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Zoltan Finta

DIRECT AND CONVERSE THEOREMS
FOR INTEGRAL-TYPE OPERATORS

Abstract. We establish direct and converse results for integral—type operators de-
fined with the aid of Szdsz-Mirakjan operator and Baskakov operator, respectively. More-
over, some applications will be given.

1. Introduction

We denote by Cg[0,00) the set of all bounded continuous functions on
[0, 00) with the norm || f|| = sup,¢(p,c0) |f()]- By L'[0, 00) we shall denote
the set of all Lebesgue integrable functions on [0, ).

Let g : [0,00) x (tg,00) x [0,00) — [0,00) be a function such that
g(z,t,-) € C[0,00) N L0, 00) for all (z,t) € [0,00) X (tg,00) and to > 0. If
G: (O, OO) x (to,OO) - (07 00)7

(1) G(z,t) = | g(z,t,0)d6
0
then we assume that
(2) G(i, t) ' (S) g(a:, t79) ' (9 - .’E)d9 = O’
(3) tﬁ . (S) g(x1 t 9) ' (9 - :I:)2d9 < ,B(t)(,02(fl:)
and
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for every (z,t) € (0,00) x (to,00), where 8 : (tp,00) — (0,00) is a given
function and ¢ is a weight function of the following form: ¢(z) = /z (z >
0) or p(z) = \/z(1+x) (z > 0) corresponding to the well-known Szész-

Mirakjan operator
2 _a(nx)* [k
Sp ) = E e -

and to the Baskakov operator

 (n+k-1 k
Vn — k 1 —n—k n
ta =3 ("L e (7).
respectively. In what follows we shall denote by L,, the operators S, and V.

Now we can define a new sequence of positive linear integral-type oper-
ator Lt : Cp[0,00) — CJ[0,00) by means of the functions g and G and the
sequence {L,} as follows

Ly(f,2) =

oo

m ’ (S) g(m7t70) : Ln(fve) do
and L% (f,0) = f(0), where the parameter t may be depend only on the
natural number n, n € N:={1,2,...}.

The aim of this paper is to study the global approximation properties
of Lt, establishing direct and converse theorems for Lf using the second
modulus of smoothness of Ditzian - Totik defined by

w3 (f,8) = sup sup  |f(z+ ho(z)) - 2f(2) + f(z — heo(z))]
0<h<8 thep(z)€(0,00)

We need also the following K — functional
Kyu(f,8) = inf  {|f —hll+d8]x*h"|}.

WEAC. 1oe
It is well-known ( see (2], Theorem 2.1.1. ) that
(5) Wi (f,V8) ~ Kop(£,9).

Throughout this paper Cy and C denote absolute constants and not neces-
sarily the same at each occurrence.

The next section contains the formulation of our results and their proofs
will be given in the third section. The last section is devoted to the appli-
cations.

2. Main results
The theorems in question are the following:

THEOREM 1. If f € Cg[0,00), t € (to,00) and n € N then
ILL(F) = £l < Cul(f, (7" + B())'7?).
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COROLLARY 2. Let f € Cpg[0,00) and t = t(n), B(t) < Cn~ !, n e N. Then
@) IL5(f) = fIl < C wi(f,n=1?);
(id) IL5.(f) — fIl < C ILa(f) = £II-

THEOREM 3. Let f € Cg[0,00) and t = t(n), 2CoB(t) < yn~1, n € N, where
Co > 0 is the absolute constant of Lemma below and 0 < v < 1. Then

1= La(F) = £l S NELF) = £l < A+ DILalf) = £

3. Proofs

At first we state the following lemma, which was established in [5], (2.7)
for L, = S, and in [5] for L, =V, respectively:

LEMMA. Let f € Cg[0,00). Then

1
(6) ;IISO"’LZ(f)H < Co [|La(f) = £,
where Cy is an absolute constant and n € N.

Proof of Theorem 1. Let z > 0. By Taylor’s formula we have
0

Ln(f,6) = Ln(f,7) + L,(f,2)(6 — z) + {(6 — v) L,(f,v)dv

T

Hence, in view of (1) and (2), we obtain

oo [}
ILL(f,2) = La(f,2) =| o - | 9(2,8,6) { (0 = v) L(f, v)dv } do
G(z,t

(7)

I/\

— W)L (f,v)dv ’ do

—'Ul 27y
< 5D 5 | 8- 1PN

Using [2], (9.6.1) and (9.6.2) we obtain

(
0-v, | 0-2)° _
Sdv |< ) e =VE
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Hence, by (7) and (3) we have

2@ G@)
< B - e Lu(Hll

for L, = S, and, in view of (7), (3) and (4), we have

I Lu(Hl 1 T

®) |Ln(f,2) — La(f,2)| <

lL’fl(f7I) - Ln(fy :B)l < ('02(1‘) G(:L‘,t) (S) g(I7ta 0) ) (9 - I)z do
9 211 o
? 0

< 280)N*Lu ()l

for L, = V,,, respectively. In conclusion, from (8), (9) and L% (f,0) = f(0)
we get

(10) IZ5(f) = La(HI < 26() l®Lu(H)I-
Furthermore, L, is a bounded operator. Indeed, by (1) and [2], (9.3.4) we
have

1 oo

Lol < G (S)g(z,t,e)u:n(f, 0)ld0 < | La(H)Il < IIf,

(11) ILL (O < Bl

Now, let h € Cg[0, 00) such that ¢*h” € Cg[0,00). Then, by (10) and
[2], (9.3.7) we have

IL7, () = kIl < CB®)Ie*R" .
Hence, in view of (11) and [2], (9.3.4), we get
(12)  1Lo(f) = La(OI S WLL(F = B) = La(f = W) + | Ln(R) — Ln(B)]]
<2||f =kl + CB®)l*R"|
< C{IIf = hll + BB le*h" 1}

Because

ILn(f) = I S C - wi(f,n7*?)
( see [2], (9.3.1) ), we get, by (5) and definition of K3 ,(f,n!) that

(13) I2ar) = <O {1f Al + =l }.
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Then (12) and (13) imply
IL5(f) = FIl < LR () = La (DI + ILa(f) = £

<c{ir-nl+ (s0)+ 1) 1o}
or
I - Al <€ Kay (1,2 +50)).
Using again (5), we get the assertion of the theorem.

Proof of Corollary 2. (¢) It is a direct consequence of Theorem 1.
(¢2) It follows from (i) and ||Ln(f) — f|l ~ w2(/, n~1/2) ( see [5], Theorem
1.2 and Theorem 3.2 ).

Proof of Theorem 3. Using (10) and (6), we obtain
ILn(£) = I S VLR () = £+ 1L (F) = Ln(H)]

< IZa(f) = £l + 280l L (Al
<NLL(f) = £l +2B(t) - Conl|La(f) = £l
< NLR(S) = FI+ALn(f) = FII-

Thus

(14) @ =NILa(f) = Il < NLR(f) = fII-

In similar way we obtain

(15) L5 (f) = FIl < @+ DILa(f) = £II-

Then (14) and (15) complete the proof of the theorem.

REMARK. Under the assumptions of Theorem 3 we have
-1 2 —1/2 t 2 -1/2
CTS(f,n ™) S ILL(S) ~ FIl < Cwi(f,n713).

4. Applications
1) The generalized Szdsz-Mirakjan operator has the form

S(f.7) = (1+%)_m'i <1+%>—k_tm(tx+1)..k.!(t:c+k—1)_f (E)

n
k=0

where f € Cp[0,00), z > 0 and ¢t > 0. For ¢t = 1/, o > 0 we receive back
the operator considered in [3]. We have, by [3], Theorem 2.8: Si(f,z) =
Gi(Sn(f), z), where

Gi(f,z) = F(%S . S e bgt=—1y (g) dé, >0, t>0
o]
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is a Gamma-type operator. Here g(z,t,6) = e™*%6**~1, § > 0 and

ttx oo

—tfptx—1
. 0 -0df =
T(tz) (S) ¢ ©

T _topte-t 2 z

. =1 (g _ 2)2d9 = =

T(tz) (S) e (6-2) £
t= T . df T
. —thgte—l (g _ )2 —_dp < =,
T(tz) (S)e 0= %=y

Therefore we can consider 3(t) = 1/t and p(z) = y/z. Now we can establish
the following results:

IS5(f) = FIl < C Wi(f, (™! +t71)H?);

L= DNSa(f) = FI S ISR = £l < A+ NS (f) = £l
if t=1t(n) andZCo-%-n§7<1, n €N,

2) Furthermore, we can consider the following new integral-type operator

~ 1 T 6 -
t _ R —0 pgtz—1 z t —
i) = Ty § ™ 91V, (f, t) d9,  8.(f,0)=f(0),
where f € Cp[0,00), z > 0 and t > 0. Hence we have

oo

- | e7®6 1V, (1, 6)d6.
0

tx

[(tz)

S.(f,z) =

Thus g(z,t,8) = e *%6'*~1 6 > 0 and G(z,t) = t**I'(tz). Using the same
computations as in the first case, we get

A Ty
. 1. 0df =
T(t2) (SJ e "8 T,
T _ioptet 2 z _z(l+7)
. 9 f—z)*dd=-<
T(tz) (S) ¢ (6 -=) t =" ¢t
tte T . db z
. —thgte—1 (g __ 2. <z
T(tz) (S)e O-2)" 353

So we have 8(t) = 1/t and ¢(x) = 1/z(1 + ). The results are the following:
”‘g'fl(f) - f” < wa,(f, (n_l + t—1)1/2);
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A= DIValf) = FI < WSLE) = Fl < A+ NIVRlF) = £l
if t=t(n) andQCo-%-nS’y<1, neN.

3) The generalized Baskakov operator is defined by

)= gvn,k(m,t)f (£).

where f € Cg[0,00), z >0, t > 1 and
n+k—1\ Ttz +0) T (t+7)
Un k(z,t) = . —y .
k [[Zit(z+1)+7)

The origin of this operator can be found in [4]. Obviously V!(f,0) = f(0).
Let

9tz 1

* — 1 T
T (f,x) = B(tz,t+ 1) (S) (1 + g)t=+t+1 - f(6)do
(se

be the modified inverse beta operator ( see [1] ). Because f € Cg[0,00) we

have ( see also [4], Theorem 2 ):

V=S <n+:—1)'Hfl:ll(tx+i)l—[’?_0(t+j) oy (%)

poard iz +1)+7)

() B ()

B(tz+k,t+n+1) k
B(tz,t+1) 'f(ﬁ>

st _ te+k—1

k (1+9)t(z+1)+n+k+1 n
at:z—l
(1 + 9)tz+t+1

s’ N

T Bltz,t+1) Valf,6)d6

=T (Va(f), 2)-

Therefore
etz—l
and

St tr—1
! 3 4 .6d0 = z,
0

B(tz,t+ 1) (1 + g)t=+t+1
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1 [os} gtz—l ) ;1;(]_ + I)
B(tﬂ:,t + 1) ‘ (SJ (1 + 9)t1+t+1 ) (0 - .’L‘) dg = ﬁ,
1 OSO gtz—1 (- )2._§_9___
B(tz,t+1) 5 (1 4 §)t=+t+1 z)" i
zl+z) _ & (t-D(+2) _ @

Ttl+z)+1 t-1 tl+z)+1 " t-1

for every (z,t) € (0,00) x (1,00). Hence B(t) = 1/(t — 1) and ¢(z) =
v (1 + z). Thus we have the following results :

IVa() = Il S C wi(fy (n™h + (¢ = 1)"HY?);

A =NValf) = FI S IWVa(H) = FI < A+ DIVR(S) = £
if t=1t(n)and 0 < 2C; -

t_l-n§7<1,n€N.

4) Finally, let us consider the following operators: U, : Cg[0,00) —
Cpl0,00),

Upk(£,0)=f(0) and Upo=Ls,

e o]

-\ g(z,t,0)UL . (£,6)d6,
0

U'rtl,k+1(fa I) = G(l‘, t)

where k > 0 is an integer. Then we have the next theorem.

THEOREM 4. If f € Cg[0,00) and t € (tg, 00) then

@) |UR () = £l € C w3 (f, (71 + B)Y?), k20 andneN;

(#0) U5 k(f) — Il < C | Ln(f) = £l

when t = t(n) and B(t) < Cn"l,neN k>0

(#68) (L= (k +2NDIUS o (f) = fIl £ (1 = (k + DN o1 () = £l <

A =k & (F) = 7

when t = t(n), 2CoB(t) < yn !, n € Nand 0 < v < 1/(ko + 2), ko € N,
ke{l,2,... ko).

Proof. (i) At first of all, let us observe that (11) and the definition of Ul .
imply, by induction, that

(16) 1Un e (D < 111
Furthermore, let x > 0 and f € Cg[0,00). Then, in view of (1), (16),
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Theorem 1 and || L,(f) — f|| Nwi(f n~1/2), we obtain

U1 (f2) = F(@)] = 5 |

G | ) 960 [(La(f,0) - £(0))

)
~(Ln(f,0) = £(0)) + (Ln(/f,6) — f(2))] dO

G(z,t) (SJ g(z, t,0){|L.(f,0) — f(6)| + |Ln(f,6)

— f(0)|}d0 + |LL(f,z) — f(2)]
< 2|LL(f) = fll + I La(f) — £l
< C{wi(f, (n ‘1+ﬁ( )2 + w2 (f,n "2}

< Cw(f, (07 + B())Y?).

Thus

101 (F) = £l € Cwi(f, (n™" + B(E)Y?).
The general case can be obtained by induction in the same manner using
the idea of the above estimate, where U} ; and L}, are replaced by U} ; |,
and U} ,, respectively.
(i7) It is a direct consequence of (i), B(t) < Cn~! and ||[L.(f) — f]| ~
w(fyn~12).
(¢i2) It will be proved by mathematical induction. In view of (1) and (10)
we get

U21(F,2) = Ubolf )| < s - | 9(2,6,0) - [L4(7,6) — Lo(7,60)1d0
0

S NLA) = La( DIl < 280 0Ly (5.
Using (6) we obtain

1Uno(f) = FIL < UG 1 (F) = £+ U7 1 () = Un o (D)l
< Uz A(F) = fIl+28(t) ConllLa(f) ~ £l
< NUpa(f) = FIl + AL () = £1I.
But Theorem 3 implies that

1Uso(H) = SIS UL () = Fl+ 12 - W) = 1)

= 1052 (0) = £+ 72 1) = S
Thus
(1= 2T o(F) = Il < (L = NIVE 1 (£) = F1I-
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In similar way we obtain
Q=) Uz 2 (F) = FI S WUz () = fII-
In conclusion
(1=27) U o(f) = £l < A =Mz 1 (F) = £ < Uz o(f) = fI-

Furthermore, we shall suppose that (73:) is true for 1,2, ..., k. Then, by (1)
we have

oo

U 1 (2) = U (£:9)|< g J0(@t0) WLp(£0) = Ul s (10l

SIIUi,k(f) U ket (DI SNLL () = La(H)-
Hence, by (10) and (6) we obtain
1Un k1 (F) =T k(DI < 26010 L7 (5] < 268(8)Conl|La(f) — £
<AL (F) = fII-
Using Theorem 3 and the hypothesis of induction we get

(17) ||U;,k+1<f)—vz,k<f)us%-uvz,o(f)—fn

1
31—7—7 1—_—2% UL (F) = FII<..
0% 11—~ 1—kvy
<To 7-1 CRR wa e o NUL () =1
m UL £ (F)— fIl-
So
W% () = £l S WUF kir (F) = SN+ UL i (F) = Uy k(DI
< Up g1 (f) ~ f”+__(k+—1)_ NU% & () = £,
i.e.

(1= (k+2MIUZ k() = £l < (1 = (B + DNNUR et (F) = £
The another inequality follows from (17):
1Us ki1 (F) = FI S WUZ ke (F) = FI 4+ 11Uz 1 (F) = Un (D

S||Uﬁ,k(f)—f||+——(k+—1)— UL & (F) = £l
1-

—W U5 () = £,
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ie.

(1~ b+ DNz k1 (F) ~ FIl < @ = ENUL () = £,
which was to be proved.
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