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A N E S T I M A T E OF T H E R A T E OF C O N V E R G E N C E OF A 
B E Z I E R V A R I A N T OF T H E B A S K A K O V - K A N T O R O V I C H 
O P E R A T O R S F O R B O U N D E D V A R I A T I O N F U N C T I O N S 

Abs t rac t . In the present paper we introduce a Bézier variant of the Baskakov-
Kantorovich operators and study the rate of convergence for functions of bounded 
variation. Furthermore, we present the complete asymptotic expansion for the Baskakov-
Kantorovich operators. 

1. Introduction 
Let W (0, oo) be the class of functions / which are locally integrable on 

(0, oo) and are of polynomial growth as t —> oo, i.e., for some positive r, there 
holds f (t) — O (t r) as t —> oo. The Kantorovich variant V* of the Baskakov 
operators [3, Eq. (9.2.3), p. 115] associates to each function / € W (0, oo) 
the series 

oo 
( 1 ) V : ( f - x ) = n J 2 v n , k ( x ) \ f ( t ) d t , x € [0, o o ) , 

k=0 Ik 

where Ik = [k/n, (k + 1) /n] and 

The operators V* result from the ordinary Baskakov operators Vn given by 
oo 

V n ( f ] x ) = Y^Vn,k ( z ) / 
k=0 

by replacing / by \lk f (t) dt in order to approximate integrable func-
tions. 
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n 
X € [0, oo) 
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In the present paper we introduce the Bézier variants of the operators 
(1). For each function / € W (0, oo) and a > 1, we introduce the Bézier 
type Baskakov-Kantorovich operators V*a as 

oo 

(2) = \f(t)dt, 
k=o ik 

where 

(*) = J°k (x) - J«k+1 (x) 
and 

oo 

Jn,k (x) = Vn>j 
j=k 

is the Baskakov-Bézier basis function. It is obvious that V*a are positive 
linear operators and V*a(\\x) = 1. In the special case a = 1, the operators 
V*a reduce to the operators V* = V* v Some basic properties of Jn¿ are as 
follows: 

(i) Jn,k (x) - Jn,k+1 (z ) = vn,k (x) (k = 0,1, 2, . . . ) ; 
(ii) J'n,k(x) = nvn+l,k—l(x) (k = 1, 2,3,...); 

(iii) Jn%k{x) =n\l v„+i ,fc_i(i) dt (k = 1,2,3,...); 
(iv) 0 < . . . < Jn¡k+i(x) < Jn¡k(x) < . . . < Jn,l{x) < Jn,o(x) = 1 

(x > 0); 
( v ) Jn,k is strictly increasing on [0, oo). 

Rates of convergence on functions of bounded variation, for different 
Bézier type operators, were studied in several papers, e.g., [7], [8], [9]. In the 
present paper we estimate the rate of convergence by the Bézier-Baskakov-
Kantorovich operators (2). 

Furthermore, we find the limit of the sequence V*a(f\x) for bounded 
locally integrable functions / having a discontinuity of the first kind in 
x E (0, oo). 

The last section presents the complete asymptotic expansion for the 
Baskakov-Kantorovich operators (1). 

2. The main results 
As main result we derive the following estimate on the rate of conver-

gence. 

THEOREM 1. Assume that / € W (0, oo) is a function of bounded variation 

on every finite subinterval of (0, oo). Furthermore, let a > 1, x € (0, oo) and 

A > 1 be given. Then, for each r € N, there exists a constant M (/, a, r, x), 
such that, for sufficiently large n, the Bézier type Baskakov-Kantorovich 
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operators V*a satisfy the estimate 

(3) 

ra ' v 
fc=l, -x/Vk 

where 

(4) (t) = 

/ ( * ) - / (0 < i < x), 

0 (t = x), 

I / ( t ) - / ( s + ) ( x < t < o o ) , 

and Va (ffz) total variation of gx on [a, 6]. 

REMARK 1. The exponent r in the last term of Eq. (3) can be chosen arbi-
trary large. 

As an immediate consequence of Theorem 1 we obtain in the special case 
a — 1 the following estimate. 

COROLLARY 2. Under the assumptions of Theorem 1 the following estimate, 
for sufficiently large n, 

v : ( f - , x ) - - \ f ( x + ) + f ( x - ) ] 
OU1 n x + x 

<2A(1 + x) + x E V (9*) nx * v k=1, -xj\fk 

J - ^ S i 1/ (*+) - f (i-)j + MALICA, 
n' 2 yjnx 

holds, where gx is as defined in Theorem 1. 

We mention that Aniol [2, Theorem 1] studied Kantorovich-type opera-
tors from a more general point of view. In the case of the operators V* she 
used the crucial estimate (see [2, page 13]) 

| ( B i g a , ( * ) ; ®)| < 10 ( 8 x 2 + 5x + l ) /\Jnx(l + x)3, 

while our Eq. (11) yields, for a = 1, 

I^T( s ign i (t) < 7 ^ / ( 1 + x ) / ( n x ) . 

THEOREM 3. Let x € (0, oo). If f € L (0, oo) has a discontinuity of the first 
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kind in x, then we have 

K M - , * ) = ( * + ) + ( i - ¿ ) / ( * - ) • 

3. Auxiliary results 
In order to prove our main result we shall need the following lemmas. 

Throughout the paper let er denote the monomials er(t) = tr (r = 0 , 1 , 2 , . . . ) 
and, for each real x, put ipx (t) = t — x. 

LEMMA 4 ([10, Lemma 1]). For all x > 0 and n,k € N, is satisfied the 

inequality 

( 1 /I•V x 
QKni ( x ) < a ( x ) < ayj 

By direct calculation (cf. Lemma 9) we find 

yn*(e 0 ;x) = l , V*(ei;x) = x + 

R E M A R K 2. Note that, given any A > 1 and any x > 0 , for all n sufficiently 
large, we have the estimate 

As we shall show in the last section (Lemma 10 and Remark 4), for 
each fixed x G [0, oo) and s 6 No, the central moments V*(ip^.;x) of the 
Baskakov-Kantorovich operators (1) satisfy 

(5) V : { r x , x ) = o ( n - ^ ) / i J ) (n —> oo). 

Throughout the paper let 
oo 

Kn,a (x, t) = nJ2 Q{nl ( x ) Xn,fc (t) , 
k=0 

where Xn,k denotes the characteristic function of the interval [k/n, (k + l ) /n] 
with respect to [0, oo). With this definition, for each function / 6 W (0, oo), 
we have for all sufficiently large n, the relation 

oo 
(6) V : > Q ( / ; x ) = \ K n , a ( x , t ) f ( t ) d t . 

o 
Furthermore, put 
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y 
An,a (x, y) = 5 Knta (X, t) dt. 

0 

127 

Note that, in particular, 
oo 

Anta (X, oo) = J KntOC ( x , u) du = 1. 
0 

LEMMA 5. Let x £ (0, oo). For each A > and for all sufficiently large n, 
we have, 

r Xax (1 + x) 
(8 ) A„,Q (X, y) = \ KntCt ( x , t) dt < — 

o n{x-y) 
and 

« ^ / \ ' r ' , , , . , Aax( l + x) 
(9) 1 - A„,Q (X, Z) = Kn,a (x, t) dt < —^ 

^ n ( z - x ) 

P r o o f . We first prove Eq. (8). Notice that 

(0 < y < x), 

(x < z < oo). 

y y (x-1Ì2 

\ Kn (x, t) dt<\ Kn,a (x, t) y ^ 
o o (,x — y) 

dt 

< (x - y ) " 2 x) < a (x - y)" 2 * ) , 

where we applied Lemma 4. Now Eq. (8) is a consequence of Remark 2. The 
proof of Eq. (9) is similar. • 

LEMMA 6 ([10, Lemma 5]). For all x G (0, oo), the inequality 

3 v T + x 
£ vnyk ( x ) - 1/2 

k>nx 
< 

nx 

holds. 

4. Proof of the main results 

P r o o f of T h e o r e m 1. Our starting point is the identity 

/ (t) = (x+) + ( l - 1 ) f ( x - ) + / ( g + ) - / ( ' " ) signx (t) 

+ 9x (t) + Sx (t) 

where 
2 Q — 1 (t>x), 

siSnx(i) = S 0 (t = x), 

-1 (t < x), 

Sx (t) = 1 (t = x) and <5X (t) = 0 (t / x). Since x) = 0, we conclude 
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(10) 

First, we estimate V^Q(signx ( i ) ; x) as follows. Choose k' such that 
x e [k'/n, (k' + 1) /n). Hence, 

fc'-i 

E 
k=0 

^ ( s i g n ^ j x ) = £ ( - ! ) < ? $ ( * ) + nQ^l(x) l(a) 

x (fc'+l)/n 
x ( 5 ( - l ) d t + \ (2Q - 1 )dt) 

k'/n x 

+ E 
fc=fc'+l 

(fc'+l)/n 

= 2° E + ! 2adi — 1, 

fc=fc'+l a: 

since 0 QnJ(* ) = L Noting that 
(fe'+l)/n 

0 < n Q j i ( x ) J ^ d i ^ Q i f i O * ) 

we conclude that 

K i a ( s i gn x ( t ) ; x ) |< 2a £ Q ^ ( x ) - 1 + 2a Q ™ ( x ) 
k=k'+1 

Application of the inequality \aa — ba\ < a\a — b\, forO < a, b < 1, and 
a > 1, yields 

2aJZ,k'+i (x) - 1 < « 2 ° |Jn i f c ,+1 ( x ) - 1/21 

= a2a = a2° £ vntk(x) - 1 / 2 

k>nx 

vntk(x)-l/2 

k=k'+1 

Therefore, by Lemma 6 and Lemma 4, we obtain 

(11) |K iQ(signx(i);x)| < a2Q V + 2 " ^ < fnx \/2enx y/nx 

In order to complete the proof of the theorem we need an estimate of 
V*a(gx\x). We use the integral representation (6) and decompose [0, oo) 
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into three parts as follows 
x—x/y/n x+x/^/n oo 

( 1 2 ) Vla(gx-,x) = [ J + J + J )Knia(x,t)gx(t)dt 
0 x—x/^Jn x+x/^Jn 

= h + h + h , say. 

We start with I2. For t £ \x — x/^/n, x + x/y'n], we have 
x+x/y/n 

M « ) l < V (9x) 
x—x/y/n 

and thus 
x+x/y/n 1 n x+x/Vk 

(13) |/2|< V ( f c ) < - E V (sx). 
x-x/y/n k=lx-x/Vk 

Next we estimate I\. Put y = x — x/ y/n. Using integration by parts with 
Eq. (7) we have 

y y 

h = \gx (t) dtXn<a (x, t) = gx (y) Xn<a (x, y) - J A„iQ (x, t) dtgx (t). 
0 0 

Since |gx (y)| = (y) - gx (x)| < (9x), we conclude that 
x y x 

Ih I < V (9x) K , a (x, y) + \ K,a {x, t) dt ( - \J (gx)). 
y 0 t 

Since y — x — x/yjn < x, Eq. (8) of Lemma 5 implies, for each A > 1 
and n sufficiently large, that 

ctAxfl + x) ,x, . . aAx (1 + x) f 1 / Kx. . . \ 
\h\ < f J V (9x + * " 7 - 2 - V Gfe )• 

n ( x - y ) 1 n o (x - ty ^ 1 > 

Integrating the last term by parts, we obtain 

0 0 \x ~ l ) 

Replacing the variable y in the last integral by x — x/^/n, we get 

x-x/V^ X n— 1 x/Vk x 
\ \J{9x){x-t)-z d t = J 2 \ \J{9x)t-*dt 
0 t k=l X/^k+lX-t 

< ¿ 1 : V Ofc)-
k—1 x—x/Vk 
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Hence 

(14) l A i s ^ i l i ^ f v 
nx k=l x—x /Vk 

Finally, we estimate J3. We put 

\gx{2x) (2x < t < 00), 

and divide I3 = /31 + -Ì32, where 
00 

hi = J Kn^a (x, t) gx (t) dt and 
x+x/^/n 
00 

I32 = 5 Kn,a (x, t) [gx (t) - (2i)] dt. 
2x 

With 1/ = x + x/,/n the first integral can be written in the form 

J31 = lim \gx (y) [1 - K,a (x, y)] + <7X (i?) [An,Q (x, - 1] 
it—>+oo ^ 

R 
+ \ [1 - K,a (x, t)] dtgx (t) J. 

y 

By Eq. (9) of Lemma 5, we conclude, for each A > 1 and n sufficiently great, 
that 

. \ / » / ... » , x 

- — a — + i w w * IV̂ 'J/-
In a similar way as above we obtain 

2x t 2x V ( X n - l x + x / V f c 

y \t x) x x {V x) k=1 x 
which implies the estimate 

. r , 2 t t A (1 + X ) NT- X+\f ̂  , \ 15 1/311 < — h — V 0/x • 
U X fc=l x 

Lastly, we estimate By assumption, there exists an integer r, such that 
f (t) = O (t2r) as t —»• 00. Thus, for a certain constant M > 0 depending 
only on / , x and r, we have 
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oo oo 
l/sal £ < ? $ ( * ) \xn,k(t)t2rdt 

k=0 2x 
oo oo 

< OcMn Pn,k (x) 5 Xn,k (t) t2r dt, 
k=0 1x 

where we used Lemma 4. Obviously, t >2x implies that t < 2 (t — x) and it 
follows that 

\I32\<22raMV:(^;x). 

By Eq. 5, the central moments of the Baskakov-Kantorovich operators (1) 
satisfy V*(tjj2r; x) = O ( n - r ) (n —• oo), and we arrive at 

(16) / 3 2 = O ( n _ r ) (n —* oo). 

Collecting the estimates (13), (14), (15), and (16), we obtain with regard to 
Eq. (12) 

( 1 7 ) Ka(gx-,x)\<2a^1 + X) + X Y : V {9*) + 0{n-r) ( n —> oo) . 
m Y 

1x—x/yk 

Finally, combining (10), (11), (17), we obtain (3). This completes the 
proof of Theorem 1. • 

P r o o f of T h e o r e m 3. Since the function given by tp2 {t) = (t — x)2 

is of bounded variation on every finite subinterval of [0, oo), we deduce from 
Theorem 1 that, for all x e (0, oo), 

j i m = 

If / G Loo (0, oo), then gx defined as in (4) is also bounded and is continuous 
at the point x. By the Korovkin theorem, we conclude 

J l ^ o Vn,a(Sx\x) = 9x (x) = 0 . 

Therefore, the right-hand side of Inequality (10) tends to zero as n —> oo. 
This completes the proof of Theorem 3. • 

5. Asymptotic expansion for the Baskakov-Kantorovich operators 
Throughout this section let the numbers Z (s,k,j) be given by 

(18) Z (a, k,j) = (-l)k~1 ± (-1 r r - ^ f i ) 

(0 < j < k < s). 
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The quantities SJ and a i n Eq. (18) denote the Stirling numbers of the first 
resp. second kind. The Stirling numbers are defined by 

(19) xi=j2S)x\ ^ = (j = 0 , 1 , . . . ) , 
i=0 ¿=0 

where xl = x (x — 1) • • • (x — i + 1), x - = 1 is the falling factorial. 
For q € N and x G (0,oo), let K[q\x\ be the class of all functions / £ 

Loo (0, oo) which are q times differentiate at x. The following theorem is 
the main result of this section. 

THEOREM 7. Let q e N and X e (0, oo). For each function f G K[2q; x], the 
Baskakov-Kantorovich operators possess the asymptotic expansion 

q 2k k 

(20) V:(f; x) = f{x) + £ n~k £ J—U £ x'~i Z{s, k, j) + o („"») 
fc=l S=k s' j=0 

(n —> oo), 

where the numbers Z(s,k,j) are as defined by Eq. (18). 

REMARK 3. For the convenience of the reader, we give the series explicitly, 
for q = 3: 

/' (x) + x ( l + x) f"(x) 
Vn*(/;x) = /(x) + 

+ 
In 

4/W (x) + 2x (1 + x) (5 + 4x) fW (x) + 3x2 (1 + x)2 f ^ (x) 
24n2 

+ ¿ 3 (2/(3) (x) + 2x (1 + x) (5 + lOx + 6x 2) f W (x) 

+ x 2 (1 + x)2 (7 + 8x) /(5) (x) + x3 (1 + x)3 /(fi) (x)) . 

An immediate consequence of Theorem 7 is the following Voronovskaja-
type formula. 

COROLLARY 8. Let X E (0,OO). For each function f G K[2;x], the operators 
V* satisfy 

(21) J im n (V„*(/; x) - / (x)) = ^ (/' (x) + x (1 + x) /" (x)) . 

The proof of Theorem 7 is based on the following lemmas. 

LEMMA 9. The moments of the Baskakov-Kantorovich operators possess the 
representation 

KT(er; x) = ± n-k £ ( - 1 ) ^ s;-_yrXlr ( l - —rr) 
k=0 j=o v "r y 

(r = 0 , 1 , 2 , . . . ) . 
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P r o o f of L e m m a 9. By direct calculation, we have 
—r oo 

v:(er-x) = E «M (s) + !)r+1 - kr+1) • 
k=0 

Taking advantage of the second identity of (19), we obtain 

((* + i)r+x _ fcr+i} = g aJr+i ( { k + 1)L - k L ) = j r (j + 1) aiX\kl 
j=0 j=0 

which yields 
— r T OO Vn*(er; + 1) 4+1 E GO ̂  

j=0 fc=0 

j=o 
Using the identity 

(„ + j _ l)i = (_i)i (_n)i = (_i)i £ 5fc (_„)* 
fc=0 

we conclude that 

^ ( e , ; x) = - ± - j 2 nk~r E ( - l ) f c + ' ( j + 1) S j ^ + V 
r 1 fc=0 j=k 

= ^ ¿ > ~ f c E - i + ! ) 
r ^ 1 fc=0 j=0 

which completes the proof of Lemma 9. • 

LEMMA 10. For s = 0,1, 2 , . . t h e central moments of the Baskakov-Kan-
torovich operators possess the representation 

v:(rx,x)= e n - f c E ^ z ( S , f c , j ) , 

fc=L(s+l)/2J j=0 

where the numbers Z(s,k,j) are as defined in Eq. (18). 

REMARK 4. An immediate consequence of Lemma 10 is that, for s = 0,1, 

y i r ( ^ ; x ) = 0 (n-L( '+ 1 )/ 2 J ) (n - oo). 

P r o o f o f L e m m a 10. Application of the binomial formula yields for the 
central moments 
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v : ( r x , x ) = £ ^ j i - x y - r v ^ e r - x ) 

s k s 

k=0 j=0 T=k X J \ > -r J-

k=0 j = 0 

It remains to prove that V̂ * (ipsx ; 
. It is sufficient to show 

that, for 0 < j < k, there holds Z (s, k,j) = 0 if 2k < s. 
Before we recall some known facts about Stirling numbers which will be 

useful in the sequel. The Stirling numbers of first resp. second kind possess 
the representation 
(22) S T 'k = E Ckt -p ^ ^ , = £ ( f c + „ ) 

(k = 0 , . . . , r ) , 

where C^k = C^k = 0, for k > 1 (see [4, p.151, Eq. (5), resp. p. 171, Eq. 
(7)]). The coefficients C^ resp. Ck,i are independent of r and satisfy certain 
partial difference equations ([4, p. 150]). Some closed expressions for C ^ 
and Ck,i can be found in [1, p. 113]. We first consider the case j > 1. Taking 
advantage of representation (22) we obtain, for 1 < j < k, 

= % ( k - j i „ ) t ( • + i ) 

¡1=0 u=l 

where 

P i M w Y - f ^ f ^ J Ï ( r - i ^ C r - * 

is a polynomial in the variable r of degree < p + u — 1. Thus, we conclude 

Z (5, k , j ) — ( - l ) k - i E E E (-i)"7" ( ? ) rk-{r + l - j ) P (fc, j , „; r ) 

fi=0 t / = l r = f c V / 

fc-J j s-k / . \ = s - E E E ( - i ) a _ r r (»• + * + 1 - i ) 
Oi/=lr=0 \ / 

x P ( k , j , n , v \ r + k ) . 
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Since (r + k + 1 — j) P (k, j , fi,f,r + k) is a polynomial in the variable r of 
degree < pL + v < k, the inner sum vanishes if k < s — k, i.e., if 2k < s. 

In the case j = 0, we have 

z ( S , M ) = ( - i ) f c £ ( - i r r Q s r * 

=(-D* ̂  è ^ g i g — f ' zfc' 
H= 

which vanishes if k < s — k , i.e., if 2k < s. This completes the proof of 
Lemma 10. • 

In order to derive as our main result the complete asymptotic expansion 
of the operators V* we use a general approximation theorem for positive 
linear operators due to Sikkema [5, Theorem 3] (cf. [6, Theorems 1 and 2]). 

LEMMA 11. Let I be an interval. Forq G N and fixed x € I, let An : Loo(-0 ~^ 
C(I) be a sequence of positive linear operators with the property 

(23) An(ips
x-,x) = 0 { n ~ U s + 1 W ) (n —> oo) (s = 0 , 1 , . . . , 2q + 2). 

Then, we have for each f E L ^ I ) which is 2q times differentiate at x the 
asymptotic relation 

(24) An(f-, x) = ¿ l^P-An(rx, x) + o (n- i ) ( r w oo). 
6=0 s -

I f , in addition, f(2q+2\x) exists, the term o(n~q) in (24) can be replaced by 
0 ( n - ( 9 + D ) . 

P r o o f of T h e o r e m 7. By Remark 4, assumption (23) in Lemma 11 
is valid for the operators V*. Therefore, we can apply Lemma 11 and the 
assertion of Theorem 7 follows after some calculations by Lemma 10. • 
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