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ON SEMICYCLES OF SOLUTIONS OF NONLINEAR
DIFFERENCE EQUATIONS WITH SEVERAL DELAYS

Abstract. In this paper, we study the semicycles of oscillatory solutions of nonlinear
difference equation with several delays

m
k k k
(aznt1 + bzn)” — (czn)” + Zpi(n)zn_ai =0,
i=1
where a,b,c € (0,00), c—b> 0, k= g/r, q, r are positive odd integers, m, o; are positive
integers, {p;(n)} is a real sequence with p;(n) > 0 for all large n. Upper bound of numbers
of terms of semicycles are determined.

1. Introduction
Consider the nonlinear delay difference equation

(1) (aZnpy + bzp)F — (czn)® + Zpi(n):cﬁ_gi =0,
i=1

where a,b,c € (0,00), ¢ —b > 0, k = q/r, q, r, are positive odd integers,
m, o, are positive integers, {p;(n)} is a real sequence with p;(n) > 0 for all
large n. In the following, we assume that

(2) Pz(n)ZPzZO, n 2 no, i=1a2a"'7m'

Recently, the semicycles of solutions of the delay difference equations have
been investigated by Zhou and Zhang [10-13]. Our purpose in this paper is
to study the semicycles of solutions of Eq.(1). In Section 2, we determine
upper bound of numbers of terms of semicycles of (1) in following two cases:

(i) when the characteristic equation of (1) has no positive real roots;
(ii) when the characteristic equation of (1) has positive real roots.
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For the sake of convenience, we set
N{u,v] = {uy,u+1,...,v - 1,0},
where u,v are positive integers, and

0= max o;.
1<i<m

The following definitions can be found in [3], [4].
DEFINITION 1. [3] A nontrivial solution {y,} of Eq.(1) is said to be oscil-
lating about zero or simply oscillates if the terms vy, of the sequence {y,}

are neither eventually all positive nor eventually all negative. Otherwise, the
solution is called nonoscillatory.

DEFINITION 2. [4] A positive semicycle of a solution {y,} of Eq.(1) consists
of a “string” of terms {ys,Ys+1,-..,Yyt}, all greater than or equal to zero,
with s > —o and t < oo and such that

either s = —o or s > —0 and y,_; <0,
and

either t = 0o or ¢t < 0o and y;41 < 0.
A negative semicycle of a solution {y,} consists of a “string” of terms

{YsyYs+1,---,Yt}, all less than zero, with s > —o and t < oo and such
that

either s = —o or s > —o and y,_1 > 0,
and

either t = oo or t < oo and y;41 > 0.

2. Main results
First we define a sequence {A,} by
a

(3) A= 3

X ! [(a+ bA,)F + ipiA,’f(H‘”)]%, r=1,2,...

Ar+1 ==
¢ i=1
One can check that {4,} is increasing.
Next, we also define a sequence {B,} by
Cc— b 1 k i —ko; 1 _
(4) Bi=""2, Br= E[(c —;piBr )k —b],r_ 1,2,... .

LEMMA 1. Assume that the sequence {A,} is defined by (3) and that

(5) (@A +b)k —cF+ ) piaT* =0,
i=1

has no positive real roots. Then lim,_,o A, = 0co.
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Proof. If not, since {A,} is increasing, then lim,_,,, A, = d > 0 exists. Let
r — oo in (3), we get

=1 ba) + 3 pedttion]
_E[(a+ ) +;Pi } :

which implies
(a+bd)* — (cd)* + ) pd*(1H74) =,

i=1
ie.,

1 k LS|
- b — k i—_kaiz .
(ad+) c+;p(d) 0

This implies that A = 4 is a positive root of (5). This is a contradiction.
The proof is completed.

LEMMA 2. Assume that the sequence {B,} is defined by (4) and that (5) has
positive real roots. Then {B.} is nonincreasing and lim,_, o, B, = A, where
A, is the largest root of equation (5) on (0, <2].

Proof. First, we prove the sequence {B,} is nonincreasing. Since

c—b
a

B2=-2-|:(Ck—§:piB1—kai)%—b:| S =B1.
i=1

Hence, by induction, suppose that B, < B,_1. Then we have
_ 1 k i —kO’i 1 ]. k T —kdi 1
B = E[(C - ;piBr )F - b] < E[(C - ;piBr—l )F - b] = B,.

Thus, the sequence {B,} is nonincreasing. From (5), it is obvious that B; >
A«, by induction

By = %[(Ck - iPiBr_ka")’l; - b] 2 é[(ck - ipi/\:km)% - b] = A..
i=1 i=1

Hence, {B,} is nonincreasing and bounded. Therefore, lim,_,,, B, exists.
Letting r — oo, we have lim,_, o, B, = A.. The proof is completed.

THEOREM 1. Assume that (2) holds and that (5) has no positive real roots.
Then every nontrivial solution of (1) oscillates and every negative semicycle
of every oscillatory solution of (1) has at most 2 + Ro terms, and every
positive semicycle of every oscillatory solution of (1) has at most 2 + Ro
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consecutive terms greater than zero, where

3
( bkz P AN )A,21}.

Proof. Otherwise, without loss of generality, we assume that {z,} is a
solution of (1) satisfying z, > 0 on N[n;,n; + Ro + 2] for any n; > no.
Then, 2,_5, > 0, (¢ = 1,2,...,m) on N[n; +0,n1 + Ro +2]. Therefore from
(1) we have

r>2

(6) R = min {r

a
—b
By iteration, we get

(7) Ty > s e A1Zny1, n € N[ny+o0,n1+ Ro +2].

(8) Tn_o; > A7 2,11, n € Nng + 20,11 + Ro + 2).
Using (1), (2) and (8) we have

(czn)® = (aTni1 +b2a)F + D pi(n)zh_,,
=1

> (aTn41 + bA1Tn41)" + sz‘A’f(Hdi)zﬁH,
1=1

l.e.
1 i k 140, ]1‘-
Tn > P [(a +bA1)F + ;Pw‘h( )] Tnil

= A2Zp41, n € N[ni+20,n1 + Ro+2],

which gives by iteration

Tn—o; 2 A;+""xn+1, n € N[ny + 30,11 + Ro + 2.
Repeating the above procedure, we get
(9) Tn > AR—1Tnt1, n € N[ni+ (R—-1)o,n;+ Ro + 2],
which gives
(10) Tn,+Ro—0; = A[;{jlll'n1+1+Ra«
Hence, from (1), (9) and (10), we have

m

(cmn1+Ro)k = (aZn,4Ro+1 + bzn1+Ro)k + Zpi(nl + Ra)mﬁhLRo—a,»
i=1

k 1+ i
(a+bAR 1) "En1+Ra+1+§ : A ( 7 7,:'1+R‘7‘+‘1
i=1
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> [(a+bAR 1)k+z JAf 1+m)}$ﬁl+Ra+1

i=1

1 t
(11) Tny+Ro 2 [(a +bAp_1)* + Z Ak(HU’)] Tn;+Ro+1
i=1

= AR$n1+Ra'+l-
On the other hand, from (9) we have

(12) mn1+Ra+1—¢7i Z Ag__lll‘n1+Ra'
Therefore, by (1) and (12)

(Cmnx+l'?cr+l)lc = (aZn,+Ro+2 + bfl"nl+Ra+1)Ic

m
+ Zpi(nl + RO' + 1)1"’,:ll+R0+1—0’,;
i=1

1) k
(bmn1+R0+1 +Z A Zni+Ro»
1=1

ie.,
k(o;—
(C _b )$n1+Ra+1 > (szA ( ))$ﬁ1+R¢77

i=1
which implies

1
(13) Tn,4+Ro+1 > ( —F Z Ak(m 1)) Tn,+Ro-

Then (11) and (13) can be reduced to

bt
1 Tn +R0'+1 k(al—l)
52 o ( W Z 4R :

Zny+Ro

The latter implies

1
3
< —ka ARTT l)> Ar <1,

what contradicts with (6) and completes the proof.

THEOREM 2. Assume that (2) holds and that (5) has positive real roots.
Further assume that there ezists a subsequence {ns}52,; C {1,2,...} such



110 C. F. Li, Y. Zhou, X. N. Luo

that ns11 — ns| < N and p;(ns + 1) > L; and that

1
1 k(1-o)\* _ c—b

where A, is the largest root of (5) on (0, <=2]. Then every nontrivial solution
of (1) oscillates and every negative semicycle of every oscillatory solution
of (1) has at most N + Ro terms, and every positive semicycle of every
oscillatory solution of (1) has at most N + Ro consecutive terms greater
than zero, where

r>2

(14) R = min {7‘

k(1-0) >C—b
( _kaLB ) > — }

Proof. Otherwise, without loss of generality, we assume that {z,} is a
solution of (1) satisfying =, > 0 on N[ny,n; + N + Ro] for any ny > ng.
Then there exists an 75 such that N[@; — Ro,7s + 1] C N[ny,n1 + N + Ro].
Hence, z,,—», > 0,i=1,2,...,m on N[i; — Ro+ 0,7+ 1]. Therefore, from
(1) we have

(15) Ty > cibznﬂ=B1_193n+1,n€N[ﬁs—Ra+o,ﬁs+1].

By iteration, we get
(16) Tp_g, > B{7'zn,n € N[, — Ro + 20,70, + 1].
Using (1), (2) and (16) we have
(aZnt1 +bza)F < (czn)* =Y piBT*%ak,n € N[, — Ro + 20,7, + 1],
i=1
ie.,
Tyl < — [ c —ZplB_kU‘ - ] Zn = Bazn,n € N[fs — Ro + 20,75+ 1],
which gives by iteration
Tpn—g; > B3 %"z, n € N[ty — Ro + 30,75 + 1].
Repeating the above procedure, we get
(17) Tpni1 < BR—lxn, nec N[ﬁs —0,Ns + 1],
which gives
(18) T7, 410, > BR Ts,-

Hence, from (1), (17) and (18)
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1

kv %
n ms+1—0;
=Bz B2 Tt [l 3 i (T ) |
k:(lcrl)
> (et mets)

ie.,

c—b

k(l1—o;)
( _kaLB ) <—

This contradicts with (14) and completes the proof.

ExXAMPLE 1. Consider the nonlinear difference equation with several delays

(19) (aZniy + bzn)F — (czn) +Z pi(n =0.
Let
4 3
p1(0) = 3 pi(l) = R p1(n+2) = pi(n),
3 1
p?(o) = Z7 p?(l) = §a p2(n+ 2) = p2(”)7 n= Oa 1a2a' ey
k=3, a=1, b=1, ¢c=2, m=2 o,=1 o0,=2.

By Corollary 2 in [14], we know that (5) has no positive roots. Hence, by
Theorem 1, every solution of equation (19) oscillates. By simple calculation,
we have

1 3 3 6 1 9 -:1;
A1=1, AT+1=§ (1+AT') +—A +_A7‘ y 'f'=].,2,...

4T2

( . Z Ak(m—l))
D, b r

1
173 1 3
=(7(Z+§Ag>) Ar+1, 7‘=2,3,...,

Az = 1.04958411345210,
Az = 1.09088444064887,
Ag = 1.12854970603156,
As = 1.16588262341269,
Ae = 1.20604337743297,
A7 = 1.25314448952005,
Ag = 1.31408290707526,

Dy = 0.591045941561356
D3 = 0.626843391013837
D,y = 0.659837157231824
D5 = 0.692783138623273
D¢ = 0.728440715710422
D+ = 0.770504103651539
Dg = 0.825281967414030
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Ag = 1.40305282844783, Dy = 0.905969354928884
Ao = 1.55591395623001, Do = 1.04667945569338

Hence, R = 10. Therefore, every negative semicycle of every eventually
nontrivial solution of (19) has at most 2 + 2 x 10 = 22 terms, and every
positive semicycle of every eventually nontrivial solution of (19) has at most
22 consecutive terms greater than zero.
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