

Ulrich Abel, Vijay Gupta

AN ESTIMATE OF THE RATE OF CONVERGENCE OF A BÉZIER VARIANT OF THE BASKAKOV-KANTOROVICH OPERATORS FOR BOUNDED VARIATION FUNCTIONS

Abstract. In the present paper we introduce a Bézier variant of the Baskakov-Kantorovich operators and study the rate of convergence for functions of bounded variation. Furthermore, we present the complete asymptotic expansion for the Baskakov-Kantorovich operators.

1. Introduction

Let $W(0, \infty)$ be the class of functions f which are locally integrable on $(0, \infty)$ and are of polynomial growth as $t \rightarrow \infty$, i.e., for some positive r , there holds $f(t) = O(t^r)$ as $t \rightarrow \infty$. The Kantorovich variant V_n^* of the Baskakov operators [3, Eq. (9.2.3), p. 115] associates to each function $f \in W(0, \infty)$ the series

$$(1) \quad V_n^*(f; x) = n \sum_{k=0}^{\infty} v_{n,k}(x) \int_{I_k} f(t) dt, \quad x \in [0, \infty),$$

where $I_k = [k/n, (k+1)/n]$ and

$$v_{n,k}(x) = \binom{n+k-1}{k} x^k (1+x)^{-n-k}.$$

The operators V_n^* result from the ordinary Baskakov operators V_n given by

$$V_n(f; x) = \sum_{k=0}^{\infty} v_{n,k}(x) f\left(\frac{k}{n}\right), \quad x \in [0, \infty)$$

by replacing $f\left(\frac{k}{n}\right)$ by $\int_{I_k} f(t) dt$ in order to approximate integrable functions.

1991 *Mathematics Subject Classification*: 41A36, 41A25, 26A45.

Key words and phrases: approximation by positive operators, rate of convergence, degree of approximation, functions of bounded variation, total variation.

In the present paper we introduce the Bézier variants of the operators (1). For each function $f \in W(0, \infty)$ and $\alpha \geq 1$, we introduce the Bézier type Baskakov–Kantorovich operators $V_{n,\alpha}^*$ as

$$(2) \quad V_{n,\alpha}^*(f; x) = n \sum_{k=0}^{\infty} Q_{n,k}^{(\alpha)}(x) \int_{I_k} f(t) dt,$$

where

$$Q_{n,k}^{(\alpha)}(x) = J_{n,k}^{\alpha}(x) - J_{n,k+1}^{\alpha}(x)$$

and

$$J_{n,k}(x) = \sum_{j=k}^{\infty} v_{n,j}(x)$$

is the Baskakov–Bézier basis function. It is obvious that $V_{n,\alpha}^*$ are positive linear operators and $V_{n,\alpha}^*(1; x) = 1$. In the special case $\alpha = 1$, the operators $V_{n,\alpha}^*$ reduce to the operators $V_n^* \equiv V_{n,1}^*$. Some basic properties of $J_{n,k}$ are as follows:

- (i) $J_{n,k}(x) - J_{n,k+1}(x) = v_{n,k}(x) \quad (k = 0, 1, 2, \dots);$
- (ii) $J'_{n,k}(x) = nv_{n+1,k-1}(x) \quad (k = 1, 2, 3, \dots);$
- (iii) $J_{n,k}(x) = n \int_0^x v_{n+1,k-1}(t) dt \quad (k = 1, 2, 3, \dots);$
- (iv) $0 < \dots < J_{n,k+1}(x) < J_{n,k}(x) < \dots < J_{n,1}(x) < J_{n,0}(x) \equiv 1$
($x > 0$);
- (v) $J_{n,k}$ is strictly increasing on $[0, \infty)$.

Rates of convergence on functions of bounded variation, for different Bézier type operators, were studied in several papers, e.g., [7], [8], [9]. In the present paper we estimate the rate of convergence by the Bézier–Baskakov–Kantorovich operators (2).

Furthermore, we find the limit of the sequence $V_{n,\alpha}^*(f; x)$ for bounded locally integrable functions f having a discontinuity of the first kind in $x \in (0, \infty)$.

The last section presents the complete asymptotic expansion for the Baskakov–Kantorovich operators (1).

2. The main results

As main result we derive the following estimate on the rate of convergence.

THEOREM 1. *Assume that $f \in W(0, \infty)$ is a function of bounded variation on every finite subinterval of $(0, \infty)$. Furthermore, let $\alpha \geq 1$, $x \in (0, \infty)$ and $\lambda > 1$ be given. Then, for each $r \in \mathbb{N}$, there exists a constant $M(f, \alpha, r, x)$, such that, for sufficiently large n , the Bézier type Baskakov–Kantorovich*

operators $V_{n,\alpha}^*$ satisfy the estimate

$$(3) \quad \begin{aligned} & \left| V_{n,\alpha}^*(f; x) - \left[\frac{1}{2^\alpha} f(x+) + \left(1 - \frac{1}{2^\alpha}\right) f(x-) \right] \right| \\ & \leq \frac{2\alpha\lambda(1+x)+x}{nx} \sum_{k=1}^n \bigvee_{x-x/\sqrt{k}}^{x+x/\sqrt{k}} (g_x) \\ & \quad + \frac{7\alpha\sqrt{1+x}}{2\sqrt{nx}} |f(x+) - f(x-)| + \frac{M(f, \alpha, r, x)}{n^r}, \end{aligned}$$

where

$$(4) \quad g_x(t) = \begin{cases} f(t) - f(x-) & (0 \leq t < x), \\ 0 & (t = x), \\ f(t) - f(x+) & (x < t < \infty), \end{cases}$$

and $\bigvee_a^b (g_x)$ is the total variation of g_x on $[a, b]$.

REMARK 1. The exponent r in the last term of Eq. (3) can be chosen arbitrary large.

As an immediate consequence of Theorem 1 we obtain in the special case $\alpha = 1$ the following estimate.

COROLLARY 2. *Under the assumptions of Theorem 1 the following estimate, for sufficiently large n ,*

$$\begin{aligned} \left| V_n^*(f; x) - \frac{1}{2} [f(x+) + f(x-)] \right| & \leq \frac{2\lambda(1+x)+x}{nx} \sum_{k=1}^n \bigvee_{x-x/\sqrt{k}}^{x+x/\sqrt{k}} (g_x) \\ & \quad + \frac{7\sqrt{1+x}}{2\sqrt{nx}} |f(x+) - f(x-)| + \frac{M(f, 1, r, x)}{n^r}, \end{aligned}$$

holds, where g_x is as defined in Theorem 1.

We mention that Aniol [2, Theorem 1] studied Kantorovich-type operators from a more general point of view. In the case of the operators V_n^* she used the crucial estimate (see [2, page 13])

$$|V_n^*(\text{sign}_x(t); x)| \leq 10(8x^2 + 5x + 1) / \sqrt{nx(1+x)^3},$$

while our Eq. (11) yields, for $\alpha = 1$,

$$|V_n^*(\text{sign}_x(t); x)| < 7\sqrt{(1+x)/(nx)}.$$

THEOREM 3. *Let $x \in (0, \infty)$. If $f \in L(0, \infty)$ has a discontinuity of the first*

kind in x , then we have

$$\lim_{n \rightarrow \infty} V_{n,\alpha}^*(f; x) = \frac{1}{2^\alpha} f(x+) + \left(1 - \frac{1}{2^\alpha}\right) f(x-).$$

3. Auxiliary results

In order to prove our main result we shall need the following lemmas. Throughout the paper let e_r denote the monomials $e_r(t) = t^r$ ($r = 0, 1, 2, \dots$) and, for each real x , put $\psi_x(t) = t - x$.

LEMMA 4 ([10, Lemma 1]). *For all $x > 0$ and $n, k \in \mathbb{N}$, is satisfied the inequality*

$$Q_{n,k}^{(\alpha)}(x) \leq \alpha v_{n,k}(x) < \alpha \sqrt{\frac{1+x}{2\pi n x}}.$$

By direct calculation (cf. Lemma 9) we find

$$\begin{aligned} V_n^*(e_0; x) &= 1, & V_n^*(e_1; x) &= x + \frac{1}{2n}, \\ V_n^*(e_2; x) &= x^2 + \frac{x(x+2)}{n} + \frac{1}{3n^2}, \\ V_n^*(\psi_x^2; x) &= \frac{x(1+x)}{n} + \frac{1}{3n^2}. \end{aligned}$$

REMARK 2. Note that, given any $\lambda > 1$ and any $x > 0$, for all n sufficiently large, we have the estimate

$$V_n^*(\psi_x^2; x) < \frac{\lambda x(1+x)}{n}.$$

As we shall show in the last section (Lemma 10 and Remark 4), for each fixed $x \in [0, \infty)$ and $s \in \mathbb{N}_0$, the central moments $V_n^*(\psi_x^s; x)$ of the Baskakov–Kantorovich operators (1) satisfy

$$(5) \quad V_n^*(\psi_x^s; x) = O\left(n^{-\lfloor (s+1)/2 \rfloor}\right) \quad (n \rightarrow \infty).$$

Throughout the paper let

$$K_{n,\alpha}(x, t) = n \sum_{k=0}^{\infty} Q_{n,k}^{(\alpha)}(x) \chi_{n,k}(t),$$

where $\chi_{n,k}$ denotes the characteristic function of the interval $[k/n, (k+1)/n]$ with respect to $[0, \infty)$. With this definition, for each function $f \in W(0, \infty)$, we have for all sufficiently large n , the relation

$$(6) \quad V_{n,\alpha}^*(f; x) = \int_0^{\infty} K_{n,\alpha}(x, t) f(t) dt.$$

Furthermore, put

$$(7) \quad \lambda_{n,\alpha}(x, y) = \int_0^y K_{n,\alpha}(x, t) dt.$$

Note that, in particular,

$$\lambda_{n,\alpha}(x, \infty) = \int_0^\infty K_{n,\alpha}(x, u) du = 1.$$

LEMMA 5. Let $x \in (0, \infty)$. For each $\lambda > 1$, and for all sufficiently large n , we have,

$$(8) \quad \lambda_{n,\alpha}(x, y) = \int_0^y K_{n,\alpha}(x, t) dt \leq \frac{\lambda \alpha x (1+x)}{n(x-y)^2} \quad (0 \leq y < x),$$

and

$$(9) \quad 1 - \lambda_{n,\alpha}(x, z) = \int_z^\infty K_{n,\alpha}(x, t) dt \leq \frac{\lambda \alpha x (1+x)}{n(z-x)^2} \quad (x < z < \infty).$$

Proof. We first prove Eq. (8). Notice that

$$\begin{aligned} \int_0^y K_{n,\alpha}(x, t) dt &\leq \int_0^y K_{n,\alpha}(x, t) \frac{(x-t)^2}{(x-y)^2} dt \\ &\leq (x-y)^{-2} V_{n,\alpha}^*(\psi_x^2; x) \leq \alpha (x-y)^{-2} V_{n,1}^*(\psi_x^2; x), \end{aligned}$$

where we applied Lemma 4. Now Eq. (8) is a consequence of Remark 2. The proof of Eq. (9) is similar. ■

LEMMA 6 ([10, Lemma 5]). For all $x \in (0, \infty)$, the inequality

$$\left| \sum_{k>nx} v_{n,k}(x) - 1/2 \right| \leq \frac{3\sqrt{1+x}}{\sqrt{nx}}$$

holds.

4. Proof of the main results

Proof of Theorem 1. Our starting point is the identity

$$\begin{aligned} f(t) &= \frac{1}{2^\alpha} f(x+) + \left(1 - \frac{1}{2^\alpha}\right) f(x-) + \frac{f(x+) - f(x-)}{2^\alpha} \text{sign}_x(t) \\ &\quad + g_x(t) + \delta_x(t) \left[f(x) - \frac{1}{2^\alpha} f(x+) - \left(1 - \frac{1}{2^\alpha}\right) f(x-) \right], \end{aligned}$$

where

$$\text{sign}_x(t) = \begin{cases} 2^\alpha - 1 & (t > x), \\ 0 & (t = x), \\ -1 & (t < x), \end{cases}$$

$\delta_x(t) = 1$ ($t = x$) and $\delta_x(t) = 0$ ($t \neq x$). Since $V_{n,\alpha}^*(\delta_x; x) = 0$, we conclude

$$(10) \quad \begin{aligned} & \left| V_{n,\alpha}^*(f; x) - \left[\frac{1}{2^\alpha} f(x+) + \left(1 - \frac{1}{2^\alpha}\right) f(x-) \right] \right| \\ & \leq \frac{1}{2^\alpha} |f(x+) - f(x-)| \left| V_{n,\alpha}^*(\text{sign}_x(t); x) \right| + \left| V_{n,\alpha}^*(g_x; x) \right|. \end{aligned}$$

First, we estimate $V_{n,\alpha}^*(\text{sign}_x(t); x)$ as follows. Choose k' such that $x \in [k'/n, (k' + 1)/n]$. Hence,

$$\begin{aligned} V_{n,\alpha}^*(\text{sign}_x(t); x) &= \sum_{k=0}^{k'-1} (-1) Q_{n,k}^{(\alpha)}(x) + n Q_{n,k'}^{(\alpha)}(x) \\ &\quad \times \left(\int_{k'/n}^x (-1) dt + \int_x^{(k'+1)/n} (2^\alpha - 1) dt \right) \\ &\quad + \sum_{k=k'+1}^{\infty} (2^\alpha - 1) Q_{n,k}^{(\alpha)}(x) \\ &= 2^\alpha \sum_{k=k'+1}^{\infty} Q_{n,k}^{(\alpha)}(x) + n Q_{n,k'}^{(\alpha)}(x) \int_x^{(k'+1)/n} 2^\alpha dt - 1, \end{aligned}$$

since $\sum_{j=0}^{\infty} Q_{n,j}^{(\alpha)}(x) = 1$. Noting that

$$0 \leq n Q_{n,k'}^{(\alpha)}(x) \int_x^{(k'+1)/n} 2^\alpha dt \leq 2^\alpha Q_{n,k'}^{(\alpha)}(x)$$

we conclude that

$$\begin{aligned} \left| V_{n,\alpha}^*(\text{sign}_x(t); x) \right| &\leq \left| 2^\alpha \sum_{k=k'+1}^{\infty} Q_{n,k}^{(\alpha)}(x) - 1 \right| + 2^\alpha Q_{n,k'}^{(\alpha)}(x) \\ &= \left| 2^\alpha J_{n,k'+1}^\alpha(xt) - 1 \right| + 2^\alpha Q_{n,k'}^{(\alpha)}(x). \end{aligned}$$

Application of the inequality $|a^\alpha - b^\alpha| \leq \alpha |a - b|$, for $0 \leq a, b \leq 1$, and $\alpha \geq 1$, yields

$$\begin{aligned} \left| 2^\alpha J_{n,k'+1}^\alpha(x) - 1 \right| &\leq \alpha 2^\alpha |J_{n,k'+1}(x) - 1/2| \\ &= \alpha 2^\alpha \left| \sum_{k=k'+1}^{\infty} v_{n,k}(x) - 1/2 \right| = \alpha 2^\alpha \left| \sum_{k>nx} v_{n,k}(x) - 1/2 \right|. \end{aligned}$$

Therefore, by Lemma 6 and Lemma 4, we obtain

$$(11) \quad \left| V_{n,\alpha}^*(\text{sign}_x(t); x) \right| \leq \alpha 2^\alpha \frac{3\sqrt{1+x}}{\sqrt{nx}} + 2^\alpha \frac{\alpha\sqrt{1+x}}{\sqrt{2enx}} < \frac{7\alpha \cdot 2^{\alpha-1} \sqrt{1+x}}{\sqrt{nx}}.$$

In order to complete the proof of the theorem we need an estimate of $V_{n,\alpha}^*(g_x; x)$. We use the integral representation (6) and decompose $[0, \infty)$

into three parts as follows

$$(12) \quad V_{n,\alpha}^*(g_x; x) = \left(\int_0^{x-x/\sqrt{n}} + \int_{x-x/\sqrt{n}}^{x+x/\sqrt{n}} + \int_{x+x/\sqrt{n}}^{\infty} \right) K_{n,\alpha}(x, t) g_x(t) dt \\ = I_1 + I_2 + I_3, \text{ say.}$$

We start with I_2 . For $t \in [x - x/\sqrt{n}, x + x/\sqrt{n}]$, we have

$$|g_x(t)| \leq \bigvee_{x-x/\sqrt{n}}^{x+x/\sqrt{n}} (g_x)$$

and thus

$$(13) \quad |I_2| \leq \bigvee_{x-x/\sqrt{n}}^{x+x/\sqrt{n}} (g_x) \leq \frac{1}{n} \sum_{k=1}^n \bigvee_{x-x/\sqrt{k}}^{x+x/\sqrt{k}} (g_x).$$

Next we estimate I_1 . Put $y = x - x/\sqrt{n}$. Using integration by parts with Eq. (7) we have

$$I_1 = \int_0^y g_x(t) \, dt \lambda_{n,\alpha}(x, t) = g_x(y) \lambda_{n,\alpha}(x, y) - \int_0^y \lambda_{n,\alpha}(x, t) \, dt g_x(t).$$

Since $|g_x(y)| = |g_x(y) - g_x(x)| \leq \bigvee_y^x (g_x)$, we conclude that

$$|I_1| \leq \bigvee_y^x (g_x) \lambda_{n,\alpha}(x, y) + \int_0^y \lambda_{n,\alpha}(x, t) \, dt \left(- \bigvee_t^x (g_x) \right).$$

Since $y = x - x/\sqrt{n} \leq x$, Eq. (8) of Lemma 5 implies, for each $\lambda > 1$ and n sufficiently large, that

$$|I_1| \leq \frac{\alpha \lambda x (1+x)}{n(x-y)^2} \bigvee_y^x (g_x) + \frac{\alpha \lambda x (1+x)}{n} \int_0^y \frac{1}{(x-t)^2} \, dt \left(- \bigvee_t^x (g_x) \right).$$

Integrating the last term by parts, we obtain

$$|I_1| \leq \frac{\alpha \lambda x (1+x)}{n} \left(x^{-2} \bigvee_0^x (g_x) + 2 \int_0^y \frac{\bigvee_t^x (g_x)}{(x-t)^3} \, dt \right).$$

Replacing the variable y in the last integral by $x - x/\sqrt{n}$, we get

$$\int_0^{x-x/\sqrt{n}} \bigvee_t^x (g_x) (x-t)^{-3} \, dt = \sum_{k=1}^{n-1} \int_{x/\sqrt{k+1}}^{x/\sqrt{k}} \bigvee_{x-t}^x (g_x) t^{-3} \, dt \\ \leq \frac{1}{2x^2} \sum_{k=1}^n \bigvee_{x-x/\sqrt{k}}^x (g_x).$$

Hence

$$(14) \quad |I_1| \leq \frac{2\alpha\lambda(1+x)}{nx} \sum_{k=1}^n \bigvee_{x-x/\sqrt{k}}^x (g_x).$$

Finally, we estimate I_3 . We put

$$\tilde{g}_x(t) = \begin{cases} g_x(t) & (0 \leq t \leq 2x), \\ g_x(2x) & (2x < t < \infty), \end{cases}$$

and divide $I_3 = I_{31} + I_{32}$, where

$$I_{31} = \int_{x+x/\sqrt{n}}^{\infty} K_{n,\alpha}(x, t) \tilde{g}_x(t) dt \quad \text{and}$$

$$I_{32} = \int_{2x}^{\infty} K_{n,\alpha}(x, t) [g_x(t) - g_x(2x)] dt.$$

With $y = x + x/\sqrt{n}$ the first integral can be written in the form

$$I_{31} = \lim_{R \rightarrow +\infty} \left\{ g_x(y) [1 - \lambda_{n,\alpha}(x, y)] + \tilde{g}_x(R) [\lambda_{n,\alpha}(x, R) - 1] \right. \\ \left. + \int_y^R [1 - \lambda_{n,\alpha}(x, t)] dt \tilde{g}_x(t) \right\}.$$

By Eq. (9) of Lemma 5, we conclude, for each $\lambda > 1$ and n sufficiently great, that

$$|I_{31}| \leq \frac{\alpha\lambda x(1+x)}{n} \lim_{R \rightarrow +\infty} \left\{ \frac{\bigvee_x^y(g_x)}{(y-x)^2} + \frac{|\tilde{g}_x(R)|}{(R-x)^2} + \int_y^R \frac{1}{(t-x)^2} dt \left(\bigvee_x^t(\tilde{g}_x) \right) \right\} \\ = \frac{\alpha\lambda x(1+x)}{n} \left\{ \frac{\bigvee_x^y(g_x)}{(y-x)^2} + \int_y^{2x} \frac{1}{(t-x)^2} dt \left(\bigvee_x^t(g_x) \right) \right\}.$$

In a similar way as above we obtain

$$\int_y^{2x} \frac{1}{(t-x)^2} dt \left(\bigvee_x^t(g_x) \right) \leq x^{-2} \bigvee_x^{2x}(g_x) - \frac{\bigvee_x^y(g_x)}{(y-x)^2} + x^{-2} \sum_{k=1}^{n-1} \bigvee_x^{x+x/\sqrt{k}}(g_x)$$

which implies the estimate

$$(15) \quad |I_{31}| \leq \frac{2\alpha\lambda(1+x)}{nx} \sum_{k=1}^n \bigvee_x^{x+x/\sqrt{k}}(g_x).$$

Lastly, we estimate I_{32} . By assumption, there exists an integer r , such that $f(t) = O(t^{2r})$ as $t \rightarrow \infty$. Thus, for a certain constant $M > 0$ depending only on f , x and r , we have

$$\begin{aligned}
|I_{32}| &\leq Mn \sum_{k=0}^{\infty} Q_{n,k}^{(\alpha)}(x) \int_{2x}^{\infty} \chi_{n,k}(t) t^{2r} dt \\
&\leq \alpha Mn \sum_{k=0}^{\infty} p_{n,k}(x) \int_{2x}^{\infty} \chi_{n,k}(t) t^{2r} dt,
\end{aligned}$$

where we used Lemma 4. Obviously, $t \geq 2x$ implies that $t \leq 2(t-x)$ and it follows that

$$|I_{32}| \leq 2^{2r} \alpha M V_n^*(\psi_x^{2r}; x).$$

By Eq. 5, the central moments of the Baskakov-Kantorovich operators (1) satisfy $V_n^*(\psi_x^{2r}; x) = O(n^{-r})$ ($n \rightarrow \infty$), and we arrive at

$$(16) \quad I_{32} = O(n^{-r}) \quad (n \rightarrow \infty).$$

Collecting the estimates (13), (14), (15), and (16), we obtain with regard to Eq. (12)

$$(17) \quad |V_{n,\alpha}^*(g_x; x)| \leq \frac{2\alpha\lambda(1+x) + x}{nx} \sum_{k=1}^n \bigvee_{x-x/\sqrt{k}}^{x+x/\sqrt{k}} (g_x) + O(n^{-r}) \quad (n \rightarrow \infty).$$

Finally, combining (10), (11), (17), we obtain (3). This completes the proof of Theorem 1. ■

Proof of Theorem 3. Since the function ψ_x^2 given by $\psi_x^2(t) = (t-x)^2$ is of bounded variation on every finite subinterval of $[0, \infty)$, we deduce from Theorem 1 that, for all $x \in (0, \infty)$,

$$\lim_{n \rightarrow \infty} V_{n,\alpha}^*(\psi_x^2; x) = 0.$$

If $f \in L_\infty(0, \infty)$, then g_x defined as in (4) is also bounded and is continuous at the point x . By the Korovkin theorem, we conclude

$$\lim_{n \rightarrow \infty} V_{n,\alpha}^*(g_x; x) = g_x(x) = 0.$$

Therefore, the right-hand side of Inequality (10) tends to zero as $n \rightarrow \infty$. This completes the proof of Theorem 3. ■

5. Asymptotic expansion for the Baskakov-Kantorovich operators

Throughout this section let the numbers $Z(s, k, j)$ be given by

$$\begin{aligned}
(18) \quad Z(s, k, j) &= (-1)^{k-j} \sum_{r=k}^s (-1)^{s-r} \binom{s}{r} S_{r-j}^{r-k} \sigma_{r+1}^{r+1-j} \left(1 - \frac{j}{r+1}\right) \\
&\quad (0 \leq j \leq k \leq s).
\end{aligned}$$

The quantities S_j^i and σ_j^i in Eq. (18) denote the Stirling numbers of the first resp. second kind. The Stirling numbers are defined by

$$(19) \quad x^i = \sum_{i=0}^j S_j^i x^i, \quad x^j = \sum_{i=0}^j \sigma_j^i x^i \quad (j = 0, 1, \dots),$$

where $x^i = x(x-1)\cdots(x-i+1)$, $x^0 = 1$ is the falling factorial.

For $q \in \mathbb{N}$ and $x \in (0, \infty)$, let $K[q; x]$ be the class of all functions $f \in L_\infty(0, \infty)$ which are q times differentiable at x . The following theorem is the main result of this section.

THEOREM 7. *Let $q \in \mathbb{N}$ and $x \in (0, \infty)$. For each function $f \in K[2q; x]$, the Baskakov–Kantorovich operators possess the asymptotic expansion*

$$(20) \quad V_n^*(f; x) = f(x) + \sum_{k=1}^q n^{-k} \sum_{s=k}^{2k} \frac{f^{(s)}(x)}{s!} \sum_{j=0}^k x^{s-j} Z(s, k, j) + o(n^{-q}) \quad (n \rightarrow \infty),$$

where the numbers $Z(s, k, j)$ are as defined by Eq. (18).

REMARK 3. For the convenience of the reader, we give the series explicitly, for $q = 3$:

$$\begin{aligned} V_n^*(f; x) = & f(x) + \frac{f'(x) + x(1+x)f''(x)}{2n} \\ & + \frac{4f^{(2)}(x) + 2x(1+x)(5+4x)f^{(3)}(x) + 3x^2(1+x)^2f^{(4)}(x)}{24n^2} \\ & + \frac{1}{48n^3} \left(2f^{(3)}(x) + 2x(1+x)(5+10x+6x^2)f^{(4)}(x) \right. \\ & \left. + x^2(1+x)^2(7+8x)f^{(5)}(x) + x^3(1+x)^3f^{(6)}(x) \right). \end{aligned}$$

An immediate consequence of Theorem 7 is the following Voronovskaja–type formula.

COROLLARY 8. *Let $x \in (0, \infty)$. For each function $f \in K[2; x]$, the operators V_n^* satisfy*

$$(21) \quad \lim_{n \rightarrow \infty} n(V_n^*(f; x) - f(x)) = \frac{1}{2} (f'(x) + x(1+x)f''(x)).$$

The proof of Theorem 7 is based on the following lemmas.

LEMMA 9. *The moments of the Baskakov–Kantorovich operators possess the representation*

$$\begin{aligned} V_n^*(e_r; x) = & \sum_{k=0}^r n^{-k} \sum_{j=0}^k (-1)^{k+j} S_{r-j}^{r-k} \sigma_{r+1}^{r+1-j} \left(1 - \frac{j}{r+1} \right) x^{r-j} \\ & (r = 0, 1, 2, \dots). \end{aligned}$$

Proof of Lemma 9. By direct calculation, we have

$$V_n^*(e_r; x) = \frac{n^{-r}}{r+1} \sum_{k=0}^{\infty} v_{n,k}(x) \left((k+1)^{r+1} - k^{r+1} \right).$$

Taking advantage of the second identity of (19), we obtain

$$((k+1)^{r+1} - k^{r+1}) = \sum_{j=0}^{r+1} \sigma_{r+1}^j \left((k+1)^j - k^j \right) = \sum_{j=0}^r (j+1) \sigma_{r+1}^{j+1} k^j$$

which yields

$$\begin{aligned} V_n^*(e_r; x) &= \frac{n^{-r}}{r+1} \sum_{j=0}^r (j+1) \sigma_{r+1}^{j+1} \sum_{k=0}^{\infty} v_{n,k}(x) k^j \\ &= \frac{n^{-r}}{r+1} \sum_{j=0}^r (j+1) \sigma_{r+1}^{j+1} (n+j-1)^j x^j. \end{aligned}$$

Using the identity

$$(n+j-1)^j = (-1)^j (-n)^j = (-1)^j \sum_{k=0}^j S_j^k (-n)^k$$

we conclude that

$$\begin{aligned} V_n^*(e_r; x) &= \frac{1}{r+1} \sum_{k=0}^r n^{k-r} \sum_{j=k}^r (-1)^{k+j} (j+1) S_j^k \sigma_{r+1}^{j+1} x^j \\ &= \frac{1}{r+1} \sum_{k=0}^r n^{-k} \sum_{j=0}^k (-1)^{k+j} (r-j+1) S_{r-j}^{r-k} \sigma_{r+1}^{r-j+1} x^{r-j} \end{aligned}$$

which completes the proof of Lemma 9. ■

LEMMA 10. For $s = 0, 1, 2, \dots$, the central moments of the Baskakov-Kantorovich operators possess the representation

$$V_n^*(\psi_x^s; x) = \sum_{k=\lfloor(s+1)/2\rfloor}^s n^{-k} \sum_{j=0}^k x^{s-j} Z(s, k, j),$$

where the numbers $Z(s, k, j)$ are as defined in Eq. (18).

REMARK 4. An immediate consequence of Lemma 10 is that, for $s = 0, 1, 2, \dots$,

$$V_n^*(\psi_x^s; x) = O\left(n^{-\lfloor(s+1)/2\rfloor}\right) \quad (n \rightarrow \infty).$$

Proof of Lemma 10. Application of the binomial formula yields for the central moments

$$\begin{aligned}
V_n^*(\psi_x^s; x) &= \sum_{r=0}^s \binom{s}{r} (-x)^{s-r} V_n^*(e_r; x) \\
&= \sum_{k=0}^s n^{-k} \sum_{j=0}^k (-1)^{k+j} x^{s-j} \sum_{r=k}^s (-1)^{s-r} \binom{s}{r} S_{r-j}^{r-k} \sigma_{r+1}^{r+1-j} \left(1 - \frac{j}{r+1}\right) \\
&= \sum_{k=0}^s n^{-k} \sum_{j=0}^k x^{s-j} Z(s, k, j).
\end{aligned}$$

It remains to prove that $V_n^*(\psi_x^s; x) = O(n^{-\lfloor(s+1)/2\rfloor})$. It is sufficient to show that, for $0 \leq j \leq k$, there holds $Z(s, k, j) = 0$ if $2k < s$.

Before we recall some known facts about Stirling numbers which will be useful in the sequel. The Stirling numbers of first resp. second kind possess the representation

$$(22) \quad S_r^{r-k} = \sum_{\mu=0}^k C_{k,k-\mu} \binom{r}{k+\mu}, \quad \sigma_r^{r-k} = \sum_{\nu=0}^k \bar{C}_{k,k-\nu} \binom{r}{k+\nu} \quad (k = 0, \dots, r),$$

where $C_{k,k} = \bar{C}_{k,k} = 0$, for $k \geq 1$ (see [4, p.151, Eq. (5), resp. p. 171, Eq. (7)]). The coefficients $C_{k,i}$ resp. $\bar{C}_{k,i}$ are independent of r and satisfy certain partial difference equations ([4, p. 150]). Some closed expressions for $C_{k,i}$ and $\bar{C}_{k,i}$ can be found in [1, p. 113]. We first consider the case $j \geq 1$. Taking advantage of representation (22) we obtain, for $1 \leq j \leq k$,

$$\begin{aligned}
S_{r-j}^{r-k} \sigma_{r+1}^{r+1-j} &= \sum_{\mu=0}^{k-j} C_{k-j,k-j-\mu} \binom{r-j}{k-j+\mu} \sum_{\nu=1}^j \bar{C}_{j,j-\nu} \binom{r+1}{j+\nu} \\
&= \sum_{\mu=0}^{k-j} \sum_{\nu=1}^j (r+1)^{\frac{k+1}{2}} P(k, j, \mu, \nu; r),
\end{aligned}$$

where

$$P(k, j, \mu, \nu; r) = \frac{C_{k-j,k-j-\mu}}{(k-j+\mu)!} \frac{\bar{C}_{j,j-\nu}}{(j+\nu)!} (r-j)^{\frac{\nu-1}{2}} (r-k)^{\frac{\mu}{2}}$$

is a polynomial in the variable r of degree $\leq \mu + \nu - 1$. Thus, we conclude

$$\begin{aligned}
Z(s, k, j) &= (-1)^{k-j} \sum_{\mu=0}^{k-j} \sum_{\nu=1}^j \sum_{r=k}^s (-1)^{s-r} \binom{s}{r} r^k (r+1-j) P(k, j, \mu, \nu; r) \\
&= (-1)^j s^k \sum_{\mu=0}^{k-j} \sum_{\nu=1}^j \sum_{r=0}^{s-k} (-1)^{s-r} \binom{s-k}{r} (r+k+1-j) \\
&\quad \times P(k, j, \mu, \nu; r+k).
\end{aligned}$$

Since $(r+k+1-j)P(k, j, \mu, \nu; r+k)$ is a polynomial in the variable r of degree $\leq \mu + \nu \leq k$, the inner sum vanishes if $k < s - k$, i.e., if $2k < s$.

In the case $j = 0$, we have

$$\begin{aligned} Z(s, k, 0) &= (-1)^k \sum_{r=k}^s (-1)^{s-r} \binom{s}{r} S_r^{r-k} \\ &= (-1)^k \sum_{r=k}^s (-1)^{s-r} \binom{s}{r} \sum_{\mu=0}^k C_{k,k-\mu} \binom{r}{k+\mu} \\ &= (-1)^k s^k \sum_{\mu=0}^k \frac{C_{k,k-\mu}}{(k+\mu)!} \sum_{r=0}^{s-k} (-1)^{s-k-r} \binom{s-k}{r} r^{\underline{\mu}} \end{aligned}$$

which vanishes if $k < s - k$, i.e., if $2k < s$. This completes the proof of Lemma 10. ■

In order to derive as our main result the complete asymptotic expansion of the operators V_n^* we use a general approximation theorem for positive linear operators due to Sikkema [5, Theorem 3] (cf. [6, Theorems 1 and 2]).

LEMMA 11. *Let I be an interval. For $q \in \mathbb{N}$ and fixed $x \in I$, let $A_n : L_\infty(I) \rightarrow C(I)$ be a sequence of positive linear operators with the property*

$$(23) \quad A_n(\psi_x^s; x) = O(n^{-\lfloor(s+1)/2\rfloor}) \quad (n \rightarrow \infty) \quad (s = 0, 1, \dots, 2q+2).$$

Then, we have for each $f \in L_\infty(I)$ which is $2q$ times differentiable at x the asymptotic relation

$$(24) \quad A_n(f; x) = \sum_{s=0}^{2q} \frac{f^{(s)}(x)}{s!} A_n(\psi_x^s; x) + o(n^{-q}) \quad (n \rightarrow \infty).$$

If, in addition, $f^{(2q+2)}(x)$ exists, the term $o(n^{-q})$ in (24) can be replaced by $O(n^{-(q+1)})$.

Proof of Theorem 7. By Remark 4, assumption (23) in Lemma 11 is valid for the operators V_n^* . Therefore, we can apply Lemma 11 and the assertion of Theorem 7 follows after some calculations by Lemma 10. ■

References

- [1] U. Abel, *The complete asymptotic expansion for Meyer-König and Zeller operators*, J. Math. Anal. Appl. 208 (1997), 109–119.
- [2] G. Aniol, *On the rate of pointwise convergence of the Kantorovich-type operators*, Fasc. Math. 29 (1999), 5–15.
- [3] Z. Ditzian and V. Totik, *Moduli of Smoothness*, Springer, New York, 1987.
- [4] C. Jordan, *Calculus of Finite Differences*, Chelsea, New York, 1965.
- [5] P. C. Sikkema, *On some linear positive operators*, Indag. Math. 32 (1970), 327–337.

- [6] P. C. Sikkema, *On the asymptotic approximation with operators of Meyer-König and Zeller*, Indag. Math. 32 (1970), 428–440.
- [7] X. M. Zeng, *On the rate of convergence of the generalized Szasz type operators for functions of bounded variation*, J. Math. Anal. Appl. 226 (1998), 309–325.
- [8] X. M. Zeng and A. Piriou, *On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions*, J. Approx. Theory 95 (1998), 369–387.
- [9] X. M. Zeng and W. Chen, *On the rate of convergence of the generalized Durrmeyer type operators for functions of bounded variation*, J. Approx. Theory 102 (2000), 1–12.
- [10] X. M. Zeng and V. Gupta, *Rate of convergence of Baskakov-Bézier type operators for locally bounded functions*, Comput. Math. Appl. 44 (2002), 1445–1453.

Ulrich Abel
FACHBEREICH MND
FACHHOCHSCHULE GIESSEN-FRIEDBERG
UNIVERSITY OF APPLIED SCIENCES
Wilhelm-Leuschner-Straße 13
61169 FRIEDBERG, GERMANY
E-mail: Ulrich.Abel@mnd.fh-friedberg.de

Vijay Gupta
SCHOOL OF APPLIED SCIENCES
NETAJI SUBHAS INSTITUTE OF TECHNOLOGY
AZAD HIND FAUJ MARG
SECTOR-3, DWARKA,
NEW DELHI-110045, INDIA
E-mail: vijay@nsit.ac.in

Received February 7, 2002.