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AN ESTIMATE OF THE RATE OF CONVERGENCE OF A
BEZIER VARIANT OF THE BASKAKOV-KANTOROVICH
OPERATORS FOR BOUNDED VARIATION FUNCTIONS

Abstract. In the present paper we introduce a Bézier variant of the Baskakov-
Kantorovich operators and study the rate of convergence for functions of bounded
variation. Furthermore, we present the complete asymptotic expansion for the Baskakov—
Kantorovich operators.

1. Introduction

Let W (0, 00) be the class of functions f which are locally integrable on
(0, 00) and are of polynomial growth as t — o0, i.e., for some positive r, there
holds f (t) = O (t") as t — 0o. The Kantorovich variant V) of the Baskakov
operators [3, Eq. (9.2.3), p. 115] associates to each function f € W (0, c0)

the series
oo

1) Vilfiz)=n) w(e) | ft)dt, «€[0,00),
k=0

I,
where Iy, = [k/n, (k + 1) /n] and

nk (T) = (n +: Bl 1) 8 (1 +2)™"F.

The operators V,* result from the ordinary Baskakov operators V,, given by

Va(fiz) = go wni@) 1 (2) z € [0,00)

n
by replacing f (%) by §;, f(t) dt in order to approximate integrable func-
tions.
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In the present paper we introduce the Bézier variants of the operators
(1). For each function f € W (0,00) and & > 1, we introduce the Bézier
type Baskakov-Kantorovich operators V!, as

@ Via(fin) =n3 Q% @) | £(1) d,
k=0

I
where
QLY (x) = J&k (2) = J2kss (2)
and

Jnk(z) = z Un,j ()
=k

is the Baskakov—Bézier basis function. It is obvious that V,;', are positive
linear operators and V7, (1;z) = 1. In the special case a = 1, the operators
V,; o reduce to the operators V;; = V;*,. Some basic properties of J,, x are as

follows:

() Tk (@) = Jnpr1 (@) = v (@) (k=0,1,2,...);

(i) Jpp(z) = nvprik-1(z)  (B=1,2,3,...);

(iii) Jnpk(z) = n G vny1,k—1(t) dt (k=1,2,3,...);

(iv) 0< ... < Jppti1(x) < Jni(z) < ... < Jpni(z) < Jnp(x)
(z > 0);

(v) Jn is strictly increasing on [0, 00).

1l
_

Rates of convergence on functions of bounded variation, for different
Bézier type operators, were studied in several papers, e.g., [7], [8], [9]. In the
present paper we estimate the rate of convergence by the Bézier-Baskakov—
Kantorovich operators (2).

Furthermore, we find the limit of the sequence V;;,(f;z) for bounded
locally integrable functions f having a discontinuity of the first kind in
z € (0,00).

The last section presents the complete asymptotic expansion for the
Baskakov-Kantorovich operators (1).

2. The main results

As main result we derive the following estimate on the rate of conver-
gence.

THEOREM 1. Assume that f € W (0,00) is a function of bounded variation
on every finite subinterval of (0,00). Furthermore, let a > 1, z € (0, 00) and
A > 1 be given. Then, for each r € N, there ezists a constant M (f, a,r, x),
such that, for sufficiently large n, the Bézier type Baskakov-Kantorovich
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operators V', satisfy the estimate

®) Vialfio) = et @)+ (1- ) 1 @)
< 201)\ 1+ z) i I+<7/_
k=15_z/vVE
+ 7‘3‘2—971_:"” £ @) - f (@) + LL2RI)
where

FO)-fle=) (0<t<a),
(4) 9 (t) = 0 (t=12),

F#®)=fz+)  (z<t<oo),
and \/® (gz) is the total variation of g, on [a,b].

REMARK 1. The exponent r in the last term of Eq. (3) can be chosen arbi-
trary large.

As an immediate consequence of Theorem 1 we obtain in the special case
a = 1 the following estimate.

COROLLARY 2. Under the assumptions of Theorem 1 the following estimate,
for sufficiently large n,

.’L‘ I I+I/\/_
Vi) -3 1 (@) + f ()] < 2EEDHE S
k=1,_ I/\/—
R ) - f(z—>1+Lnl;’ﬂ,

holds, where g, is as defined in Theorem 1.

We mention that Aniol {2, Theorem 1] studied Kantorovich-type opera-
tors from a more general point of view. In the case of the operators V,; she
used the crucial estimate (see [2, page 13])

[V, (sign ();2)] < 10 (82% + 52+ 1) /y/nz (1 + 2)°,
while our Eq. (11) yields, for a =1,
V2 (sign, (t);2)| < 74/ (1 + ) / (nz).
THEOREM 3. Let z € (0,00). If f € L(0,00) has a discontinuity of the first
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kind in z, then we have

. —_ 1 1
nlLI{}o Vn,a(f)‘z‘) = 2_af (ZL‘-{'-) + (1 - '271') f (l‘_) .
3. Auxiliary results

In order to prove our main result we shall need the following lemmas.
Throughout the paper let e, denote the monomialse,(t) =t" (r =0,1,2,...)
and, for each real z, put ¢, (t) =t — z.

LEMMA 4 ([10, Lemma 1}). For all z > 0 and n,k € N, is satisfied the
inequality

142z

2enz’

fo’;z (z) L a v (2) <
By direct calculation (cf. Lemma 9) we find

Viesz) =1, Vienz) =g+,

2n
1
1+z) 1
V* 2. — 1‘( .
n(d}z’x) + 3n2

REMARK 2. Note that, given any A > 1 and any = > 0, for all n sufficiently
large, we have the estimate

V(2 x)

As we shall show in the last section (Lemma 10 and Remark 4), for
each fixed z € [0,00) and s € Ny, the central moments V*(¢2;z) of the
Baskakov—Kantorovich operators (1) satisfy

(5) ViWiiz) =0 (n eV (n— oo).

Az (1
etz
n

Throughout the paper let

Kna(z,t) =1y Q1) (2) Xnk (8),
k=0
where x, , denotes the characteristic function of the interval [k/n, (k+1)/n]
with respect to [0, 00). With this definition, for each function f € W (0, c0),
we have for all sufficiently large n, the relation

oo

(6) V;,a(f;z) = S Kn,a (Ivt) f(t) dt.

0
Furthermore, put



A Bézier variant of the Baskakov-Kantorovich operators 127

Y

(7) Ana (Z,Y) = SKn,a (z,t) dt.
0
Note that, in particular,
An o (z,00) = S Kno(z,u) du=1.
0

LEMMA 5. Let z € (0,00). For each A > 1, and for all sufficiently large n,
we have,

Y
B Ma@y) = [Knal@t) < 220D gy g,
0 n(z—y)
and
T Aaz (1 + x)
(9) 1—)\n,a(:r,z)=SKn,a(x,t) dt < ————~ (z < z<00).
z n(z—zx)
Proof. We first prove Eq. (8). Notice that
y y 2
[ Kno (z,1) dt < | Kna (z,1) (z t)2 dt
0 0 (z-y)

< (z—y) Vi ¥3i2) < a(e —y) 2V (93 2),
where we applied Lemma 4. Now Eq. (8) is a consequence of Remark 2. The
proof of Eq. (9) is similar. m

LEMMA 6 ([10, Lemma 5]). For all z € (0,00), the inequality

3V1+z
E vk (z) —1/2[ < N
k>nzx

holds.

4. Proof of the main results

Proof of Theorem 1. Our starting point is the identity

F)= gl @h+ (1= 55) Fle) + [ 1)

sign, (¢)

b+ 50| @)~ 52l @) - (1= 55) £ @)
where
2 1 (¢t > 1),
sign, (t) = 0 (t=ux),
-1 (t < x),

6z (t) =1 (t =) and 4. (t) = 0 (¢ # z). Since V7 ,(0z;z) = 0, we conclude
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(10)

Vialfio) = |gaf a)+ (1= 55 ) 1 o)

< 5o (@) = £ @) [Vialsign, (1):)| + |Vialoei )]

First, we estimate V,(sign; (t);z) as follows. Choose k' such that
z € [k'/n, (k' + 1) /n). Hence,
k-1

Vi a(signg (8);2) = 3 (-1)Q%)(2) + nQL% (x)
k=0
z (K'+1)/n
x(§(-ndt+ | (@ -1ad)
k'/n z
+ Y @ -1 x)
k=k'+1
(k'+1)/n
— oo Z Q@) +nQL(x) | 27t -1,
k=k'+1 T

since 3729 lea]) (z) = 1. Noting that

(kK'+1)/n
0<nQ () | 2vdt <2°Q%) ()

z

we conclude that
A a(sign,(t); T)| < ‘2"‘ Z Q k(m 1] +2¢ an,( )
k=k'+1

= [2%J 5 g (2t) — 1] + 2% an/( z).
Application of the inequality |a® —b%| < ala—b|, for 0 < a,b < 1, and
a > 1, yields

227841 (2) = 1| < 2% [T (2) = 1/2|

[e ]
=02%| > wvak(z)—1/2| =02 vai(z) —1/2].
k=k'+1 k>nzx

Therefore, by Lemma 6 and Lemma 4, we obtain

WBVI+z oItz Ta-22YW1+z
(1) |V (51gn t);z)| < a2 +2 < .
Vnx V2enz Vnx

In order to complete the proof of the theorem we need an estimate of
Vi al(gz;z). We use the integral representation (6) and decompose [0, o)
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into three parts as follows
z~z/V/n  z+z/vn 0o
(12) Vi =( | + | + | )Knalzt)ga(t)dt
0 z—z/v/n  ztz/n
=1 + I + I3, say.

We start with I. For ¢t € [z — z/y/n, z + z//n], we have

vt/ VR
|9z (V)] £ V (9z)
—
and thus
:c+z/\/_ n z+x/\/—
(13) Ll< \/ Z V o«
z—a:/\/_ k—la: :r/\/_

Next we estimate I;. Put y = z — z/+/n. Using integration by parts with
Eq. (7) we have

L= ng (t) dedna (2,1) = gz (Y) Anja (2, 9) — S Ana(Z,t) dige ().
0 0

Since |9z (y)| = |9z (¥) — 9= (z)| < Vy (9z), we conclude that

T

y

1<V (3) Ana@9)+ a8 d =V (02)).

y 0 ¢

Since y = z — z/\/n < z, Eq. (8) of Lemma 5 implies, for each A > 1
and n sufficiently large, that

xT

1< 22030 gy 2 deUEn L V).

n(z—y)? n 5 (z—t)? ¢

Integrating the last term by parts, we obtain

|I1|Sa/\$(# ( _2\/(91 +2S Vt (gz) dt).

o (@—1)°
Replacing the variable y in the last integral by z — z//n, we get
z—z//n g s n—1 z/\/E T
| V)@= d=3 [ ()t 2d
0 t k=1z//EF12~t

n

1 T
—22 V()
k=1z—z/Vk
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Hence

(14) L] < 2aA(1+2)

N Z v (gm)

Finally, we estimate I3. We put
_ t) (0<t<2q),
oy {0 )
9z(2z) (2z <t < 00),
and divide I3 = I3; + I3o, where

Iy= | Kna(z,t) G:(t)dt  and
z+z/v/n

Isg = | Kna(z,t) (g2 (t) — g (22)] dt.
2z

With y = z + z/4/n the first integral can be written in the form
In= lim {g:(4)[1 = Ana(@y)]+F (R) Pna (@ R) - 1]
—+o00

R
+ § [ = M (2,0)] dige (¥) }.

y
By Eq. (9) of Lemma 5, we conclude, for each A > 1 and n sufficiently great,
that

ae(l+a) | Vi) | 1G@®) T t

Iyl < —— 2 1 = P
o] < n R—I»I—Ikloo{(y—x)Q—F(R—x)?_*—g(t—x (\z/g )

alx T Y (g 2z t
-l e (Ve )|

In a similar way as above we obtain
n— 1$+2/\/_

2Sz 1 dt<\t/(g))<$*2<7(g) Vi (gz) —22 \/
y(t_m)2 : - x : (y )

xT

which implies the estimate

n z+z/VE
20\ (1 + 1) +
(15) [731] £ E: \/ (9) -

Lastly, we estimate I33. By assumption, there exists an integer r, such that
f(t) = O(t¥) as t — oo. Thus, for a certain constant M > 0 depending
only on f,  and r, we have
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|132|San Q%) (2) sxn,k (t) 2 dt

k=0
[e o]
< aMn Z Pnk (T) S Xn k (£) £ dt,
k=0 2z

where we used Lemma 4. Obviously, ¢t > 2z implies that ¢t < 2 (¢ — z) and it
follows that

32| < 27 a MV} (¥27; z).
By Eq. 5, the central moments of the Baskakov-Kantorovich operators (1)
satisfy V*(¥2;z) = O (n™") (n — o0), and we arrive at
(16) I3 =0 (n™") (n — 00).
Collt(ecti)ng the estimates (13), (14), (15), and (16), we obtain with regard to
Eq. (12

n z+z/vVk
YV (g)+0®n™) (n— o).
k=lg_z/VEk

Finally, combining (10), (11), (17), we obtain (3). This completes the
proof of Theorem 1. =m

2 )\ 1
(A7) Vialgeiz)] < 22 ””

Proof of Theorem 3. Since the function 2 given by 92 (t) = (t — )
is of bounded variation on every finite subinterval of [0, 00), we deduce from
Theorem 1 that, for all z € (0, 00),

nh_{Iolo Vr,zk,a( 3; z) =0.

If f € Loo (0,00), then g, defined as in (4) is also bounded and is continuous
at the point z. By the Korovkin theorem, we conclude

T}Lngo Voal9si ) = go (z) = 0.

Therefore, the right-hand side of Inequality (10) tends to zero as n — oo.
This completes the proof of Theorem 3. m

5. Asymptotic expansion for the Baskakov—Kantorovich operators
Throughout this section let the numbers Z (s, k, j) be given by

(18)  Z(s,k,j) = nkﬂgx 1)° ()ﬂf:ﬂj<1—:%0
0<j<k<s).
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The quantities S; and U;'- in Eq. (18) denote the Stirling numbers of the first
resp. second kind. The Stirling numbers are defined by

. J . . . J . .
(19) =" S, o =) ot (j=0,1,...),
i=0 =0

where 2t =z (z ~ 1) --- (x — i + 1), 22 = 1 is the falling factorial.

For ¢ € N and z € (0,00), let K[g;z] be the class of all functions f €
L (0, 00) which are ¢ times differentiable at z. The following theorem is
the main result of this section.

THEOREM 7. Let ¢ € N and = € (0,00). For each function f € K[2q;z], the
Baskakov-Kantorovich operators possess the asymptotic expansion

() (¢ .
(200 Vi(fizx)= +Zn‘ka )ZzS"Z(s,k,mo(n“’)
s= ! j=0

(n = o),
where the numbers Z (s, k, j) are as defined by Eq. (18).
REMARK 3. For the convenience of the reader, we give the series explicitly,
for ¢ = 3:
Vi(fio) = f @)+ LEEE0A D )
Af® (z) + 22 (1 + ) (5 + 42) £ (2) + 322 (1 + 2)° /@ ()
24n?

+ g7 (279 @) + 22 (1 +.2) (54 100 + 67) 10 (2)

+22 (1+2)” (7+82) fO (2) + 2° 1+ 2)° £O () .

An immediate consequence of Theorem 7 is the following Voronovskaja—
type formula.

COROLLARY 8. Let z € (0,00). For each function f € K[2;z], the operators
V. satisfy

. . 1
(21) Aim n (Vi(fi2) = f (@) = 5 (f (@) + 2 (1+2) [ (2)) .
The proof of Theorem 7 is based on the following lemmas.

LEMMA 9. The moments of the Baskakov—Kantorovich operators possess the
representation

— k T r+1— J r—1q
Vi(er;z) = Zn kz( )kt g7 frilj(l_r+1)x J
(r=0,1,2,...).
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Proof of Lemma 9. By direct calculation, we have

—r 00
* R _n r+1 _ gr+l
Vn(er,z)—r+llg)vn,k (z) ((k+1) k )
Taking advantage of the second identity of (19), we obtain
T+1 ) ) T
(k+ 1 =K = 3ol ((R+ D2 k) = 3 G+ D olfik
7=0 j=0
which yields
nTT
V,:(e,.;:r)zr_*_l ]+1 zi}Zvnk ki
J=
n=’ i i+1 :
RS Z(j+1)05+1 (n+7j—1)22?
7=0

Using the identity

(n+3j—DI= (-1 (=n)l = (-1 }_ SF (-n)*

we conclude that

. k— e k_j+1
Valeriz) = Z - Z 7 +1)Sjol e
T+ 1 ] A

. 1 —k k+] . k r—j+1_r—
_r+12 Z ]+1)ST—J r+1 T d

which completes the proof of Lemma 9. m
LEMMA 10. For s = 0,1,2,..., the central moments of the Baskakov-Kan-
torovich operators possess the representation

s k

Visa)= > nFY 29Z(s,k,j),

k=[(s+1)/2] j=0
where the numbers Z (s, k, j) are as defined in Eq. (18).

REMARK 4. An immediate consequence of Lemma 10 is that, for s = 0,1,
2,...,

V(s z)=0 <n_L(s+1)/2J) (n — 00).

Proof of Lemma 10. Application of the binomial formula yields for the
central moments
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Viwsa) =Y () (—2)* Vil (er; @)

r=0

e o (i)
= Z nk sz_jZ (s,k,7) -
k=0  j=0

It remains to prove that V(¢2;z2) = O (n‘t(s+1)/ 2J). It is sufficient to show
that, for 0 < j < k, there holds Z (s, k,j) = 0 if 2k < s.

Before we recall some known facts about Stirling numbers which will be
useful in the sequel. The Stirling numbers of first resp. second kind possess
the representation

k
r—k _ r—k _ = r
(22) 57 E Ch - y(kﬁ_ ) o, _,E£C%k_y(k4‘V>

n=0
(k=0,...,1),

where Crx = Crx = 0, for k > 1 (see [4, p.151, Eq. (5), resp. p. 171, Eq.
(7)]). The coefficients Cj ; resp. Ci ; are independent of r and satisfy certain
partial difference equations ([4, p. 150]). Some closed expressions for Cy ;
and Cy; can be found in [1, p. 113]. We first consider the case j > 1. Taking
advantage of representation (22) we obtain, for 1 < j <k,

. J
T r+1— -7 — 7‘+1
syohort] J—zck_J, SO PAS DoL (he)

prs Jtu Jtv
k —J
—ZZ (r+ DML P (k, j, p,v57),
p=0r=1

where

Ck— J,kjuéj,j—v Y e W AY"
P(k j,y,,l/ T) (k—]-}-,u) (]-l—l/)' (T .7) (T k)"’

is a polynomial in the variable r of degree < pu + v — 1. Thus, we conclude

Z(.S’k] 1) _JZZZ ()k(’r-{—l—j)P(k‘,j”u,l/,T‘)

p=0v=1r=k

k-3 j s—k _
=173 5.3 1)”( k)<r+k+1—j>

pu=0v=1r=0
x P(k,j,pu,v;r+k).
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Since (r + k +1—j) P(k, j, p,v;7 + k) is a polynomial in the variable r of
degree < p + v < k, the inner sum vanishes if k < s — k, i.e., if 2k < s.
In the case j = 0, we have

Z(5k,0) = (-1 Y (-1 <> s
r=k

s k
—1)* Z (=1)*" (i) Z Ch k—p (k _T_ #)
= (-1 kZ (];'k:uulz o k—r<S;k>r&

which vanishes if k < s — k , i.e., if 2k < s. This completes the proof of
Lemma 10.

In order to derive as our main result the complete asymptotic expansion
of the operators V) we use a general approximation theorem for positive
linear operators due to Sikkema [5, Theorem 3] (cf. [6, Theorems 1 and 2]).

LEMMA 11. Let I be an interval. Forq € N and fizedx € I, let A, : Loo(I) —
C(I) be a sequence of positive linear operators with the property
(23)  An(¥3z) =0 ) (no00)  (s=0,1,...,20+2).

Then, we have for each f € Loo(I) which is 2q times differentiable at = the
asymptotic relation

L @) s -
(24) An(fiz) = Z . Ap(V3;z) +0o(n” )  (n— o00).

s=0 )
If, in addition, f(2‘I+2)(:c) exists, the term o(n™?) in (24) can be replaced by
O(n"(q'*‘l)).

Proof of Theorem 7. By Remark 4, assumption (23) in Lemma 11
is valid for the operators V,*. Therefore, we can apply Lemma 11 and the
assertion of Theorem 7 follows after some calculations by Lemma 10. =
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