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Zoltán F i n t a 

D I R E C T A N D C O N V E R S E T H E O R E M S 
F O R I N T E G R A L - T Y P E O P E R A T O R S 

Abstract . We establish direct and converse results for integral—type operators de-
fined with the aid of Szasz-Mirakjan operator and Baskakov operator, respectively. More-
over, some applications will be given. 

1. Introduction 
We denote by Cb[0, oo) the set of all bounded continuous functions on 

[0, oo) with the norm ||/|| = supxe[0,oo) l/(x)l- By -^[O, oo) we shall denote 
the set of all Lebesgue integrable functions on [0, oo). 

Let g : [0, oo) x (ío,oo) x [0, oo) —> [0, oo) be a function such that 
g(x, t, •) G C[0, oo) fl L 1 [0, oo) for all (x, t) € [0, oo) x (f0, oo) and t0 > 0. If 
G : (0, oo) x (i0 , oo) —> (0, oo), 

oo 

(1) G(x,t)= \g(x,t,6)de 

o 
then we assume that 

1 °° 
(2) — — • \g(x,t,0)-(9-x)dB = 0, 

G(x ,t) ¿ 

1 °° 

(3) • j g(x, t, 6)-(6- x)2dd < P{t)<p\x) 

and 
1 0 0 fifí 

<4> c m ' Í s O M . O H » - * ) 2 - ^ < « < ) * 
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for every (x,t) € (0, oo) x ( i0 ,oo) , where (3 : (t0,oo) —> (0, oo) is a given 
function and ip is a weight function of the following form: ip(x) = \/x (x > 
0) or y>(x) = \/x(l + x) (x > 0) corresponding to the well-known Szasz-
Mirakjan operator 

fc=o v ' 
and to the Baskakov operator 

fc=0 V ' ^ ' 
respectively. In what follows we shall denote by Ln the operators Sn and Vn. 

Now we can define a new sequence of positive linear integral-type oper-
ator Lln : Cb[0, oo) —> C{0, oo) by means of the functions g and G and the 
sequence {Ln} as follows 

1 oo 

L'M, X) = —— • 5 g(x, t, 6) • L n ( f , 9) dO 

and 0) = /(0), where the parameter t may be depend only on the 
natural number n, n € N := {1 , 2 , . . . } . 

The aim of this paper is to study the global approximation properties 
of Lln) establishing direct and converse theorems for Lln using the second 
modulus of smoothness of Ditzian - Totik defined by 

wJ(/,<5)= sup sup \f(x + h i p ( x ) ) - 2 f ( x ) + f(x-h<p(x))\. 
0<h<5 x±V(x)e[0,oo) 

We need also the following K— functional 

inf {\\f-h\\ + sy2h"\\}. h'eA.C. i0(! 

It is well-known ( see [2], Theorem 2.1.1. ) that 

(5) *(/>*)• 

Throughout this paper Co and C denote absolute constants and not neces-
sarily the same at each occurrence. 

The next section contains the formulation of our results and their proofs 
will be given in the third section. The last section is devoted to the appli-
cations. 

2. Main results 
The theorems in question are the following: 

THEOREM 1. If f e CB[0, OO), t e (io,OO) andn e N then 

WL'M-fW^CulUM-' + m f 1 2 ) -
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COROLLARY 2 . Let f e CB[o, oo) and t = t(n), (3(t) < C n n € N. Then 

(0 l l ^ ( / ) - / l l < C u , » ( / . « - 1 / 2 ) ; 
(ii) \\LKf) - f\\ < C \\Ln(f) - f l 

THEOREM 3 . Let f e CB[O, oo) and t = t(n), 2 C 0 / 3 ( t ) < 7 n - 1 , n € N, where 
Co > 0 is the absolute constant of Lemma below and 0 < 7 < 1. Then 

( 1 - 7 ) | | L n ( f ) - / I I < WLM - / | | < ( 1 + 7 ) 1 1 L n ( f ) ~ / I I -

3. Proofs 
At first we state the following lemma, which was established in [5], (2.7) 

for Ln = Sn and in [5] for Ln = Vn, respectively: 

LEMMA. Let f € C B [ 0 , 00). Then 

(6) i | | ^ ( / ) | | < C 0 ||In(/)-/||, 

where Co is an absolute constant and n e N. 

P r o o f of T h e o r e m 1. Let x > 0. By Taylor's formula we have 

Ln(f, e) = L „ ( / , x) + L'M, x)(9 - x) + \(0 - v)L';(f, v)dv. 
x 

Hence, in view of (1) and (2), we obtain 

1 00 0 
\Ltn(f,x)-Ln(f,x)\ =\ — — • \ g(x,t, 6) { \(9 - v) L'M,v)dv } d9 

' ' 0 X 

(7) < 

< 

1 I 
— — • \g{x,t,e)-\\(9-v)LW,v)dv 

' ' 0 X 
1 0 0 6 \ft — I 

Using [2], (9.6.1) and (9.6.2) we obtain 

F i n 1 * J <pJ(v) 
< if V{x) = ^ 

and 

t\0-v\, (e-x)2 ( 1 1 \ ,r . . r - r 

S W H ^ l î ï ï + iïi) if <p{x) = y/^ÔTx). 
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Hence, by (7) and (3) we have 

(8) \Lh(f,x) -Ln(f,x)\ < • y^—r • ]g(x,t,o) • y - x f d e 
<P*{X) G(x,t) J 

<m-b2K(f)\\ 
for Ln = Sn and, in view of (7), (3) and (4), we have 

ILMx) - LMx)I < . . ]g(x,t,6) • (9 - xf de 
V {x) G(x,t) J 

(9) . \ \ f W M 1 (ft de 

<2(3{t)\W2KU)\\ 
for Ln = Vn, respectively. In conclusion, from (8), (9) and 0) = /(0) 
we get 

(10) K ( / ) - M / ) l l < 2 / ? ( i ) y2LUf)\l 

Furthermore, Ll
n is a bounded operator. Indeed, by (1) and [2], (9.3.4) we 

have 
1 oo 

(M\ < • \ g{x, t, 6)\Ln(f, e)\de < ||Ln(/)|| < G[x,t) J 

i.e. 

(11) K ( / ) l l < 11/11-
Now, let h G Cb[0, OO) such that <p2h" G CB[0, oo). Then, by (10) and 

[2], (9.3.7) we have 

WL^h) - h\\ < Cß(t)\\ip2h"\\. 

Hence, in view of (11) and [2], (9.3.4), we get 

(12) \\Liif) - Ln(f)II < IIL'M - h ) - Ln(f -/i)|| + ||L*M - Ln(h)\\ 

<2\\f-h\\ + Cß(t)\\cp2h"\\ 

<C{\\f-h\\ + ß(t)\\<P2h"\\}. 
Because 

W L M - f W i C - ^ n - V 2 ) 
( see [2], (9.3.1) ), we get, by (5) and definition of K2 f V(f,n~1) that 

(13) \\Ln(f) - f\\ < C \\\f-h\\ + - ll<A' 
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Then (12) and (13) imply 

\\L*n(f) - / | | < K ( / ) - £»(/)II + I I M / ) ~ / | | 

or 

\\LHf) - f\\ < C • K2,v ( / , ^ + /?(«)) -

Using again (5), we get the assertion of the theorem. 

P r o o f of C o r o l l a r y 2. (i) It is a direct consequence of Theorem 1. 
(m) It follows from (i) and | |L„(/) - / | | ~ ^ ( / . n " 1 / 2 ) ( see [5], Theorem 
1.2 and Theorem 3.2 ). 

P r o o f of T h e o r e m 3. Using (10) and (6), we obtain 

I I L n { f ) ~ / I I < \\L'n{f) - / | | + | | L * M ) - L n ( f ) | | 

< l l ^ ( / ) - / l l + 2 ^ ( i ) l b 2 ^ ( / ) | | 

< K ( / ) - / | | + 2 / 3 ( t ) . C 0 n | | L n ( / ) - / | | 

< K ( / ) - / l l + 7 l l M / ) - / l l -

Thus 

( 1 4 ) ( i - 7 ) I I M / ) - / l l < K ( / ) - / l l -

In similar way we obtain 

( 1 5 ) K ( / ) - / | | < ( l + 7 ) l | i n ( / ) - / | | . 

Then (14) and (15) complete the proof of the theorem. 

REMARK . Under the assumptions of Theorem 3 we have 

< | | L « ( / ) - / | | ^ C w j i / . n " 1 / 2 ) . 

4. Applications 
1) The generalized Szasz-Mirakjan operator has the form 

where / 6 CB[0, oo), x > 0 and t > 0. For i = 1/q, a > 0 we receive back 
the operator considered in [3]. We have, by [3], Theorem 2.8: S ^ ( f , x ) = 
Qt(Sn(f),x), where 

G t { f , x ) = — • J e~e6tx~1 f i ^ j d 6 , x > 0 , t > 0 
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is a Gamma-type operator. Here g(x,t,9) = e~te9tx~1, 9 > 0 and 

ttx ~ 

r ( ix ) J 
5 e~te9tx~1 • 9d9 = x, 

ftx ° ° 

r(tx) I y ' f 
.¿J. oo 

r(tx) j v 7 1 + 0 - t 
Therefore we can consider (3{t) = 1/t and <p(x) = y/x. Now we can establish 
the following results: 

(1 - 7 ) | | S n ( / ) - / | | < ( / ) - / | | < (1 + 7)11 S n ( f ) ~ /II 

if t = t(n) and 2C0 • j • n < 7 < 1, n e N. 

2) Furthermore, we can consider the following new integral-type operator 

where / € CB [0, 00), a; > 0 and t > 0. Hence we have 

/ i x 0 0 

Thus g(x,t,9) = e~te9tx-1, 9 > 0 and G(x,t) = t~ixr(tx). Using the same 
computations as in the first case, we get 

j-tx 00 

5 e~te9tx~1 • 9d9 = x, 
ttx 00 

re**) 0 

• j e~te9tx~~1 • (9 - xf&9 =-< X(1 + X), r(tx) 

• \ e - ' W " 1 • (0 - x)2 • < -r(te) J v ' 1 + 9 - t 

0 
d9 x 

So we have f3(t) = 1/t and <p(x) — y/x(l + x). The results are the following: 

\\Sn(.f) - /II ^
 Cu>l(f> ( n _ 1 + i _ 1 ) 1 / 2 ) ; 
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(1 - - r W n ( f ) - /|| < | | ^ ( / ) - /II < (1 + 7)11 W ) - /II 

if t = t(n) and 2C0 • j • n < 7 < 1, n e N . 

3) The generalized Baskakov operator is defined by 
00 / 

V j t ( f , x ) = ' £ v n , k M f ( - ) , 
k=o 

where / e Cb[0,00), x > 0, t > 1 and 

V / i lr=l W® + ! ) + r ) 
The origin of this operator can be found in [4], Obviously V£(f, 0) = /(0). 
Let 

1 0 0 gtx-l 

be the modified inverse beta operator ( see [1] ). Because / € Cb[0,00) we 
have ( see also [4], Theorem 2 ): 

00 

E li-t-K— ± \ £>( LX-t-K, b-r n-t I I , , v . IK 

h J k ) B<uJ) ( I + 1 ) / U 

(n + k - l \ B(tx + k,t + n +1) fk 

\ k J rIT^TZu * I n 

1 ° ? ^ ( n + k-1\ 0 f k 

B(tX,t+l) ' J V k J ' (l + 0)t(a+l)+n+fc+l 

1 0 0 atx-1 

B(tx,t+1) j ( l + fl)te+t+1 

= T t * ( V n ( f ) , x ) . 

Therefore 
QtX-1 

and 
0tx-l 

J f1 j. mtx+i+i ' B(tx,t +1) J ( l + 0)tx+i+i 
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1 ? 6 t X ~ l (e-x^d9-xAi±£) 
B(tx,t + i)' I (i + ey*+t+i'[ J t-i ' 

1 ? A**-1 2 

J n 4- o)tx+t+i ' ~ x ) B ( t e , i + 1) J (1 + 0 ) t x + i + 1 v ; 1 + 1 

x ( l + x) _ x (t- l ) ( l + x ) < x 
i ( l + x) + l t - 1 t( l + as) + 1 ~ t-1 

for every (x, t) G (0, oo) x (l ,oo). Hence (3(t) = l / ( f — 1) and ip(x) = 
y x ( l + x). Thus we have the following results : 

\K(f) — f\\ < C WJ(/, (n-1 + (t - I)"1)1/2); 

( 1 - 7)\\Vn(f) ~ / I I < | | * * ( / ) - / I I < ( 1 + 7 ) I I K . ( / ) - / I I 

if t = t{n) and 0 < 2C0 • j^-j • n < 7 < 1, n e t 

4) Finally, let us consider the following operators: U^ k : C b [ 0 , 00) —> 
CB[0,00), 

^ , f c ( / , 0 ) = / (0) and U l 0 = L l 
00 

c/"'fc+l(/'x) = GM ' J 9(x,t,ewlk(f,d)de, 

where k > 0 is an integer. Then we have the next theorem. 

/ 

T h e o r e m 4 . If f e CB[0,00) a n d t e ( ¿ 0 , 0 0 ) then 
W WKk(f) -f II < C + / W / 2 ) , /c > 0 and n G N; 

( * ) l l ^ , f c ( / ) - / l l < C | | L „ ( / ) - / | | 
when t = t(n) and (3(t) < Cnn € N, fc > 0; 
(m) (1 - (fc + 2) 7 ) | | t£ > f c ( / ) - / | | < (1 - (k + 1)7)11^, f c + 1(/) - /II < 
( l - f c 7 ) l | t £ , f c ( / ) - / l l 
when t = t{n), 2C 0 / 3 ( i ) < 7 n - x , n 6 N a n d 0 < 7 < l / ( f c 0 + 2) , k0 G N, 
ke { l , 2 , . . . , f c 0 } -
P r o o f , (i) At first of all, let us observe that (11) and the definition of 
imply, by induction, that 
(16) K * ( / ) l l < 

Furthermore, let x > 0 and / G CgfO,00). Then, in view of (1), (16), 
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Theorem 1 and ||L„(/) - /|| ~ (/, n - 1 / 2 ) , we obtain 

1 OO 

K i (/, x) - /(*) I = | S t, 9) • [(¿¿(/, 0) - /(<?)) 
o 

•(Ln(/, 0) - /(0)) + ( L n ( f , 6) - f ( x ) ) ] dd 

1 00 

- G & j ) ' S 9(x,t,e){\LMO) - rnI +1M/,0) 

< 2 K ( / ) - / | | + ||Ln(/)-/|| 

< C{o,2 (/, (n - 1 + /^i ) ) 1 ' 2 ) + c 2 (/, n " 1 / 2 ) } 

^ ^ ( / . ( n - ' l / î f i ) ) 1 / 2 ) . 

Thus 

11^,i(/) - /II < C u f t M n - i + m 1 ' 2 ) -

The general case can be obtained by induction in the same manner using 
the idea of the above estimate, where U^ j and Lln are replaced by U^ k + l 

and U k , respectively. 
(ii) It is a direct consequence of (i), (3{t) < C n _ 1 and \\Ln(f) — f\\ ~ 

<4(f,n~1/2). 

(iii) It will be proved by mathematical induction. In view of (1) and (10) 
we get 

1 OO 

l^n,i(/>x) - K o ( f ^ ) \ < TvTTT • S 9(x,t,0) • \L\UJ) - L n ( f , 0)\dd 
G(x,t) J 

Using (6) we obtain 

I K O ( / ) - /II < l l ^ , l ( / ) - /II + l K l ( / ) - ^n,0(/)ll 

< K i ( / ) - / | | + 2 iS(t)Con||In (/)-/|| 

< I K i ( / ) - / I I + 7 | I M / ) - / I I -
But Theorem 3 implies that 

l K o ( / ) - /II < l K l ( / ) " /II + • l l ^ ( / ) " /II 

= Fn,l(/)-/ll + r ^ - | | f / n , 0 ( / ) - / H -

Thus 

(1 - 2 7 ) K o ( / ) - /II < (1 - 7)11^,i (/) - /II-
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In similar way we obtain 

( 1 - 7 ) K i ( / ) - / i i < K o ( / ) - / l l -
In conclusion 

( 1 - 2 7 ) W l o i f ) - / | | < ( 1 - 7 ) K i ( / ) - / | | < | | ^ , o ( / ) - / I I -

Furthermore, we shall suppose that (in) is true for 1 , 2 , . . . , k. Then, by (1) 
we have 

1 00 

Kk+1 (/'*)-unAf>x)I^ G^J) • S ^ t , 9 ) • I [ / ¿ ) f c ( / , e ) - ( / , e ) \ d 6 

< II KkU) - K k - x ( f ) ll < • • • < \\Ln(f) - £«(/) II-

Hence, by (10) and (6) we obtain 

1 1 ^ + 1 ( / ) - * C U ( / ) I I < mt)\W2KU)\\ < 2P(t)C0n\\Ln(f) - /II 

< 7 | | L n ( / ) - / | | . 

Using Theorem 3 and the hypothesis of induction we get 

(17) \\Ulk+1 ( / ) - Ulk(f)II < . IIU*nfiU) - /II 

< 

"7 
7 1 - 7 

1 - 7 I - 2 7 wuf)-f ll<-

So 

\ K k ( f ) - /Il ^ ll^.fc+1 ( / ) - /ll + \\UU+1 ( / ) - KkU)\\ 

< \Kk+i(/) - /ll + x _ (fc
7
+1)7 • WKAf) - /ll, 

i.e. 

(1 - (k + 2 ) 7 ) | | f / ^ f c ( / ) - / | | < (1 - (fc + 1)7)11^, f c + i ( / ) - /II-

The another inequality follows from (17): 

( / ) - /ll < w U f ) - /ll + ll^.fc+1 ( / ) -

< I K k ( f ) - /ll + ! _ (fc
7
+1)7 • \ K k ( f ) - /ll 
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i.e. 
(1 - (k + l ) 7 ) | | < f c + i ( / ) - /II < (1 - * 7 ) K f c ( / ) - /II, 

which was to be proved. 
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