

C. F. Li, Yong Zhou, X. N. Luo

ON SEMICYCLES OF SOLUTIONS OF NONLINEAR DIFFERENCE EQUATIONS WITH SEVERAL DELAYS

Abstract. In this paper, we study the semicycles of oscillatory solutions of nonlinear difference equation with several delays

$$(ax_{n+1} + bx_n)^k - (cx_n)^k + \sum_{i=1}^m p_i(n)x_{n-\sigma_i}^k = 0,$$

where $a, b, c \in (0, \infty)$, $c - b > 0$, $k = q/r$, q, r are positive odd integers, m, σ_i are positive integers, $\{p_i(n)\}$ is a real sequence with $p_i(n) \geq 0$ for all large n . Upper bound of numbers of terms of semicycles are determined.

1. Introduction

Consider the nonlinear delay difference equation

$$(1) \quad (ax_{n+1} + bx_n)^k - (cx_n)^k + \sum_{i=1}^m p_i(n)x_{n-\sigma_i}^k = 0,$$

where $a, b, c \in (0, \infty)$, $c - b > 0$, $k = q/r$, q, r , are positive odd integers, m, σ_i are positive integers, $\{p_i(n)\}$ is a real sequence with $p_i(n) \geq 0$ for all large n . In the following, we assume that

$$(2) \quad p_i(n) \geq p_i \geq 0, \quad n \geq n_0, \quad i = 1, 2, \dots, m.$$

Recently, the semicycles of solutions of the delay difference equations have been investigated by Zhou and Zhang [10-13]. Our purpose in this paper is to study the semicycles of solutions of Eq.(1). In Section 2, we determine upper bound of numbers of terms of semicycles of (1) in following two cases:

- (i) when the characteristic equation of (1) has no positive real roots;
- (ii) when the characteristic equation of (1) has positive real roots.

Key words and phrases: semicycles, oscillation, difference equations.

1991 *Mathematics Subject Classification:* 39A.

Research supported by National Natural Science Foundation of P.R. China and Research Fund of Hunan Provincial Education Department (01B003).

For the sake of convenience, we set

$$N[u, v] = \{u, u+1, \dots, v-1, v\},$$

where u, v are positive integers, and

$$\sigma = \max_{1 \leq i \leq m} \sigma_i.$$

The following definitions can be found in [3], [4].

DEFINITION 1. [3] A nontrivial solution $\{y_n\}$ of Eq.(1) is said to be oscillating about zero or simply oscillates if the terms y_n of the sequence $\{y_n\}$ are neither eventually all positive nor eventually all negative. Otherwise, the solution is called nonoscillatory.

DEFINITION 2. [4] A positive semicycle of a solution $\{y_n\}$ of Eq.(1) consists of a “string” of terms $\{y_s, y_{s+1}, \dots, y_t\}$, all greater than or equal to zero, with $s \geq -\sigma$ and $t \leq \infty$ and such that

$$\text{either } s = -\sigma \text{ or } s > -\sigma \text{ and } y_{s-1} < 0,$$

and

$$\text{either } t = \infty \text{ or } t < \infty \text{ and } y_{t+1} < 0.$$

A negative semicycle of a solution $\{y_n\}$ consists of a “string” of terms $\{y_s, y_{s+1}, \dots, y_t\}$, all less than zero, with $s \geq -\sigma$ and $t \leq \infty$ and such that

$$\text{either } s = -\sigma \text{ or } s > -\sigma \text{ and } y_{s-1} \geq 0,$$

and

$$\text{either } t = \infty \text{ or } t < \infty \text{ and } y_{t+1} \geq 0.$$

2. Main results

First we define a sequence $\{A_r\}$ by

$$(3) \quad A_1 = \frac{a}{c-b}, \quad A_{r+1} = \frac{1}{c} \left[(a + bA_r)^k + \sum_{i=1}^m p_i A_r^{k(1+\sigma_i)} \right]^{\frac{1}{k}}, \quad r = 1, 2, \dots$$

One can check that $\{A_r\}$ is increasing.

Next, we also define a sequence $\{B_r\}$ by

$$(4) \quad B_1 = \frac{c-b}{a}, \quad B_{r+1} = \frac{1}{a} \left[(c^k - \sum_{i=1}^m p_i B_r^{-k\sigma_i})^{\frac{1}{k}} - b \right], \quad r = 1, 2, \dots$$

LEMMA 1. Assume that the sequence $\{A_r\}$ is defined by (3) and that

$$(5) \quad (a\lambda + b)^k - c^k + \sum_{i=1}^m p_i \lambda^{-k\sigma_i} = 0,$$

has no positive real roots. Then $\lim_{r \rightarrow \infty} A_r = \infty$.

Proof. If not, since $\{A_r\}$ is increasing, then $\lim_{r \rightarrow \infty} A_r = d > 0$ exists. Let $r \rightarrow \infty$ in (3), we get

$$d = \frac{1}{c} \left[(a + bd)^k + \sum_{i=1}^m p_i d^{k(1+\sigma_i)} \right]^{\frac{1}{k}},$$

which implies

$$(a + bd)^k - (cd)^k + \sum_{i=1}^m p_i d^{k(1+\sigma_i)} = 0,$$

i.e.,

$$\left(a \frac{1}{d} + b \right)^k - c^k + \sum_{i=1}^m p_i \left(\frac{1}{d} \right)^{-k\sigma_i} = 0.$$

This implies that $\lambda = \frac{1}{d}$ is a positive root of (5). This is a contradiction. The proof is completed.

LEMMA 2. *Assume that the sequence $\{B_r\}$ is defined by (4) and that (5) has positive real roots. Then $\{B_r\}$ is nonincreasing and $\lim_{r \rightarrow \infty} B_r = \lambda_*$, where λ_* is the largest root of equation (5) on $(0, \frac{c-b}{a}]$.*

Proof. First, we prove the sequence $\{B_r\}$ is nonincreasing. Since

$$B_2 = \frac{1}{a} \left[(c^k - \sum_{i=1}^m p_i B_1^{-k\sigma_i})^{\frac{1}{k}} - b \right] \leq \frac{c-b}{a} = B_1.$$

Hence, by induction, suppose that $B_r \leq B_{r-1}$. Then we have

$$B_{r+1} = \frac{1}{a} \left[(c^k - \sum_{i=1}^m p_i B_r^{-k\sigma_i})^{\frac{1}{k}} - b \right] \leq \frac{1}{a} \left[(c^k - \sum_{i=1}^m p_i B_{r-1}^{-k\sigma_i})^{\frac{1}{k}} - b \right] = B_r.$$

Thus, the sequence $\{B_r\}$ is nonincreasing. From (5), it is obvious that $B_1 \geq \lambda_*$, by induction

$$B_{r+1} = \frac{1}{a} \left[(c^k - \sum_{i=1}^m p_i B_r^{-k\sigma_i})^{\frac{1}{k}} - b \right] \geq \frac{1}{a} \left[(c^k - \sum_{i=1}^m p_i \lambda_*^{-k\sigma_i})^{\frac{1}{k}} - b \right] = \lambda_*.$$

Hence, $\{B_r\}$ is nonincreasing and bounded. Therefore, $\lim_{r \rightarrow \infty} B_r$ exists. Letting $r \rightarrow \infty$, we have $\lim_{r \rightarrow \infty} B_r = \lambda_*$. The proof is completed.

THEOREM 1. *Assume that (2) holds and that (5) has no positive real roots. Then every nontrivial solution of (1) oscillates and every negative semicycle of every oscillatory solution of (1) has at most $2 + R\sigma$ terms, and every positive semicycle of every oscillatory solution of (1) has at most $2 + R\sigma$*

consecutive terms greater than zero, where

$$(6) \quad R = \min_{r \geq 2} \left\{ r \mid \left(\frac{1}{c^k - b^k} \sum_{i=1}^m p_i A_{r-1}^{k(\sigma_i-1)} \right)^{\frac{1}{k}} A_r \geq 1 \right\}.$$

P r o o f. Otherwise, without loss of generality, we assume that $\{x_n\}$ is a solution of (1) satisfying $x_n > 0$ on $N[n_1, n_1 + R\sigma + 2]$ for any $n_1 \geq n_0$. Then, $x_{n-\sigma_i} > 0$, ($i = 1, 2, \dots, m$) on $N[n_1 + \sigma, n_1 + R\sigma + 2]$. Therefore from (1) we have

$$(7) \quad x_n \geq \frac{a}{c-b} x_{n+1} = A_1 x_{n+1}, \quad n \in N[n_1 + \sigma, n_1 + R\sigma + 2].$$

By iteration, we get

$$(8) \quad x_{n-\sigma_i} \geq A_1^{\sigma_i+1} x_{n+1}, \quad n \in N[n_1 + 2\sigma, n_1 + R\sigma + 2].$$

Using (1), (2) and (8) we have

$$\begin{aligned} (cx_n)^k &= (ax_{n+1} + bx_n)^k + \sum_{i=1}^m p_i(n) x_{n-\sigma_i}^k \\ &\geq (ax_{n+1} + bA_1 x_{n+1})^k + \sum_{i=1}^m p_i A_1^{k(1+\sigma_i)} x_{n+1}^k, \end{aligned}$$

i.e.

$$\begin{aligned} x_n &\geq \frac{1}{c} \left[(a + bA_1)^k + \sum_{i=1}^m p_i A_1^{k(1+\sigma_i)} \right]^{\frac{1}{k}} x_{n+1} \\ &= A_2 x_{n+1}, \quad n \in N[n_1 + 2\sigma, n_1 + R\sigma + 2], \end{aligned}$$

which gives by iteration

$$x_{n-\sigma_i} \geq A_2^{1+\sigma_i} x_{n+1}, \quad n \in N[n_1 + 3\sigma, n_1 + R\sigma + 2].$$

Repeating the above procedure, we get

$$(9) \quad x_n \geq A_{R-1} x_{n+1}, \quad n \in N[n_1 + (R-1)\sigma, n_1 + R\sigma + 2],$$

which gives

$$(10) \quad x_{n_1+R\sigma-\sigma_i} \geq A_{R-1}^{\sigma_i+1} x_{n_1+1+R\sigma}.$$

Hence, from (1), (9) and (10), we have

$$\begin{aligned} (cx_{n_1+R\sigma})^k &= (ax_{n_1+R\sigma+1} + bx_{n_1+R\sigma})^k + \sum_{i=1}^m p_i(n_1 + R\sigma) x_{n_1+R\sigma-\sigma_i}^k \\ &\geq (a + bA_{R-1})^k x_{n_1+R\sigma+1}^k + \sum_{i=1}^m p_i A_{R-1}^{k(1+\sigma_i)} x_{n_1+R\sigma+1}^k \end{aligned}$$

$$\geq \left[(a + bA_{R-1})^k + \sum_{i=1}^m p_i A_{R-1}^{k(1+\sigma_i)} \right] x_{n_1+R\sigma+1}^k$$

i.e.,

$$(11) \quad x_{n_1+R\sigma} \geq \frac{1}{c} \left[(a + bA_{R-1})^k + \sum_{i=1}^m p_i A_{R-1}^{k(1+\sigma_i)} \right]^{\frac{1}{k}} x_{n_1+R\sigma+1} \\ = A_R x_{n_1+R\sigma+1}.$$

On the other hand, from (9) we have

$$(12) \quad x_{n_1+R\sigma+1-\sigma_i} \geq A_{R-1}^{\sigma_i-1} x_{n_1+R\sigma}.$$

Therefore, by (1) and (12)

$$(cx_{n_1+R\sigma+1})^k = (ax_{n_1+R\sigma+2} + bx_{n_1+R\sigma+1})^k \\ + \sum_{i=1}^m p_i (n_1 + R\sigma + 1) x_{n_1+R\sigma+1-\sigma_i}^k \\ > (bx_{n_1+R\sigma+1})^k + \sum_{i=1}^m p_i A_{R-1}^{k(\sigma_i-1)} x_{n_1+R\sigma}^k,$$

i.e.,

$$(c^k - b^k) x_{n_1+R\sigma+1}^k > \left(\sum_{i=1}^m p_i A_{R-1}^{k(\sigma_i-1)} \right) x_{n_1+R\sigma}^k,$$

which implies

$$(13) \quad x_{n_1+R\sigma+1} > \left(\frac{1}{c^k - b^k} \sum_{i=1}^m p_i A_{R-1}^{k(\sigma_i-1)} \right)^{\frac{1}{k}} x_{n_1+R\sigma}.$$

Then (11) and (13) can be reduced to

$$\frac{1}{A_R} \geq \frac{x_{n_1+R\sigma+1}}{x_{n_1+R\sigma}} > \left(\frac{1}{c^k - b^k} \sum_{i=1}^m p_i A_{R-1}^{k(\sigma_i-1)} \right)^{\frac{1}{k}}.$$

The latter implies

$$\left(\frac{1}{c^k - b^k} \sum_{i=1}^m p_i A_{R-1}^{k(\sigma_i-1)} \right)^{\frac{1}{k}} A_R < 1,$$

what contradicts with (6) and completes the proof.

THEOREM 2. *Assume that (2) holds and that (5) has positive real roots. Further assume that there exists a subsequence $\{n_s\}_{s=1}^{\infty} \subset \{1, 2, \dots\}$ such*

that $|n_{s+1} - n_s| \leq N$ and $p_i(n_s + 1) \geq L_i$ and that

$$\left(\frac{1}{c^k - b^k} \sum_{i=1}^m L_i \lambda_*^{k(1-\sigma_i)} \right)^{\frac{1}{k}} > \frac{c-b}{a},$$

where λ_* is the largest root of (5) on $(0, \frac{c-b}{a}]$. Then every nontrivial solution of (1) oscillates and every negative semicycle of every oscillatory solution of (1) has at most $N + R\sigma$ terms, and every positive semicycle of every oscillatory solution of (1) has at most $N + R\sigma$ consecutive terms greater than zero, where

$$(14) \quad R = \min_{r \geq 2} \left\{ r \mid \left(\frac{1}{c^k - b^k} \sum_{i=1}^m L_i B_{r-1}^{k(1-\sigma_i)} \right)^{\frac{1}{k}} \geq \frac{c-b}{a} \right\}.$$

P r o o f. Otherwise, without loss of generality, we assume that $\{x_n\}$ is a solution of (1) satisfying $x_n > 0$ on $N[n_1, n_1 + N + R\sigma]$ for any $n_1 \geq n_0$. Then there exists an \bar{n}_s such that $N[\bar{n}_s - R\sigma, \bar{n}_s + 1] \subset N[n_1, n_1 + N + R\sigma]$. Hence, $x_{n-\sigma_i} > 0$, $i = 1, 2, \dots, m$ on $N[\bar{n}_s - R\sigma + \sigma, \bar{n}_s + 1]$. Therefore, from (1) we have

$$(15) \quad x_n \geq \frac{a}{c-b} x_{n+1} = B_1^{-1} x_{n+1}, n \in N[\bar{n}_s - R\sigma + \sigma, \bar{n}_s + 1].$$

By iteration, we get

$$(16) \quad x_{n-\sigma_i} \geq B_1^{-\sigma_i} x_n, n \in N[\bar{n}_s - R\sigma + 2\sigma, \bar{n}_s + 1].$$

Using (1), (2) and (16) we have

$$(ax_{n+1} + bx_n)^k \leq (cx_n)^k - \sum_{i=1}^m p_i B_1^{-k\sigma_i} x_n^k, n \in N[\bar{n}_s - R\sigma + 2\sigma, \bar{n}_s + 1],$$

i.e.,

$$x_{n+1} \leq \frac{1}{a} \left[(c^k - \sum_{i=1}^m p_i B_1^{-k\sigma_i})^{\frac{1}{k}} - b \right] x_n = B_2 x_n, n \in N[\bar{n}_s - R\sigma + 2\sigma, \bar{n}_s + 1],$$

which gives by iteration

$$x_{n-\sigma_i} \geq B_2^{-\sigma_i} x_n, n \in N[\bar{n}_s - R\sigma + 3\sigma, \bar{n}_s + 1].$$

Repeating the above procedure, we get

$$(17) \quad x_{n+1} \leq B_{R-1} x_n, n \in N[\bar{n}_s - \sigma, \bar{n}_s + 1],$$

which gives

$$(18) \quad x_{\bar{n}_s + 1 - \sigma_i} \geq B_{R-1}^{1-\sigma_i} x_{\bar{n}_s}.$$

Hence, from (1), (17) and (18)

$$\begin{aligned} \frac{c-b}{a} = B_1 &\geq B_{R-1} \geq \frac{x_{\bar{n}_s+1}}{x_{\bar{n}_s}} > \left[\frac{1}{c^k - b^k} \sum_{i=1}^m p_i (\bar{n}_s + 1) \left(\frac{x_{\bar{n}_s+1-\sigma_i}}{x_{\bar{n}_s}} \right)^k \right]^{\frac{1}{k}} \\ &> \left(\frac{1}{c^k - b^k} \sum_{i=1}^m L_i B_{R-1}^{k(1-\sigma_i)} \right)^{\frac{1}{k}}, \end{aligned}$$

i.e.,

$$\left(\frac{1}{c^k - b^k} \sum_{i=1}^m L_i B_{R-1}^{k(1-\sigma_i)} \right)^{\frac{1}{k}} < \frac{c-b}{a}.$$

This contradicts with (14) and completes the proof.

EXAMPLE 1. Consider the nonlinear difference equation with several delays

$$(19) \quad (ax_{n+1} + bx_n)^k - (cx_n)^k + \sum_{i=1}^m p_i(n) x_{n-\sigma_i}^k = 0.$$

Let

$$\begin{aligned} p_1(0) &= \frac{4}{3}, \quad p_1(1) = \frac{3}{4}, \quad p_1(n+2) = p_1(n), \\ p_2(0) &= \frac{3}{4}, \quad p_2(1) = \frac{1}{2}, \quad p_2(n+2) = p_2(n), \quad n = 0, 1, 2, \dots, \\ k &= 3, \quad a = 1, \quad b = 1, \quad c = 2, \quad m = 2, \quad \sigma_1 = 1, \quad \sigma_2 = 2. \end{aligned}$$

By Corollary 2 in [14], we know that (5) has no positive roots. Hence, by Theorem 1, every solution of equation (19) oscillates. By simple calculation, we have

$$A_1 = 1, \quad A_{r+1} = \frac{1}{2} \left((1 + A_r)^3 + \frac{3}{4} A_r^6 + \frac{1}{2} A_r^9 \right)^{\frac{1}{3}}, \quad r = 1, 2, \dots$$

$$\begin{aligned} D_r &= \left(\frac{1}{c^k - b^k} \sum_{i=1}^m p_i A_{r-1}^{k(\sigma_i-1)} \right)^{\frac{1}{k}} A_r \\ &= \left(\frac{1}{7} \left(\frac{3}{4} + \frac{1}{2} A_r^9 \right) \right)^{\frac{1}{3}} A_{r+1}, \quad r = 2, 3, \dots, \end{aligned}$$

$$A_2 = 1.04958411345210, \quad D_2 = 0.591045941561356$$

$$A_3 = 1.09088444064887, \quad D_3 = 0.626843391013837$$

$$A_4 = 1.12854970603156, \quad D_4 = 0.659837157231824$$

$$A_5 = 1.16588262341269, \quad D_5 = 0.692783138623273$$

$$A_6 = 1.20604337743297, \quad D_6 = 0.728440715710422$$

$$A_7 = 1.25314448952005, \quad D_7 = 0.770504103651539$$

$$A_8 = 1.31408290707526, \quad D_8 = 0.825281967414030$$

$$A_9 = 1.40305282844783, \quad D_9 = 0.905969354928884$$

$$A_{10} = 1.55591395623001, \quad D_{10} = 1.04667945569338$$

Hence, $R = 10$. Therefore, every negative semicycle of every eventually nontrivial solution of (19) has at most $2 + 2 \times 10 = 22$ terms, and every positive semicycle of every eventually nontrivial solution of (19) has at most 22 consecutive terms greater than zero.

References

- [1] R. P. Agarwal and P. J. Y. Wong, *Advanced Topics in Difference Equations*, Kluwer Academic Publishers, 1997.
- [2] L. H. Erbe and B. G. Zhang, *Oscillations of discrete analogue of delay equations*, Diff. Integral Equations 2 (1989), 300–309.
- [3] I. Györi and G. Ladas, *Oscillation Theory of Delay Differential Equations with Applications*, Oxford Science Publications, 1991.
- [4] Y. L. Kocic and G. Ladas, *Global Behavior of Nonlinear Difference Equations of Higher Order with Applications*, Kluwer Academic Publishers, 1993.
- [5] I. G. E. Kordonis and Ch. G. Philos, *Oscillation and nonoscillation in linear delay or advanced difference equations*, Math. Comput. Modelling 27(7), (1998), 11–24.
- [6] G. Ladas, *Explicit conditions for the oscillation of difference equations*, J. Math. Anal. Appl. 153 (1990), 276–287.
- [7] G. Ladas, *Recent developments in the oscillation of delay difference equations*, Differential Equation: Stability and Control, Lecture Notes in Pure and Applied Mathematics, Vol. 127. Marcel Dekker, New York, 1991.
- [8] G. Ladas, C. G. Philos and Y. G. Sficas, *Sharp conditions for the oscillations of delay difference equations*, J. Appl. Math. Simulations 2 (1989), 101–112.
- [9] Y. Zhou and B. G. Zhang, *Oscillations of delay difference equations in a critical state*, Comput. Math. Appl. 39(7-8) (2000), 71–80.
- [10] B. G. Zhang and Y. Zhou, *On the semicycles of solutions of delay difference equations*, Comput. Math. Appl. 38(7-8) (1999), 31–38.
- [11] Y. Zhou and B. G. Zhang, *On the semicycles of solutions of neutral difference equations*, Appl. Math. Lett. 13(5) (2000), 59–66.
- [12] Y. Zhou and B. G. Zhang, *An estimate of numbers of terms of semicycles of delay difference equations*, Comput. Math. Appl. 41(5-6) (2001), 571–578.
- [13] B. G. Zhang and Y. Zhou, *The semicycles of solutions of nonlinear difference equations with several delays*, Comput. Math. Appl. 42(3-5) (2001), 413–418.
- [14] X. N. Luo, C. F. Li and Y. Zhou, *Oscillation of nonlinear delay difference equations*, (to appear).

DEPARTMENT OF MATHEMATICS
 XIANGTAN UNIVERSITY
 HUNAN 411105, P. R. CHINA
 E-mail: yzhou@xtu.edu.cn

Received November 12, 2001.