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ON SEMICYCLES OF SOLUTIONS OF N O N L I N E A R 
D I F F E R E N C E EQUATIONS W I T H SEVERAL DELAYS 

Abstract . In this paper, we study the semicycles of oscillatory solutions of nonlinear 
difference equation with several delays 

m 

(ain+1 + bxn)k — (CXn)k + ^ ^PijnjXn-Oj = 0, 
i= 1 

where a, b, c £ (0, oo), c — b > 0, k = q/r, q, r are positive odd integers, m, aj are positive 
integers, {p^(n)} is a real sequence with Pi(n) > 0 for all large n. Upper bound of numbers 
of terms of semicycles are determined. 

1. Introduction 
Consider the nonlinear delay difference equation 

m 
(1) ( ax n + i + bxn)k - (cxn)k + ^Pi{n)xk

n_ai = 0, 
¿=i 

where a, 6, c 6 (0,oo), c — b > 0, k = q/r, q, r, are positive odd integers, 
in, Oi are positive integers, {pl(n)} is a real sequence with pi(n) > 0 for all 
large n. In the following, we assume that 
(2) Pi{n)>pi>0, n > n0, i = 1, 2 , . . . , m. 

Recently, the semicycles of solutions of the delay difference equations have 
been investigated by Zhou and Zhang [10-13]. Our purpose in this paper is 
to study the semicycles of solutions of Eq.(l). In Section 2, we determine 
upper bound of numbers of terms of semicycles of (1) in following two cases: 

(i) when the characteristic equation of (1) has no positive real roots; 
(ii) when the characteristic equation of (1) has positive real roots. 
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For the sake of convenience, we set 

N[u, v] = {u, u + 1,..., v — 1, t>}, 

where u, v are positive integers, and 

a = max cr̂ . 1 <i<m 
The following definitions can be found in [3], [4], 

DEFINITION 1. [3] A nontrivial solution {yn} of Eq.(l) is said to be oscil-
lating about zero or simply oscillates if the terms yn of the sequence {yn} 
are neither eventually all positive nor eventually all negative. Otherwise, the 
solution is called nonoscillatory. 

DEFINITION 2 . [4] A positive semicycle of a solution {yn} of Eq.(l) consists 
of a "string" of terms {ys, y s + i , . . . , yt}, all greater than or equal to zero, 
with s > —a and t < oo and such that 

either s = —a or s > —a and ys-i < 0, 

and 
either t = oo or t < oo and yt+1 < 0. 

A negative semicycle of a solution {yn} consists of a "string" of terms 
{ys, ys+i, • • •, yt}, all less than zero, with s > —a and t < oo and such 
that 

either s = —a or s > —a and ys-i > 0, 
and 

either t = oo or t < oo and yt+\ > 0. 

2. M a i n resu l t s 
First we define a sequence {^4r} by 

1 -i 
(3) A\ = — , Ar+1 = - {a + bArf + Y s P i ^ 1 ^ r = l,2,.. c — b c l z—J 

i=i 
One can check that {Ar} is increasing. 

Next, we also define a sequence {Br} by 
i 1 rn 

(4) Bi = — , Br+i = - (ck -Y,PiB~k(Ti^ ~b ,r = 1,2,... . 
a a L —' J i=i 

LEMMA 1. Assume that the sequence { A R } is defined by (3) and that 
m 

(5) (a\ + b)k -ck + Y,PiX~k<ri =°> 
¿=1 

has no positive real roots. Then l i m r — A r = oo. 
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P r o o f . If not, since {Ar} is increasing, then l im r _ 0 0 y l r = d > 0 exists. Let 
r —> oo in (3), we get 

d=-
c 

(a + bd)k + J 2 P i d H l + 

i= 1 

which implies 

i.e., 

(a + bd)k - (cd)k + J^pid^1^) = 0, 

»=l 

— fccTj = o. 

This implies that A = ^ is a positive root of (5). This is a contradiction. 
The proof is completed. 

LEMMA 2. Assume that the sequence {Br} is defined by (4) and that (5) has 

positive real roots. Then {Br} is nonincreasing and l im^oo Br = A*, where 

A* is the largest root of equation ( 5 ) on (0, 

P r o o f . First, we prove the sequence {Br} is nonincreasing. Since 

Bo = - -b 

i= 1 

< c — b 

Hence, by induction, suppose that Br < Br^\. Then we have 

Br+i — — (Cfc - Y,PiKkai)1 -b < - (ck - _ b 

i= 1 ¿=1 
= Br 

Thus, the sequence {Br} is nonincreasing. From (5), it is obvious that B i > 
A*, by induction 

Br+1 — -
¿=i 

(cfc - £ V i B ~ k " ) * ~b 5>A"fc-')* ~ b 

i= 1 
= A*. 

Hence, {Br} is nonincreasing and bounded. Therefore, l im^oo Br exists. 
Letting r —> oo, we have limr_>oo Br = The proof is completed. 

THEOREM 1. Assume that (2) holds and that (5) has no positive real roots. 

Then every nontrivial solution of {1) oscillates and every negative semicycle 

of every oscillatory solution of (1) has at most 2 + Ra terms, and every 

positive semicycle of every oscillatory solution of (1) has at most 2 + Ra 
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consecutive terms greater than zero, where 

(6) I G t t f ! > ^ r 1 } ) V > i } . 
P r o o f . Otherwise, without loss of generality, we assume that {xn} is a 
solution of (1) satisfying xn > 0 on N[ni,ny + Ra + 2] for any ni > UQ. 
Then, i n _ f f i > 0, (i = 1 , 2 , . . . , m) on N[ni+a, n\ + Ra-\-2}. Therefore from 
(1) we have 

(7) xn > — x n + i = Aixn+i, n e iV[ni + a, nx + Ra + 2], 
c — b 

By iteration, we get 

(8) xn-ai> Ali+1xn+1, n€ N[n1 + 2a,n1 + Ra + 2}. 

Using (1), (2) and (8) we have 
m 

(cxn)k = (axn+i + bxn)k + ^2pi(n)xk_ai 

i=1 
771 

> (axn+l + bAlXn+1)k + 
¿=i 

i.e. 
1 m i 

c ¿=1 
= ^Xn+1, n E Nlrii+2a,n1 + Ra+ 2], 

which gives by iteration 

x-n-oi > A\+<Tixn+1, n€ N[n1 + 3(7,«! + Ra + 2], 

Repeating the above procedure, we get 

(9) xn>AR_ixn+i, n G AT[ni + (i? — l)cr, ni + Ra + 2], 

which gives 

(10) X ^ + KiT-o-i > A ^ ^ X n j + i+flo.. 

Hence, from (1), (9) and (10), we have 
771 

(cxni+H<r)fc = ( a x n i + H a + i + bxni+R(T)k + + -Rcr)x^i+R(T_CTi 

¿=1 
m 

> (a + + E ^ - r ^ + R . + i 
¿=1 
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m 

Xa + bAR-1)k + Y.P>AR-Ti) 

¿=i 

k 
Xni+Ra+1 

i.e., 

1 
(11) Xni+Rc > - (a + bAR^)k + 

k(l+Oi) 
c _ i=l 

Xn1+R<r+1 

= ARXni + Ra+l. 

On the other hand, from (9) we have 

(12) X n i + R a + i _ 0 i > A^Zlx-n-L+Ra-

Therefore, by (1) and (12) 

(cxni+,R<7+i)fc = (axni+R<7+2 + bxni+Rcr+i)fc 

i= 1 
m 

> (bxni+RcT+1)k + 

i=l 
m 

jfc(o-i-l) fc 
Vi-r 

¿=1 
i.e., 

( ^ - b k )x k n i + R a + 1 > ( S M i T V n , ^ . 
i= 1 

which implies 

(13) xni+Ra+1 > ( k \ k ¿pMfi-'i"^ ) ^nx+Ha. 
^ ¿=i ' 

Then (11) and (13) can be reduced to 

v ¿=1 ' 

The latter implies 

what contradicts with (6) and completes the proof. 

THEOREM 2. Assume that (2) holds and that (5) has positive real roots. 
Further assume that there exists a subsequence { n , , } ^ C { 1 , 2 , . . . } such 
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that |ns+i — ns| < N and Pi(ns + 1) > Li and that 

v i= 1 
a 

where A# is the largest root of ( 5 ) on ( 0 , . Then every nontrivial solution 

of (1) oscillates and every negative semicycle of every oscillatory solution 

of (1) has at most N + Ra terms, and every positive semicycle of every 

oscillatory solution of (1) has at most N + Ra consecutive terms greater 

than zero, where 

P r o o f . Otherwise, without loss of generality, we assume that {xn\ is a 
solution of (1) satisfying xn > 0 on iV[ni ,ni + N + Ra] for any N\ > UQ. 
Then there exists an ns such that N[ns — Ra,ns + 1] C N[ni,ni + N + Ra], 

Hence, xn_(Ti > 0, i = 1, 2 , . . . , m on 7V[ns — Ra + a, ns +1] . Therefore, from 
(1) we have 

( 1 5 ) xn >  a , xn+i = B 7 1 x n + i , n G N[ns - Ra + a, ns + 1]. 
c — o 

By iteration, we get 

( 1 6 ) xn_ai > B~aixn,ne N[ns - Ra + 2 a , n s + 1], 

Using (1), (2) and (16) we have 
m 

(axn+1 + bxn)k < {cxn)k - ^piB~k<Tixkn,n 6 N[ns - Ra + 2a, ns + 1], 

¿=i 
i.e., 

1 
Xn+1 < ~ 

a 
xn = B2Xn,n e N [ n s - Ra + 2a,ns + l ] , ( c k - J 2 P i B T k a i ) l - b 

i=1 

which gives by iteration 

Xn-ai > n € N\ns - Ra + 3a,ns + 1]. 

Repeating the above procedure, we get 

( 1 7 ) xn+i < BR-i_xn,n e N[ns - a,ns + 1], 

which gives 

(18) Zn. + l - ^ 

Hence, from (1), (17) and (18) 
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bk ^ 2 p i ( n s + 1) 
»=l 

» i t 

¿=i 
i.e.. 

¿=i 

c — b 

This contradicts with (14) and completes the proof. 

EXAMPLE 1. Consider the nonlinear difference equation with several delays 

(19) 

Let 

(axn+1 + bxn)k - (cxn)k + = 0. 
i= 1 

Pi(°) = Pi ( l ) = pi(n + 2) = p i ( n ) , 

3 1 
P2(0) = p 2 ( l ) = 2» P2(^ + 2) = P2(n), n = 0 ,1 , 2 , . . . , 

fc = 3, a = 1, 6 = 1 , c = 2, m = 2, c i = 1, CT2 = 2. 

By Corollary 2 in [14], we know that (5) has no positive roots. Hence, by 
Theorem 1, every solution of equation (19) oscillates. By simple calculation, 
we have 

A i = l , Ar+1 = U ( l + Ar)3 + ^A6r + ±AlY , r = 1,2,... 

Dr = 
1 m k( l A 

i=l ' 

A-r+l i 7" — 2, 3, . . . , 

i42 = 1.04958411345210, D2 = 0.591045941561356 
A3 = 1.09088444064887, D3 = 0.626843391013837 
A4 = 1.12854970603156, D4 = 0.659837157231824 
A5 = 1.16588262341269, D5 = 0.692783138623273 
A6 = 1.20604337743297, D6 = 0.728440715710422 
Ar = 1.25314448952005, D7 = 0.770504103651539 
A8 = 1.31408290707526, D8 = 0.825281967414030 
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Ag = 1.40305282844783, D9 = 0.905969354928884 

A10 = 1.55591395623001, D10 = 1.04667945569338 
Hence, R = 10. Therefore, every negative semicycle of every eventually 
nontrivial solution of (19) has at most 2 + 2 x 10 = 22 terms, and every 
positive semicycle of every eventually nontrivial solution of (19) has at most 
22 consecutive terms greater than zero. 
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