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KAMENEV-TYPE OSCILLATION CRITERIA 
FOR HYPERBOLIC DELAY DIFFERENCE EQUATIONS 

A b s t r a c t . Some new oscillation criteria and discrete Kamenev-type oscillation crite-
ria for hyperbolic nonlinear delay difference equations are obtained. 

1. Introduction 
Qualitative theory for discrete dynamics systems with one dimension, 

i.e., ordinary difference equations which parallels the qualitative theory of 
differential equations, has been investigated by several authors, see e.g., the 
monographs [1], [2] and the references cited therein. On the other hand, the 
nonlinear discrete dynamics systems involving functions of two or more inde-
pendent variables, i.e., partial difference equations (PDEs), are as important 
as difference equations, comparatively few papers have been devoted to the 
qualitative theory of their solutions, see, e.g., the review article of Zhang 
[18]. In fact, partial difference equations arise in the approximation of solu-
tions of partial differential equations by finite difference methods, random 
walk problems, the study on molecular orbits, mathematical physics prob-
lems and other problems in population dynamics [3]-[6] . Hence, to further 
develop the qualitative theory of partial difference equations, in this paper 
we shall consider the following hyperbolic nonlinear delay difference equa-
tion 

( 1 . 1 ) ^ 2 ( P n ^ 2 y m , n ) + qm,nf (yTn ,n-a ) 

= rnV2ym-i,n+i + •Rj>V2ym-ii„+i-7j, 
jeJ 

where {ym ,„} = {y m i , m 2 m , ,„} which is defined in f2 x N„0, J = {1 ,2 , 

• • •, Jo}, Nno = {n 0 , n0 + 1 , . . . } and fi = ( p ^ , . . . x . . . { p ^ , . . . , p 2 ( } 

and every p^ e Z :={...,-1,0,1,...}. 
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We will need the following definitions which are extracted from [7], 

DEFINITION 1.1. m is said to be an interior point of f2, if m + l : = { m i + l , 
m 2 , . . . , mi }U. . . U{mi, m2,.. . , mj_i, mi+1} and m- l := {mi- l , m 2 , . . . , m/}U 
... U{mi, m2,..., mi_i,mi — 1} are all in fî; f w h i c h consists of all interior 
points, is said to be interior of f1. 

DEFINITION 1.2. m is said to be a convex boundary point of F2, if me U and 
at least I points of m ± l are in iî; m is said to be a convex boundary point, 
if m, m ± l € fi but just one of the points { m i ± l , m2,... ,mi ± 1} is not 
in 0, where { m i ± l , m2,.. . , mi ± 1} := {mi + 1,7712,..., m/ + 1} U {m i — 
1, m2 + 1, . . . , mi + 1} U . . . U {mi — 1, m 2 , . . . , mi — 1}, dQ, which consists of 
all (convex and concave) boundary points, is said to be a boundary of Q. 

DEFINITION 1.3. f2 is said to be convex, if dCl consists only of all convex 
points. 

DEFINITION 1.4. m is said to be an exterior point, if it is neither an interior 
point nor a boundary point. 

DEFINITION 1.5. m is said to be (admissible) point, if at least two points of 
m ± l are in fI. 

DEFINITION 1.6. IL is said to be a connected net , if FI consists only of all 
(admissible) points. 

DEFINITION 1.7. If F2 is a rectangular solid net, then dQ. consists only of all 
convex boundary points, and Q a convex connected solid net. 

Throughout this paper we consider a convex connected solid net fi, and 
assume that the following conditions are satisfied: 

00 
(hi ) rn, pn G N„0 R+ , E r = o c ' € J x N„0 —> R+; 

n=no y n 

(h2) qmtn e ft x Nno R + , qn = minm€n{<?m,n}, n€ N„0, { g n } has a 
positive subsequence; 

(h3) a e Ni and 7j € Ni, for j € J, 
(h4) / 6 C(R, R) is convex, uf(u) > 0 for u ± 0, f(u) > ku. 

We write V 2 is the discrete Laplacian operator, which is defined by 
l 

V2ym-I,n+1 = E Amiymi,Tra2,...,mi_i,mi-i...,mi,ra+i) where A? is the partial 
¿=1 

difference operator of order two i.e., A2ym ,n = A j ( A 
J/mi,m2,...,mi+l,...,mj,n — J/mi,m2,,..,mi,...,mi,n and A2î/m,n = Vm,n+1 — ym,n-

With Eq. (1.1) we consider the boundary condition 

(B) Ajvj/m-l.n + gm,nym,n = 0, On dfl X Nno, 



Kamenev-type oscillation criteria 115 

and the initial condition (IC) 

( 1 . 2 ) ym,s = fJ-m,s, for n 0 - M < s < n 0 , 

where A/vym_i jn is the normal difference at (m, n) e dQ x Nno is defined 
b y ANym-i 
M = max{<7, 7j: and j 6 J} and gm<n 6 dfl x Nno —> M+. 

By a solution of initial boundary value problem (1.1), (B), (1.2) (for 
short we use the notion IBVP (1.1), (B)) we mean a sequence {ym,n} which 
satisfies Eq. (1.1) for (m,n) € f2 x Nno, satisfies (B) for (m,n) € dQ x Nno 

and satisfies IC (1.2) for (m, n) G ii x {no — M , . . . , no}. 
For the oscillation of the hyperbolic delay differential equation 

m 
= a(t)S72u(x, t ) + Y , di(t)Au(x, t — Tj) — q(x, t)u(x, t ) 

i=l 

n 

3 = i together with the boundary condition 

(Bl) + 7(x, i)u(x, i) = 0, on (x, t) 6 <9f2 x R+ , 

where V2u is the Laplacian in R", (x,t) £ il x »+ s G, 1+ = [0,oo), U 
is a bounded domain in R" with a piecewise smooth boundary dtt, j(x, t) 
is nonnegative continuous function on dQ, x R+ , and N is the unit exterior 
normal vector to <9fi, we refer to the papers [8]—[17], 

Our aim in this paper is to establish some sufficient conditions for oscil-
lation of the IBVP (1.1), (B) 

in fit xNno, in the sense that there does not 
exist n\ e N„0 such that ym,n > 0 or ym,n < 0 for n 6 Nni. Our results can 
be considered as the discrete analogues of some results in [8], [14]. To the 
best of our knowledge nothing is known up to now regarding the qualitative 
behavior of the IBVP (1.1), (B). 
2. Main results 

In this section we will establish some oscillation criteria for IBVP (1.1), 
(B). Before stating our main results we need the following: 

LEMMA 2.1 ([7] (Discrete Gaussian formula)). Let SI be a convex connected 
solid net. Then we have 

Y V2ym_l,n +1 = Y, AJVj/m-l.n• 
m€f2 mGdSl 



= oo. 
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THEOREM 2.1. Assume that ( h l ) - ( h 4 ) hold. Furthermore, assume that there 
exists a positive sequence {pn}^=i such that, 

( 2 , ) ^ „ p t ^ - G t ^ e J r 
l=no 1 M 

Then every solution of IBVP (1.1), (B) is oscillatory in Q x N„ 0 . 

P r o o f . Suppose, to a contrary, that {ym,n} is a nonoscillatory solution of 
the IBVP (1.1), (B). Without loss of generality, we may assume that there 
exists ni e N„0 such that ym,n-M > 0 for all n 6 N n i . Summing Eq. (1.1) 
over fi, we have 

(2.2) A 2 { P n &-iym,n) + J Z 1m,nf{ym,n-a) 
men men 

= rn ^2ym-l,n+l + ^ Rj,n ^ V2ym_ 1)n+i_7j, 
m£il jdJ men 

for (m, n) € i) x N n i . 

From Lemma 2.1 and (B) we find that 

( 2 - 3 ) X I ^2ym-l,n+l = A j v y m _ l , n + 1 
men m£dtt 

~ ~ ^2 9m,n+iym,n+l < 0, for f l 6 N „ „ 

(2.4) V 2 y m _ i ) T l + i - 7 j . = ^2 ^Nym-l^+l—fj 
men madCl 

= ^ ] 9m,n+l——jj — 0) 
m€df2 

for j e J and n € N n i . From (h2) and by using the discrete Jensens's 
inequality, we have 

(2.5) ^2 Qm,nf(ym,n-a) > Qn ^ fiym,n-a) 
men men 

f ( w \ 2 ym>n-°) M ' f o r n 6 N n l " men I men J 

Set 
(2-6) xn = — J2 Vm,n-

lSil men 
Then, by (h4) and (2.2)-(2.6) we obtain 

(2.7) A(pnAxn) + kqnxn_a < 0, 

where A is the ordinary difference operator. In view of (h2), we have 

A(pnAxn) < -kqnxn-a < 0, n 6 N n i , 
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and so { p n A x n } is nonincreasing sequence. We first show that pnAxn is 
positive. Indeed, since {qn} has a positive subsequence, then pnAxn is of 
constant sign. Suppose there exists an integer «2 > n\ such that pni A x m = 
c < 0 for n > ri2- Then pnAxn < c which implies that 

Axn < —, 
Pn 

and this yields 
n— 1 i 

•— Pi i=n2 ^ 
oo as n —> oo, 

which contradicts the fact that xn > 0 for all sufficiently large n. Hence 
pnAxn is positive. Therefore, we see that 

( 2 . 8 ) xn > 0 , Axn > 0 , A ( p nAxn) < 0 , n 6 N m . 

Define the sequence {wn} by 

/o PnAx n (2.9) wn = pn-
— r 

Pn pnA(pnAxn) 

Xn—fi 

and observe that wn > 0, and 

(2.10) Awn = Pn+lAXn+lA 

Then (2.7) and (2.10) imply that 

/ 0 1 1 s A ^ , , &Pn PnPn+lAXn+iAXn-g (2.11) Awn < —kpnln H Wn+1 
Pn+1 ^n+l—cr^n—cr 

But from (2.8), we have 

(2.12) pn-oAxn-a > pn+iAxn+i, and 2-71+1—a ^ Kn—oi 

and thus from (2.11) and (2.12), we obtain 

(2.13) 

So 

Awn < —kpnqn + 

a ^ / , Pn 1 
Awn < -kpnqn H wn+i -

< -

and hence 

(2.14) 

pnqn -

Pn+l 

(Pn—a) (Ap n ) 2 

4 pn 

iPn—cr) (APn)2 

Awn < ~ pnQn 

(pn+l) (Pn-a) 
w: n+l-

y/p^ 

Pn+lV(Pn-a) 
Wn+1 ~ 

yJ (Pn-o )Ap n 

2\fpn 

(Pn-a) (Apn 

4 Pn 
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Summing (2.14) up from ni to n, we obtain 

-wni < wn+1 - wm < - E 

l=n\ 

and this implies that 

kpiqi -
(pi^)(Api) 2-i 

4pi 

(2.15) E 
l=n\ 

kpiqi 
(p/_ff) (Api) 21 

< ci 

for all sufficiently large n. This is a contrary to (2.1). The proof is complete. 

For pn = n and pn = 1 in Theorem 2.1 then the condition (2.1) reduces 
to 

(2.16) klqi - Tl = oo. lim sup V 
.1—•oo ^ 

l=n o 

Prom Theorem 2.1, by different choices of {pn} we can obtain different con-
ditions for oscillation of all solutions of the IBVP (1.1), (B) in 0, x Nn o . Let 
pn = nx, n > no and A > 1 is a constant. 

COROLLARY 2.1. Assume that all the assumption of Theorem 2.1 hold, except 

that the condition (2.1) is replaced by 

( i w ) ( ( S + l ) A - S A ) 2 " 
(2.17) lim sup £ 

s=n o 

ks qs -
4 sA 

= oo. 

'no-Then, every solution of IBVP (1.1), (B ) is oscillatory in f i x 

In the following theorem, we give the discrete analogue of Theorem 2 in 
[8], [14]. 

THEOREM 2.2. Assume that (h l ) - (h4 ) hold. Let {pn}^=l be a positive se-

quence. Furthermore, we assume that there exists a double sequence {Hm^n : 

m > n > 0} such that 

( i ) i i m , m = 0 for m > 0, 
(ii) Hmn > 0 for m > n > 0, 

(iii) A2#m,n = Hm,n+1 - #m,n < 0 for m > n > 0. 

Assume that 
i m— 1 

(2.18) lim sup 

where 

H, E m,n0 n = n o 
kHm,nPnQn 

'n-

Pn \ ' Pn+1 

(Pn-<r)pl+1 ( u Apn [7} V 

Pn \ Pn+1 V J 
- OO, 
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(2.19) V n = - m > n > 0. 
V "m,n 

Then every solution of IBVP (1.1), (B) is oscillatory in Q, x Nno. 

P r o o f . We proceed as in the proof of Theorem 2.1. Assume that IBVP (B) 
has a nonoscillatory solution. Without loss of generality, we may assume 
that it has a positive solution in ii x Nno. Following the proof of Theorem 
2.1 we have xn > 0, Axn > 0, A(pnAxn) < 0 for n > n\. Defining again 
{u;n} by (2.9) we have that wn > 0 and (2.13) holds. Then from (2.13) we 
have 

(2.20) kpnqn < -Awn + 1 - . ¿ i , 

Pn+l (Pn+ir 

where pn = .̂ Therefore we have 
m—1 

(2.21) kHm,nPnqn 

n=ni 
7n—1 m—1 Ap 771—1 _ 

n=n\ n=n\ Pn+l n=ni \Pn+lj 

which yields, after summing up by part, 

771—1 
^ ] kHm,nPnQn 

7 1 = 7 1 1 

771—1 771—1 Ap 
,71 ^n+1 

7i=ni n=ni Pn+1 
m—1 _ 

Err Pn 2 Hm,n-
n=ni IPn+lJ 

m—1 m—1 ^^ 
= H m ,711̂ 711 / h m n J H m , n w n + 1 + \ H m n ^n+i V Pn+l 

' 771,771 ^ 7 1 1 

7 1 = 7 1 1 7 1 = 7 1 1 

771—1 _ 

n=ni IPn+lJ 
771—1 

^ ] ' "'n+I ~r 7> /tt — | "'771,71 V ±±m,n ~ -"m.n 
7 1 = 7 1 1 

771-1 / \2 / A V 2 

sJHm,npn_ pn+1 f r~ Apn 
" ' T l + l T 0 / T T 1 " '771 ,71 V ^ 7 7 1 , 7 1 - " 1 w 7 l - t ~ I ' ~ / T T — I ' v771,7l A/ " 7 n , n 

Pn+1 ¿\/Jtlm,nPn V Pn+1 

, 1 ^ (Pn+l)2 ^ _ ^ P n /77 ' T . / _ I "•m,n V f l m n pn V Pn+l 
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Thus, 
m—1 

E 
n=ni 

,TT (Pn+1)2 i , 
KJ^m,nPnQn : I ^ 

4/>n 
A pn 

m,n ^ \J Hmn Pn+1 

^ Hm,ni'UJni < Hmn0u>m 
which implies that 
m— 1 

E 
71=710 

? TT (Pn+L) f u APn /77 

Pn+l 

2i 

ni — 1 
< #m,n0 (ifni + E kPnQnj • 

Hence 

lim sup 
H, 

m— 1 

E m,n0 n=n0 

lrTT n n _ ]!/'/, _ ^m,71 PnQn { »¿m.-n. 
4pn P n + l 

n=n o 

H m n 

2l 

ni — 1 
< + E kPn<ln) < OO, 

71=710 
which is a contrary to (2.18). The proof is complete. 

As an immediate consequence of Theorem 2.2, we get the following: 

COROLLARY 2.2. Assume that all the assumptions of Theorem 2.2 hold, 
except that the condition (2.18) is replaced by 

-i 771—1 
lim sup — 

77l-»00 H, 

I 771—1 

^ ] Hm,nPnQn — CO, 
m,no n—n0 

, 2 

lim sup 
H„ 

A/9„ 
lm,n ^ \J Hmr < OO. 

im,7io n=no Pn \ Pn+l 

Then every solution of IBVP (1.1), (B) is oscillatory in Q x Nno. 

By choosing the sequence { i i m ,n } in an appropriate manner, we can 
derive several oscillation criteria for the IBVP (1.1), (B) in Q x Nno. For 
instance, let us consider the double sequence { i i m , n } ! defined by 

= {th ~ A > 1, m > n > 0, 

Hm,n = (log , A > 1, m > n > 0, 
Hmin = (m - n)^ A > 2, m > n > 0, 

where (m — n ) ^ = (m — n)(m — n + 1 ) . . . (m — n + A — 1), and 

A 2 (m - n) (A) = (m - n - 1)W - (m - n)<A> - - A ( m - n ) ( A _ 1 ) . 

(2.22) 
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T h e n HmiTn = 0 fo r m > 0 a n d Hm^n > 0 a n d A 2 H m , n < 0 for m > n > 0. 
H e n c e we h a v e t h e fo l lowing r e s u l t s . 

COROLLARY 2.3. Assume that all the assumptions of Theorem 2 .2 hold, 
except that the condition (2 .18) is replaced by 

1 m—1 
l im s u p T- V 

m—>00 m 
n=0 

( m - ri) kpnqn 

4/>„ V Pn+1 V 

2-1 
= OO. 

Then every solution of IBVP (1 .1) , (B) is oscillatory i n f i x N n o . 

COROLLARY 2.4. Assume that all the assumptions of Theorem 2 .2 hold, 
except that the condition (2 .18) is replaced by 

-1 m—1 
l im s u p E 00 ( l o g ( m + 1 ) ) A ^ 0 

A 

1 m + 1 V » . log kPnQn 

PÌ+1 log 

n + 1 J 

m + 1 \ 2 

t ) 

APn l i l o g m + l\X\2-
= OO. 

Apn \ n + 1 \ n + 1 / / 9 n + i V V n + 1 

T/ ien e-uen/ solution of IBVP (1 .1) , (B) is oscillatory in i l x N n o . 

COROLLARY 2.5. Assume that all the assumptions of Theorem 2 .2 hold, 
except that the condition (2 .18) is replaced by 

r „2 / \ A ^ \ 2-1 
l im sup—î-rv T(m-n)W %-*00 ^ m (A) v 7 kpnQn P Ì W A A/On V 

Apn \ m - n + A - 1 p n + i / 
= 00. 

T/ien even / solution of IBVP (1 .1) , (B) is oscillatory inU x N „ 0 . 
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