implies C ( r ) r G Indeed, since r g T equation 

AX = r, 

(where r e sT) admits in sT the unique solution X = S . r . This means that 
r t+^+rn _ Q ^ as n —> 00 and we conclude that C ( r ) r e 

Since r G r implies a), we deduce that Ah is bijective from sT into itself. 
Then sT(Ah) = sT 

and r G r implies e). 
Assertion iii) a) . Since the matrix A is lower triangular, we deduce that 

s T (A) = sT iff A is bijective from sT to sT. From the identities sT = DTl°° 
and ( C ( T ) ) - 1 = A(r ) , we deduce that 

s r ( A ) = sT Asr = sT& A(T)J°° = 1°°(C(t)) = sT. 

Now let us show that C(T)T G Z°° iff 1°°(C(t)) = sT. First prove that 
if C(T)T G i 0 0 then / 0 ° ( C ( r ) ) = sT. Take X = (xn)n G 1°°(C(t)). Then 
C(t)X G Z00, i.e. X G A(r)Z°°. Hence there exists (6„)„ G such that X = 

~ TVi_ife„_i)n>i, with the convention bo = 0. And since C ( r ) r G 100 

implies that ^F1 = O ( l ) (n 00) then 

— = bn — 1 = O( l ) n -> 00 

and X G sT. This proves that 1°°(C(t)) C st. 
Now let us show that sT C Z°°(C(r)). Let X G sT . If we put Y = (yn)n = 

C(t)X and if [C(r)r]n denotes the n-th coordinate of C ( r ) r , there is a real 
M such that 

\Vn\ 
1 " M n 

Vn. 
T n fc=i T n fc=i 

We conclude that Y G since C ( r ) r G and X G Z°°(C(r)). Finally, if 
l°°(C(r)) = sT then r G Z°°(C(r)) and C ( r ) r G Z°°. This achieves the proof 
of iii) a) . 
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Assertion iii) (3). First, note that if ( Z ^ I ) N > 2 G then A 6 ST and 
A G (sT, sT). From iii) a) we see that it is enough to prove that sT(Ah) = sT 

iff ST(A) = sT. If St(A) = sT we deduce that A is bijective from sT to sT 

since the map X AX is injective. This implies that Ah is bijective from 
sT to s r and sr(Ah) = sT. Conversely, suppose that s r (Ah ) = sT. First, we 
see that A h ~ l s T C sT, since (•^R L I ) N > 2 G implies that A s T C sT. On the 
other hand for any given B G sT the equation AhX = B admits a unique 
solution in sT and 
( 1 1 ) B = A ( A / l ~ 1 X ) G AST. 

This proves that sT C AsT. Finally, AsT = sT and A is bijective from sT to 
sT, which gives the conclusion. 

R E M A R K 1. The converse of the property " r G T implies C(r)r G in 
the previous proposition is false. Let us show that there is T ^ T such that 
C ( T ) T G l°°. Indeed, let £ > 1 and consider the sequence ( T n ) n > i defined by 

_ j Ck if n = 2k, 

T n ~ \ C k i fn = 2fc + l . 

We see that supn > ? + 1 (-^F1) = 1 for all q > 1. On the other hand we get 

X A ^ ^ C p + 1 + C p - C - 1 f n 
= T 2 i - 1 + 2^T2i = T — j for a l l p. 

t=1 i=l i=1 ^ 

Then 

T2?k ' " ( " I 

Doing analogous calculations, we get 

l ^ c + 1 
y n < 
¿ i C - 1 T2P+1 C 

This proves that C(T)T G 
From iii) in Proposition 2 it can be easily seen that if there is r ^ T such 

that C(r)r G Z°°, then sT(A) = Z ° ° ( C ( T ) ) = s r . 

R E M A R K 2 . Note that the sequence used in the previous remark satisfies (3 
in ii). It is enough to take £ > k2. 

2.3. Other properties of (A+)/l relatively to sr 

In order to express other usefull results on the operators Ah and (A+)'1 

for h real, we need to recall the next result, see [2], [8]. 
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Let A(ti,t2,... tp), p e N, be the matrix obtained from A by addition 
of the following rows: 

= (^lm)m>li ¿2 = (^2m)m>l) • • - tp = (tprn)jn> 1 
with tkk / 0 (k = 1, 2, ¿¿j 6 R, that is 

Similarly put 

and 

ip, 1 • tp,m 
A(tl,t2,...tp) = «1,1 • • ai,m • • 

B{u\,u2,. ..Up) = («1,. • • Up, 61, 62, . . .)* 

v{ui,u2, • • • Up) = (tii, • • • Up, 0 , 0 , . . 

We shall use the matrix Dn> = D, /-u , where a'jz1 are the inverses of the (ann )n " " 

diagonal elements of the matrix A(ti, t2, • • • tp). Then we get: 

PROPOSITION 3. ([8]) Let t = (R N ) ; rn > 0 V n , fee a sequence such that 

(12) Da>A(t\,t2, •. • ,tp) e T t and DaiB{u\, u 2 , . . . , up) E sT. 

Then 
i) the solutions of AX = B in the space sT are: 

X = [Da>A(ti,t2, • . • tp)]'1 Da'B(ui, u2,... Up) iti, «2, Up e C. 

ii) The linear space KerA fl sT of the solutions of AX — 0 in the space 
sT is of dimension p and is given by 

KerA fl sT = span(Xi,X2, Xp) 

where 

Xk = [A(t1,t2,...tp)]-1r1(0,0,...,l,0,...0), fc = l , 2 , . . . . p , 

1 being the k-th term of the p-tuple. 

In the following we shall use the sequences en = (0,.., 1 , . . . ) , (where 1 is 
in the n-th position), e = ( 1 , 1 , . . . ) and 

<Vl = e\V2 = (A\, Ai .. .)*, V3 = (0, Al Al...)*, • • • 
\ Vn = (0, 0, . . . , -A" 1, • • • , A™ 1, • • .)*> • • • 
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A-i = (i-j)\) with 0 < j < i, being the number of permutations of i things 

taken j at a time. We obtain: 
i 

THEOREM 1. i) Let h be a real. For every r > r^ = , we have 
2 W - 1 

sr(Ah) = sr. 

ii) We get successively 

a) Let h be an integer > 1 and take r > r£ = —p—. Then 

Sr((A+)h) = Sr. 

Furthermore for any B € sr, the equation 

(13) ( A + ^ X = B 

admits in sr infinitely many solutions given by 

h 

X = Z§ + ^~2,UiVi u\, U2,- • •, Uh being arbitrary scalars, 
i=1 

where 

Z0 = [((A+)h)((-l)heh . . . , ( - l ) h e „ ) ] B ( 0 , . . . , 0). 

j3) Let h be a real > 0 and denote by q the greatest integer strictly less 

than h+ 1. Then dimKer((A+)h) = q and 

Ker((A+)h) = span(V1,...,Vq). 

P r o o f . Assertion i). We deduce from (10) that 

II r A/t|| - -nn ( V' \h(h - 1)... (h - n + m + 1)\ 1 
11/ - A ||5r - sup I E ^ ^ ^ 

^ 1 

\h(h-l)...(h-k + l)\ 1 

fc=i fc! r k 

<~\h\(\h\ + l)...(\h\ + k - l ) 1 

~ h k [ r k ' 

Then, for r > rh, In (1 - ¿ ) > and 

l | I - A f c | | * . < ( l - ± J - K l . 

We conclude that Ah is bijective from sr into sT and sr(Ah) = sr. 

ii) a ) Let 

A'h = [ ( A + ) f c ] ( ( - l ) k e i I . . . l ( - l ) k e f c ) . 
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A'h is lower triangular with non-zero coefficients on the main diagonal. For 
any real r > we have 

nwXii ̂  = + 
Prom Proposition 3 we deduce that 

d i m K e r ( ( A + ) h ) Q sr = h. 

Further, we can easily verify that the h vectors V\, V2 ,.., Vh are linearly 
independent and belong to K e r ( ( A + ) h ) f| s r . Hence V\, V2 ,.., Vh form a 
basis of this space. Moreover 

Z 0 = ( A / h ) - 1 5 ( 0 , 0 , . . . , 0 ) e s r 

is a particular solution of equation (13). Then the solutions of this equation 
are given by 

h 

X = (A'h)~ 1B(ui,U2, ...,uh) = Z0 + $ > V , u i , u 2 , uh £ R. 
i=1 

ii) (3) It is well-known [1] that Ker((A+) h) is the set of all the sequences 
( P 9 _ i (n ) ) n > i , Pq-i being an arbitrary polynomial of degree less than q — 
1. Then d i m K e r ( ( A + ) ' h ) = q and since V1: Vq € Ker((A+) h) are 
linearly independent, we conclude that Ker((A+) h) = span(Vi, V2,..., Vq). 

3. Generalization of the sets of sequences that are strongly 
r -bounded 
In this section we recall some properties of the sequence spaces that are 

strongly r-bounded. Next we give definitions of the matrices A (A , n) and 
C(A, ¡1) generalizing the matrices A ( A ) and C (A ) and we deal with the spaces 
uv(A, /j), cT(A, A', f i ' ) generalizing the well-known space of sequences that 
are strongly bounded. 

3.1. Sequence spaces that are strongly r -bounded 
For every sequence X = ( x n ) n , we define |X| = (|xn|)n>i. For A 6 U, 

put 

(14) wT(X) = { X e s / C(A)(|X|) G sT}. 

If there exist A and B > 0, such that A < rn < B for all n, we get the 
well-known space wT(A) = woa(X), (see [15]). If sT is replaced by co, it is 
written that wT(A) = wo(X). 

Consider now for A € U, A' € s the space 

(15) cT (A, A') = {X € s / C(A) (|A(A ' )X|) G sT}. 
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When A = A' we shall write cr(A) for short. cT(A) is called the set of se-
quences that are strongly r-bounded [9]. If sT is replaced by co, cT(A) is 
written co(A) and is called the set of sequences that are strongly convergent 
to 0. Similarly when sT is replaced by cQ(A) = Coo(A) is called the set of 
sequences that are strongly bounded [11], [15], [14]. We can also define the 
set c(A) of sequences that are strongly convergent by 

c(A) = {X G s / X - lé G co (A) for some I G C}. 

We have the next result, where A, A' G U . 

THEOREM 2. ([9]) i) Assume that TX G I \ Then cT(A, A') is a BK space with 
respect to ||||s . We have 

(16) cT(A, A') = sT(C(A)A(A')) = s |A| and cT(X) = sT . 
T M 

ii) Assume that x = SUP«>2 ( 7 — — j j ) < 0 0 and define the sequence 
£ = ((n)n by 0 < < l/x and £n = r n _ 1 |An_i| for all n > 2. Then 

sT(C( A)A+) = s6. 
Moreover for any B G sT equation (C(A)A+)X = B, admits in sç infinitely 
many solutions given by 

X = [(DxC{X)A+){-e1)]-1(DxB){u), for all scalars u. 

REMARK 3. Note that ii) in the previous theorem follows from Proposition 
3 in Section 2. 

We can deduce from the preceding the next results [9]. 

COROLLARY 1. i) Assume that TX G r . 
a- If X G U, A' G U with (A^)„ 00, then 

cT(x,x')^r. 

b- If X G S|v| and A' G s ^ , then cT(A, A') = sT. 
ii) Suppose that (|An |)n is increasing and r G then 

cr(A, X') = s |ai and cT(X) = sT. 
r M 

Hi) Let R be a real strictly greater than 1. If we suppose that A G T, then 

cR(X,X') = sR(C(X)A(X')) = s(Rnl^l)n. 

iv) IfO < h < [supn>2 ( j x ^ T 1 , then l°°(C(A)A+) = sv 

REMARK 4. If we assume that r s l ° ° the space cr(A, A') cannot be written 
in the form s^, £ = (Cn)n being a sequence satisfying Cn > 0 Vn. However, 
it is the case for l°°(C(A)A+). 
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We can assert the following result concerning matrix transformations, £ 
being the sequence defined in ii) of Theorem 2. Using the property, 

(17) A € (sT, sv) & sup ( ^ |anm| — ) < oo, 
n \m=i V n J 

where r = (r„)n , v = (vn)n with vn and r n > 0 for all n, (see [9]), we get 
(sT,sv) = ST>V, where 

ST,v = {a - ( a n m ) n m > i / s u p ( — ( J2 |a 
I n > l V W n V ^ i 

Tim ' m < OO } 
So, we obtain 

COROLLARY 2. ([9]) 

A £ (sT(C(A)A+), sv) o sup f laml - + £ |<w| T m " l | A m " l | N ) < 
»>1 V ^n ^n J 

3.2 . Generalization to the spaces 5v(A, ¡i) and cT(X, /x, A', /z') 
Let A = (An)n>i s U and /x = (fin)n>i- We write 

/ Ai O \ 

-Ml 

oo. 

A(A,M) = 

o "Mn-1 An 

V / 
If we put pk = ^ , it can be easily seen that if 

we get 

C( A,/x) = (A(A,/x)) 1 = ( c n m ) n ) m > ! , 

if m = n, 

Cn.m. — * 

1 

1 y- n Pk if m < n, 
k=m 

0 otherwise. 

Note that A(A, A) = A(A) and C(A, A) = C(A). We can define the set 

wT(\^) = { X e s / C ( X , f i ) ( \ x \ ) e s T } , 

that is 

wT(\,n) = \ x e s / 
A-n 

n—1 .. n—1 \ 
c " i + E ( n Pk) 

m=1 ^ k=m 
= 0(rn) n —> oo >. 
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For any sequences A, A' = (A^)n>i € U, fx and fx' = (fi'7J„>i we define also 
the set 

C~(A,M , A V ) = {X es/ < 5 ( A , ^ ) ( | Â ( A V ) X | ) G ST} 

and using the convention /îq = 0 we obtain X G cT(X,fx, A ' , / / ) iff 

n—1 / n—1 

— 

J_ 

An. \^nxn~ V>'n-lxn-l\+Yl \ I I Pk ) 
RNXM FXM_^XM—\ I m=1 fc=m 

= 0 ( r n ) 

n —> oo. 

It can be easily seen that uh(X, A) = wT(X), cT(A, A, A', A') = cT(A, A') and 
cT (A, A) = c r (A ) , see [9]. 

Now, in order to generalize Theorem 2, we define for any sequence r , the 
set 

$>T = j x = (xn)n>i/ < 1 j . 

Observe that e £ i>T implies that r G I\ Now, for A, A' G U, fx and fx' G s, 
consider the following conditions: 

V n - f (18) 

(19) 

Xri 
G 

n / n>2 

/V- l 
A ' 

G $ |A|7 
\i-1/ n>2 

THEOREM 3. z,) F o r any given A G U, fx G s suc/i that (18 ) holds, we have 

WT(X,fx) = S|A|T. 

ii) Assume that (18 ) and (19) hold for any given A, X' EU, fx and fx' G s. 

T/ien cT(X, fx, X', fx1) is a BK space with respect to the norm |||| and 

I jMt 

CT(X,fl,X',fx') = Sl A | . 
IT71 

P r o o f , i) Put A " (A , fx) = A(X, fx)Di/\ in order to obtain all the diagonal 
entries of A " ( A , fx) equal to 1. We see that the map X —> D\X is bijective 
from sT into S|a|t- Consider now the infinite matrix 

( [[A'UM)]^]-1 O \ 

1 

° • 

where [A" (A, /x)](«> is the finite matrix whose entries are those of the q first 
rows and of the q first columns of A"(A,/x). We get [S"(A, fx)]{q) A(A,//) = 
(o„m )n,m>i, with ann = 1 for all n, a n n _ i = —pn-1 for n > q + 1, and 

V 
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o-nm = 0 otherwise. From (18) we deduce that there is q > 1 such that 

(20) | | 7 - [ E " ( A , m ) ] W A " ( A , m ) | | S | a | t = sup ( | 
n>q+1 V 

A •n—1 

= sup 
n>q+l 

Mn-1 
An 

An 
Tn-1 

Tn-1 

< 1. 

For every B € S|,\|T, we see that [ £ " ( A e S|A|r. Furthermore, equa-
tion A"(A, ji)X = B being equivalent to 

[S"(A, m ) ] ( 9 ) A"(A,m)X=[E"(A ,m)] (<?)B, 

we deduce that the equation A"(A , f i )X = B admits only one solution in 
S|,x|T for all B € S|a|t- This proves that A"(A, fx) is bijective from S|A|r into 
itself. We conclude that A(A, /¿) = A"(A, /j.)D\ is bijective from sT into S|A|r 

and 
Wr{\y) = {X e s / \X\e A ( A = S|A|T} = S|A|T. 

ii) We see that X e cT(\, fi, A', fx') iff A(A',fx')X E A(X,fx)sT. And since 

(18) holds we deduce from i) that A(A, fx)sT = S|A|T. Reasoning as above we 
see that the map X —> DyX is bijective from into S|A|T and from (19) 
there exists q > 1 such that 

An—1 
|S|A|t (21) ||7-[E"(A',^)] ( 9 )A"(A',m ' ) sup 

n>q+1 An—1 A, 
Tn-1 < 1. 

Then, A(X',fx') is bijective from si a i into sm r . Finally, for any given X, 
I A' I 

we get 

X G cT(X, fx, X', fx') ̂  |A(A', fx')X\ e A(A, fx)sT 

equivalent to 

X g [A(A/,/x')]-1A(A,/x)Sr - [ A ^ V ) ] " 1 « ^ = 

This concludes the proof. 
We deduce the following 

3.3. Matrix transformations 
Here we give some properties of matrix transformations mapping E into 

F where E is either one of the spaces su or «v(A,fx) or cT(A,//, X',fx') and 
F is either one of the spaces sv or r/) or cv(£, 77, rf). 

Now, consider the following supplementary hypotheses: 

'Vn-l (22) G 
n / n>2 
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(23) Vn-l 
e $ l i k 

^ n - l / n > 2 

Fo r any g i ven sequences A, f , G U, /x, ¡J.', r/, ry' G s, 7 = (7 n ) n> i , 

v = ( fn )n> i ) Q! = ( o n ) n > i a n d r w i t h 7 „ , vn, an a n d r „ > 0 Vn , we o b t a i n 

the f o l l ow ing 

THEOREM 4. ¿J £/nder (22), we get: 

A G sup ( — - Y ] \anm\7™) < 00; 
n> i \ a n |sn| ^ / 

iij under (18), we have: 

A G (wi(\,/x),sv) s up ( — ( V I c w A ^ - r ^ ) < oo; 

Hi) under (18) and (22), we have 

A G {wT(A, /x), wa(£, rj)) sup ( — J — ( l < w A m | r m ) J < oo; 
n> 1 V |sn I ®n m=l 

iv) under (22) and (23), we have 

A e ( s 7 , V , V ) ) sup ( J ^ L 
n> l \|£n| «n 

wj under (18) and (19), we obtain 

( 1 ( °° 
A G ( c r ( A , /z, A' , /z'), s „ ) s up ( — ( 

m= l 

>1 m= 1 

Am 

A' 
r m < 00; 

w j unde r (18), (22) and (23): 

A G (wT(A, /z), c a ( £ , 77, r?')) <i=> sup i&I 
i ic I \ ' * 

n> 1 M^nl^n 

vii) under (18), (19) and (22): 

A G (c~(A, /x, A', n'),ura(t, 77)) ^ sup 
n> l \|£n| Oi. 

viii) under (18), (19), (22) and (23): 

A G (c~ (A, /x, A' , / / ) , £ ( £ , V, »?')) ^ sup f 

E 
m=1 ' A ' 

< 00; 

£ 
m=l 

P r o o f , i) I f (22) ho lds 7) = S | i j a a n d f r o m (19) 

A G ( s 7 , « £ ( £ , rf)) A e 5 7 i ! i | Q . 

A L 
< 0 0 . 
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ii) Prom (18) wT(X, fj,) = S|_\|T and we conclude as in i). iii) Under (18), 
(22) and i) in Theorem 10, we get vT t{\ fJ>) = S|A|T a n ( i ^ ( ^ v ) = s|£|a-
Then 

A € (5v(A,/z),S;(^,7/)) o i e SUkiiia, 

hence we obtain iii). 
iv) From (22), (23) and ii) in Theorem 3, we get = S|4|Q-

Then 5 

(s7, V, f , v')) = 

v) As in iv) (18) and (19) imply cT(X, /j,, A', /¿') = sj A ^ and 

( c~(A, / i , X',fi'),sv) = 

vi) (18) implies that ufT{\,/i) = S|,\|T, (22) and (23) imply that 
= H e n c e 

( u v ( A , ¿z), T], rj')) = S j ^ i ^ . 

Similarly we get vii). 
Finally, since (18) and (19) imply cT(X,fi,X',fi') = si A i and (22) and 

I A 7 ! 1 " 

(23) imply ca(£, 7 7 , 7 / ) = w e conclude that 

which gives viii). 
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