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KAMENEV-TYPE OSCILLATION CRITERIA
FOR HYPERBOLIC DELAY DIFFERENCE EQUATIONS

Abstract. Some new oscillation criteria and discrete Kamenev-type oscillation crite-
ria for hyperbolic nonlinear delay difference equations are obtained.

1. Introduction

Qualitative theory for discrete dynamics systems with one dimension,
i.e., ordinary difference equations which parallels the qualitative theory of
differential equations, has been investigated by several authors, see e.g., the
monographs [1], [2] and the references cited therein. On the other hand, the
nonlinear discrete dynamics systems involving functions of two or more inde-
pendent variables, i.e., partial difference equations (PDEs), are as important
as difference equations, comparatively few papers have been devoted to the
qualitative theory of their solutions, see, e.g., the review article of Zhang
[18]. In fact, partial difference equations arise in the approximation of solu-
tions of partial differential equations by finite difference methods, random
walk problems, the study on molecular orbits, mathematical physics prob-
lems and other problems in population dynamics [3]-[6] . Hence, to further
develop the qualitative theory of partial difference equations, in this paper
we shall consider the following hyperbolic nonlinear delay difference equa-
tion
(11) A2(pnA2ym,n) + Qm,nf(ym,n—o')

= TnVQym—l,n+1 + Z Rj,nv2ym-—1,n+1—'yja
jeJ

where {ymn} = {Ymima,..m,nt Which is defined in  x Ny, J = {1,2,
ooy Jo}, Npg = {no,n0+1,...} and Q = {pgl),...,pg\fl)l} X ...{pgl), ...,pg\l}l}
and every p(J) €ezZ:={..,-1,0,1,...}.
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We will need the following definitions which are extracted from [7].

DEFINITION 1.1. m is said to be an interior point of 2, if m+1:={m;+1,
my,...,m}U.. . U{my, my,...,my_1,m+1} and m-1:={my-1, my, ..., m; }U
...U{mp, mg,...,my_1,m; — 1} are all in ©2; Q° which consists of all interior
points, is said to be interior of (.

DEFINITION 1.2. m is said to be a convex boundary point of €, if me  and
at least | points of m=+1 are in §2; m is said to be a convex boundary point,
if m, m+1 € Q but just one of the points {m;+1, mg,...,m; = 1} is not
in Q, where {m;+1, my,...,m; £ 1} := {m1+1,mg,...,my+ 1} U {m; —
IL,me+1,...,m+1}U...U{m1—1,mg,...,m — 1}, 9Q which consists of
all (convex and concave) boundary points, is said to be a boundary of .

DEFINITION 1.3.  is said to be convex, if O consists only of all convex
points.

DEFINITION 1.4. m is said to be an exterior point, if it is neither an interior
point nor a boundary point.

DEFINITION 1.5. m is said to be (admissible) point, if at least two points of
m=+1 are in .

DEFINITION 1.6.  is said to be a connected net , if 2 consists only of all
(admissible) points.

DEFINITION 1.7. If Q is a rectangular solid net, then OS2 consists only of all
convex boundary points, and €2 a convex connected solid net.

Throughout this paper we consider a convex connected solid net €2, and
assume that the following conditions are satisfied:

o
(B1) 7, Pr € Nng = RY, 35 = =00, Rjn € J X Npg — RT;
—=ng

(h2) gmn € R X Nyy = RY, ¢o = minpea{gmn}, D€ Ny, {gs} has a
positive subsequence;

(h3) o € Ny and y; € Ny, for j € J,

(h4) f € C(R,R) is convex, uf(u) > 0 for u # 0, f(u) > ku.

We write V2 is the discrete Laplacian operator, which is defined by
!

v2ym——l,n—i—l = Z Agmyml,mz,...,m,-_l,m,-——l...,m,,n+1a where A12 is the partlal
i=1

difference operator of order two i.e., A?ym,n = Ai(DiYmn), DmYmn =
Ymi,ma,...,mi+1,...,my,n — Ymy,ma,..,mi,...,myn and AZym,n = Ymun+1 — Ymyn-

With Eq. (1.1) we consider the boundary condition
(B) ANYm—1n + ImnYmn =0, on Ol x Ny,
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and the initial condition (IC)
(1.2) Ym,s = Pm,s, for ng — M < s < nyg,

where ANYm—1,» is the normal difference at (m,n) € 0Q x Ny, is defined
by ANYm-1n = Lan mai1¢a(Bi1¥mn — D1¥m—1,n) = Yo miiga DiYmm,
M = max{o, v;: and j € J} and g n € 00 X Nyy — RT.

By a solution of initial boundary value problem (1.1), (B), (1.2) (for
short we use the notion IBVP (1.1), (B)) we mean a sequence {ym n} which
satisfies Eq. (1.1) for (m,n) € Q@ x N,,, satisfies (B) for (m,n) € 02 x Ny,
and satisfies IC (1.2) for (m,n) € Q x {ng — M, ..., no}.

For the oscillation of the hyperbolic delay differential equation

(13) 5 (pgue)

= a(t)V?u(z,t) + > ai(t)Au(z,t — ;) — q(z, t)u(z, )
i=1

- Z Qj(l" ) f(u(z, t - 0j))7
j=1

together with the boundary condition
Ou(z,t)

ON
where V?u is the Laplacian in R, (z,t) € Q x Rt = G, Rt = [0,00),
is a bounded domain in R™ with a piecewise smooth boundary 9, v(z,t)
is nonnegative continuous function on 9 x R, and N is the unit exterior
normal vector to 052, we refer to the papers [8]-[17],

Our aim in this paper is to establish some sufficient conditions for oscil-
lation of the IBVP (1.1), (B) in © xN,,, in the sense that there does not
exist n; € Ny, such that ympn > 0 0 Ymn < 0 for n € N, Our results can
be considered as the discrete analogues of some results in [8], [14]. To the

best of our knowledge nothing is known up to now regarding the qualitative
behavior of the IBVP (1.1), (B).

(B1) +v(z, t)u(z,t) =0, on (z,t) € I x RT,

2. Main results
In this section we will establish some oscillation criteria for IBVP (1.1),
(B). Before stating our main results we need the following:

LEMMA 2.1 ([7] (Discrete Gaussian formula)). Let 2 be a convez connected
solid net. Then we have

2
Z \% Ym—-1,n+1 = z ANym—l,n-
mesd medN
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THEOREM 2.1. Assume that (h1)—(h4) hold. Furthermore, assume that there
exists a positive sequence {pp}o2; such that,

L 2
(2.1) lim sup » [kplql _ (po)(Bp)”
e l=ng 4Pl
Then every solution of IBVP (1.1), (B) is oscillatory in @ X Np,.

Proof. Suppose, to a contrary, that {ym»} is a nonoscillatory solution of
the IBVP (1.1), (B). Without loss of generality, we may assume that there
exists n1 € Ny, such that y,n—p > 0 for all n € N,,. Summing Eq. (1.1)
over {2, we have

(2.2) As(pn Z AoYmn) + Z Imnf (Ymn—o)

mes) mef
2 2
=Tn 3 VYm-insi+ O Rin Y VYm 1n41-v;,
mefl jeJ mesd

for (m,n) € Q x Ny, .
From Lemma 2.1 and (B) we find that

(2.3) E VQym_1’n+1 = Z ANYm—1,n+1
meq meodN

= Z Imn+1Ymnt+1 <0, for n € Ny,
meof

Z v Ym—1in+l—y; = Z ANym 1Ln+1—v;
mefd meosd

=" Z Immn+1—v;Ymn+1-v; <0,
meod
for j € J and n € Ny,. From (h2) and by using the discrete Jensens’s
inequality, we have

(25) Z Qm,nf(ym,n—a) 2 gn Z f(ym,n—a')

mesd me
_anf( Zymn a>]Q|,forn€an
mesd | me)
Set
2.6 Ty = Ym,n-
(2.6) a mXG;)
Then, by (h4) and (2.2)-(2.6) we obtain
(2‘7) A(pnAwn) + kqnl'n—a <0,

where A is the ordinary difference operator. In view of (h2), we have
A(pnAl'n) < _kqnxn—a < 07 n € an
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and so {p,Az,} is nonincreasing sequence. We first show that p,Az, is
positive. Indeed, since {g,} has a positive subsequence, then p,Az, is of
constant sign. Suppose there exists an integer ny > n; such that p,,Az,, =
¢ < 0 for n > ny. Then p,Az, < ¢ which implies that

Az, < —,

Dn

and this yields

n—1

mngzn2+cz — — —o00 asn — 0o,

i=ny Pi
which contradicts the fact that z, > 0 for all sufficiently large n. Hence
pnlx, is positive. Therefore, we see that

(2.8) zTn >0, Azp, >0, A(prAz,) <0, n€N,,.
Define the sequence {w,} by

’U.A n
(29) Wn = pnp z )
Tn—0o
and observe that w, > 0, and
n TEA ‘I'LA n
(2.10) Awp = ppt1Azp 1A [ P ] + 2 g(:P d )
n—o n—o
Then (2.7) and (2.10) imply that
n nPn+1 Az,
(211) Awn —<_ _kpnqn'l' Ap Wpi1 — PnPrn+12Tn+1AT (7.
Pn+1 Tn4l-0Tn—o
But from (2.8), we have
(2~12) Pn-oATn_o 2 Pry1ATny1, and Tpyi-o = Tno,

and thus from (2.11) and (2.12), we obtain

A 1
(2.13)  Awp < —kpugn + 2wy — =2 = w2

Pn+1 (Pn+l)2 (pn—o)
So
2 A 2
o PO [
4pn Prt+1V (Pr—o) 2y/pPn
n—a) (Apn)?
<= Pnln — (p ai( Pn) ],
Pr
and hence
2
(2.14) Aw, < — [pnqn - @_’H’iffﬂ] )
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Summing (2.14) up from n; to n, we obtain
n

—Wp, < Wptl — Wny < — Z [kplql -

I=n4

(pl—a)(Apl)2]
4py ’

and this implies that

n 2
(2.15) > [kpzqz - (—p""ip#] <e

I=n,
for all sufficiently large n. This is a contrary to (2.1). The proof is complete.

For p, = n and p, = 1 in Theorem 2.1 then the condition (2.1) reduces
to -
= 1
2.16 i klgg — —=| = o0.
(2.16) lim sup [ lg; 41] 00

l=ng

From Theorem 2.1, by different choices of {p,} we can obtain different con-
ditions for oscillation of all solutions of the IBVP (1.1), (B) in € x N,,. Let
pn =n*, n>ng and A > 1 is a constant.

COROLLARY 2.1. Assume that all the assumption of Theorem 2.1 hold, except
that the condition (2.1) is replaced by

(2.17) nll,“go sup zn: lksAqs _ (ps—o) ((s + 1))\ - s/\)2‘| o

4>

s$=ng

Then, every solution of IBVP (1.1), (B) is oscillatory in € X Np,.

In the following theorem, we give the discrete analogue of Theorem 2 in
(8], [14].
THEOREM 2.2. Assume that (h1)~(h4) hold. Let {pn}32; be a positive se-

quence. Furthermore, we assume that there exists a double sequence {Hp p
m > n > 0} such that

(1) Hmm =0 form >0,
(ii) Hmpn >0 form >n >0,
(iil) AgHmpn = Hupnt1 — Hmpn <0 form >2n > 0.

Assume that

m—1

S [k npns,

m,ng n=ng

_ (Pr-o)Pin (hmn _Bpn n)2] — oo,
Pn

(2.18) "}E}noo sup

where
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(2.19) Bom s = _Beflmn s

m,n

Then every solution of IBVP (1.1), (B) is oscillatory in € X Ny,.

Proof. We proceed as in the proof of Theorem 2.1. Assume that IBVP (B)
has a nonoscillatory solution. Without loss of generality, we may assume
that it has a positive solution in © x Ny,. Following the proof of Theorem
2.1 we have z, > 0, Az, > 0, A(ppAz,) < 0 for n > n;. Defining again
{wn} by (2.9) we have that w, > 0 and (2.13) holds. Then from (2.13) we
have

A -—
(2.20) kongn < —Aw, + —piwnﬂ — —szﬁﬂ,
Pn+1 (Pn+1)
where p,, = Gf—’::; Therefore we have
m—1
(2.21) Z kHum npnqn
n=ni
m— Ap m—1 p
Z mnAwn + Z Hmn nwn+1 - Z Hm,n_'n—gwgﬂ-l
n=n n=nj Pn+1 n=ni (pn+1)
which yields, after summing up by part,
m—1
Z ka,nP'n,Qn
n=ni
m—1 m—1 Ap
< Hm,nlwnl + Z w'n+1A2Hm,n + Z Hm,n nwn+1
n=ni n=ni n+1
- Z 2w721+1
n=n n+1)
= Hm,nlwnl - Z hm nA/ mnwn+1 + Z Hmn nwn+1
n=ni n=ni P+
—1
- Z Hm,n 2w721+1 = Hp, ,n1Wny
n=nj ( Pn+1 )
- 2
_mzl VH'”"”"w+ +—Pndl ( VHmn - Bpn gy )
m,n
n=ni Prn+1 " 24/ Hmn Pn ™ ™ Prn+1

1 n A n 2
. Z p+1) (hm,n— p Hm,n) _

n=ni Pnt1
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Thus,
m—1 2 2
(Pn+1) Apn
Z ka,nann - hm,n - Hm,n) :I
n=ni |: 4pn Pn+1

< Hm,nlw'ru < Hm,nown1

which implies that

m—1 2 A 2
Z [ka,nann - (Pzi-l) (hm,n_ i Hm,n) }
n=ng p’n p’n+1
ni—1
< Hm,no (wnl + Z kPnQn)~
n=ng
Hence
m—1 2 2
. (Pn—H) ( Apn ) ]
lim su [kH n — ———={ R — H
m—oeo P m,ng n;o minfnd 4pn ™ Pn+1 -
n1—1
< (wm + Z kpnqn) < 00,
n=ng

which is a contrary to (2.18). The proof is complete.
As an immediate consequence of Theorem 2.2, we get the following:

COROLLARY 2.2. Assume that all the assumptions of Theorem 2.2 hold,
except that the condition (2.18) is replaced by

m—1
lim sup Z Hpnpngn = 00,
m—oo mno p=ng;
m—1

: 1 (Pn—c) Prt1 Apn 77\
n}l_I}’lm sup i Z o (hm,n - Hm,n> < o0.

mN0 p=ng Pn+1

Then every solution of IBVP (1.1), (B) is oscillatory in Q0 x Np,.

By choosing the sequence {Hy,,,} in an appropriate manner, we can
derive several oscillation criteria for the IBVP (1.1), (B) in X Np,. For
instance, let us consider the double sequence {Hp, »}! defined by

Hm,n:(m—n)’\, A>1,m>n>0,
(2.22) Hpp = (1og %)A A>1m>n>0,
Hm,n-——(m—n)()‘) A>2, m>n>0,
where (m —n)® = (m —n)(m-n+1)...(m —n+ A -1), and
Ag(m—n)® = (m—n-1)N - (m-n)® = —\(m —n) 3D,
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Then Hy,;m = 0 for m> 0 and Hy,, > 0 and AgHp,p, <0 for m > n > 0.
Hence we have the following results.

COROLLARY 2.3. Assume that oll the assumptions of Theorem 2.2 hold,
ezcept that the condition (2.18) is replaced by

m—1

1
li — 1) kpngn
im sup — Z [(m n) kpng

m—o0 =
2 2
—Bl_il-()\(m - n)¥ _ Bpn v/ (m— n)’\) ] = 00.

4p, Pn+1
Then every solution of IBVP (1.1), (B) is oscillatory in Q X Ng,.

COROLLARY 2.4. Assume that all the assumptions of Theorem 2.2 hold,
except that the condition (2.18) is replaced by

+1 A
li kpngn
ml_I}cl)osu (logm+1 ,\ Z [( 1) Pnd

_Pn+1< A (logm+1)T2_Apn (logm+1)A)2]:oo
4p, \n+1 n+1 Pril n+1 '

Then every solution of IBVP (1.1), (B) is oscillatory in §2 x Np,.

COROLLARY 2.5. Assume that all the assumptions of Theorem 2.2 hold,
except that the condition (2.18) is replaced by

1 ™=l p2 A Ap 2
I 1 _ (A)[knn_ n+1( _ n)]: .
ml_rgosup GY) nz=:0(m n) Pnq; 4ﬁn m_—n+i—1 il o0

Then every solution of IBVP (1.1), (B) is oscillatory in 0 X Ny,.
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