

Stevo Stević

BOUNDEDNESS AND PERSISTENCE OF SOLUTIONS OF A NONLINEAR DIFFERENCE EQUATION

Abstract. In this paper we obtain sufficient conditions for the boundedness as well as for the unboundedness of the positive solutions of the difference equation

$$x_{n+1} = f(x_n, \dots, x_{n-k+1}), \quad n = 0, 1, 2, \dots,$$

where k is a positive integer and the initial conditions $x_{-k+1}, x_{-k+2}, \dots, x_0$ are arbitrary positive numbers.

1. Introduction

In [1] and [2] the authors investigated the boundedness, the persistence and the asymptotic behaviour of the positive solutions of the difference equation

$$(1) \quad x_{n+1} = \frac{A}{x_n^p} + \frac{B}{x_{n-1}^q}, \quad n = 0, 1, \dots,$$

where $A, B, p, q \in (0, \infty)$ and the initial conditions x_{-1} and x_0 are arbitrary positive numbers.

We say that a solution (x_n) of a difference equation is *bounded* and *persists* if there exist positive constants P and Q such that

$$P \leq x_n \leq Q \quad \text{for } n = -1, 0, \dots$$

In [2] the authors established the following results:

THEOREM A. (a) *Assume that $pq \leq 1$. Then every solution of Eq.(1) is bounded and persists.*

(b) *Assume that $pq > 1$. Then there exist solutions of Eq.(1) that are unbounded and do not persist.*

1991 *Mathematics Subject Classification:* Primary 39A10.

Key words and phrases: positive solution, difference equation, boundedness, persistence.

The special case $p = q = 1$ was investigated in [5] where it was shown that the unique positive equilibrium of Eq.(1) is globally asymptotically stable.

In [3] (see also [4]), the authors investigate the boundedness of the solutions of the difference equation

$$x_{n+1} = \sum_{i=0}^{k-1} \frac{A_i}{x_{n-i}^{p_i}} + \frac{1}{x_{n-k}^{p_k}}, \quad n = 0, 1, 2, \dots,$$

where $x_{-k}, \dots, x_0 \in (0, \infty)$, $k \in \mathbf{N}$, $p_i \in (0, \infty)$, $i \in \{0, 1, \dots, k\}$ and $A_i \in (0, \infty)$, $i \in \{0, 1, \dots, k-1\}$.

Motivated by [1]-[5], in this note we investigate the boundedness of the solutions of the difference equation

$$(2) \quad x_{n+1} = f(x_n, \dots, x_{n-k+1}), \quad n = 0, 1, 2, \dots,$$

where $k \in \mathbf{N}$, the initial conditions x_{-k+1}, \dots, x_0 are arbitrary positive numbers and where the function f satisfies the following conditions:

- (a) $f \in C[(0, \infty)^k, [0, \infty)]$;
- (b) f is decreasing in each variable;
- (c) there is $j \in \{1, \dots, k\}$ such that $\lim_{x_j \rightarrow +0} f(\infty, \dots, \infty, x_j, \infty, \dots, \infty) = \infty$;
- (d) $f(1, \dots, 1) > 1$.

EXAMPLE 1. It is easy to see that the following functions satisfy the conditions (a)-(d).

$$1. \quad f(x_1, \dots, x_k) = \sum_{i=1}^k \frac{A_i}{x_i^{p_i}}, \quad \sum_{i=1}^k A_i > 1, \quad A_i, p_i > 0, \quad i = 1, \dots, k.$$

$$2. \quad f(x, y) = \frac{a}{\sqrt[3]{x}} + \frac{b}{\sqrt[3]{y} + \sqrt{y}}, \quad a, b > 0, \quad a + b > 1.$$

REMARK 1. From (a) and (b) it follows that the equation $x - f(x, \dots, x) = 0$ has a unique positive equilibrium $x = \bar{x}$ such that $(x - f(x, \dots, x))(x - \bar{x}) > 0$ for $x \neq \bar{x}$.

From this and the condition (d) it follows $1 < \bar{x} < f(1, \dots, 1)$.

REMARK 2. Note that if $\lim_{x \rightarrow +0} f(x, \dots, x) < \infty$, then $x_n < \lim_{x \rightarrow +0} f(x, \dots, x)$ for all $n \in \mathbf{N}$. Hence, in this case, every solution of Eq.(2) is bounded, moreover Eq.(2) is permanent.

Let

$$g_i(x) = f(\underbrace{\infty, \dots, \infty}_{i-1}, x, \underbrace{\infty, \dots, \infty}_{k-i}), \quad i = 1, \dots, k, \quad x \in (0, \infty]$$

and

$$h_i(x) = f(\underbrace{\bar{x}, \dots, \bar{x}}_{i-1}, x, \underbrace{\bar{x}, \dots, \bar{x}}_{k-i}), \quad i = 1, \dots, k, \quad x \in (0, \infty].$$

Note that $g_i(x), i = 1, \dots, k$ are decreasing continuous functions on $(0, \infty)$ and consequently there are their continuous inverses $g_i^{-1}(x), i = 1, \dots, k$, which are decreasing functions, too.

We prove the following results:

THEOREM 1. *Consider Eq. (2), where f satisfies the conditions (a), (b) and (d). If the function*

$$(3) \quad \phi(x) = \frac{f(h_k(x), \dots, h_1(x))}{x}$$

is decreasing on $(0, \infty)$, then every positive solution of Eq.(2) is bounded and persists.

THEOREM 2. *Consider Eq.(2), where f satisfies the conditions (a – d). If there is a $\delta > 0$ such that*

$$(4) \quad f(g_k(x), \dots, g_1(x)) < x \quad \text{for } x \in (0, \delta),$$

then there exist solutions of Eq.(1) that are unbounded and do not persist.

2. Auxiliary results

The following lemmas summarize some of the important properties of the semicycles of Eq.(2).

LEMMA 1. *Consider Eq. (2), where f satisfies the condition (b). Then every semicycle of a nontrivial solution of Eq. (2) contains at most k terms.*

Proof. Assume that for a nontrivial solution (x_n) and for some $N \geq 0$, $x_{N-k+1}, \dots, x_N \geq \bar{x}$. Then

$$x_{N+1} = f(x_N, \dots, x_{N-k+1}) < f(\bar{x}, \dots, \bar{x}) = \bar{x}.$$

The case where $x_{N-k+1}, \dots, x_N \leq \bar{x}$ is similar.

LEMMA 2. *Consider Eq. (2), where f satisfies the conditions (a), (b) and (d). Then the following statements are true.*

(a) *If for some $N \geq 0$ and some $j \in \{1, \dots, k\}$,*

$$(5) \quad x_N \leq g_j^{-1}(f(1, \dots, 1)),$$

then $x_{N+j} > \bar{x}$.

(b) *If for some $N \geq 1$ and some $j \in \{1, \dots, k\}$,*

$$(6) \quad x_N \leq g_j(f(1, \dots, 1)),$$

then $x_{N-j} > \bar{x}$.

(c) *If for some $N \geq 1$,*

$$x_N \leq m_k = \min\{g_j^{-1}(f(1, \dots, 1)), g_j(f(1, \dots, 1)), j = 1, \dots, k\},$$

then $x_{N \pm j} > \bar{x}$ for $j = 1, \dots, k$.

Proof. (a) If for some $N \geq 0$ and some $j \in \{1, \dots, k\}$, (5) holds, then

$$x_{N+j} = f(x_{N+j-1}, \dots, x_{N+j-k}) > g_j(x_N) \geq f(1, \dots, 1) > \bar{x}.$$

(b) Suppose the contrary $x_{N-j} \leq \bar{x}$, if for some $N \geq 0$ and some $j \in \{1, \dots, k\}$, (6) holds, then

$$x_N = f(x_{N-1}, \dots, x_{N-k}) > g_j(x_{N-j}) \geq g_j(\bar{x}) > g_j(f(1, \dots, 1)),$$

which is a contradiction.

(c) The proof is a direct consequence of (a) and (b).

REMARK 3. If $\phi(x)$ is decreasing on $(0, \infty)$, then \bar{x} is the unique solution of the equation $\phi(x) = 1$ and consequently $\phi(x) > 1$ for $x \in (0, \bar{x})$.

LEMMA 3. Consider Eq.(2), where f satisfies the conditions (a), (b) and (d), and $\phi(x)$ is decreasing on $(0, \infty)$. Let m_k be as in Lemma 2. Suppose that (x_n) is a solution of Eq.(2) such that $x_N \leq m_k$ for some $N \geq 1$.

Then

$$x_{N \pm 1}, \dots, x_{N \pm k} \in (\bar{x}, \infty) \quad \text{and} \quad x_N < x_{N+k+1} < \bar{x}.$$

Proof. First note that $m_k < \bar{x}$, since $m_k \leq g_j(f(1, \dots, 1)) < g_j(\bar{x}) < \bar{x}$. By Lemma 2 (c) we have $x_{N \pm j} \in (\bar{x}, \infty)$, $j = 1, \dots, k$. Hence

$$x_{N+j} < h_j(x_N) \quad \text{for} \quad j = 1, \dots, k$$

and consequently

$$x_{N+k+1} > f(h_k(x_N), \dots, h_1(x_N)) = x_N \phi(x_N) \geq x_N,$$

where the last inequality holds because $x_N \leq m_k < \bar{x}$. By Lemma 1 we have $x_{N+k+1} < \bar{x}$, as desired.

3. Proof of the main results

We are now in a position to prove the main results.

Proof of Theorem 1. Let $m = m_k$ and set

$$M = f(m, \dots, m) \quad \text{and} \quad c = \min\{m, f(M, \dots, M)\}.$$

Let (x_n) be a solution of Eq.(2). Clearly if l is a lower bound of (x_n) then $L = f(l, \dots, l)$ is an upper bound. Hence it suffices to show that (x_n) is bounded from below. Now either c is a lower bound of (x_n) or there is $N \geq k$ such that $x_N < c$. We show that x_N is a lower bound of (x_n) for $n \geq N$. In contrary there is the first natural number $K > N$ such that $x_K < x_N$. By Lemma 3 we have

$$x_{K-j} > \bar{x} > m \quad \text{for} \quad j = 1, \dots, k.$$

We show that $x_{K-j} < M$ for $j = 1, \dots, k$. If $x_{K-k-1} \leq m$, then by Lemma 3 we have

$$x_N \leq x_{K-k-1} \leq x_K < x_N,$$

which is a contradiction. Hence, $x_{K-k-1} > m$. If $x_{K-k-j-1} \leq m$, for some $j \in \{1, \dots, k\}$, then by Lemma 3, $x_{K-k-j-1} < x_{K-j} < \bar{x}$. Since $x_{K-j} > \bar{x}$, we arrive at a contradiction. Therefore $x_{K-k-j-1} > m$, for $j = 1, \dots, k$.

Hence

$$(7) \quad x_{K-j} = f(x_{K-j-1}, \dots, x_{K-j-k}) < f(m, \dots, m) = M, \\ j = 1, \dots, k.$$

From (2) and (7) we obtain

$$x_N > x_K > f(M, \dots, M) \geq c > x_N,$$

from which the result follows.

Proof of Theorem 2. Let $x_0 \in (0, \delta)$. Then

$$x_j = f(x_{j-1}, \dots, x_{j-k}) > g_j(x_0) \quad \text{for } j = 1, \dots, k,$$

and consequently

$$x_{k+1} = f(x_k, \dots, x_1) < f(g_k(x_0), \dots, g_1(x_0)) < x_0.$$

By induction, we can obtain

$$(8) \quad x_{n(k+1)} < f(g_k(x_{(n-1)(k+1)}), \dots, g_1(x_{(n-1)(k+1)})) < x_{(n-1)(k+1)},$$

for all $n \in \mathbf{N}$.

Hence, there is $\lim_{n \rightarrow \infty} x_{n(k+1)} = x^* \in [0, \delta)$. Suppose $x^* \in (0, \delta)$. Then from (4) we have $f(g_k(x^*), \dots, g_1(x^*)) < x^*$. On the other hand, letting $n \rightarrow \infty$ in (8) we obtain $f(g_k(x^*), \dots, g_1(x^*)) \geq x^*$, arriving at a contradiction. Hence $x^* = 0$.

From the condition (c) it follows that there is a $j \in \{1, \dots, k\}$ such that $g_j(x) \rightarrow \infty$ as $x \rightarrow 0$. Thus

$$x_{n(k+1)+j+1} = f(x_{n(k+1)+j}, \dots, x_{n(k+1)+j-k+1}) > g_j(x_{n(k+1)}) \rightarrow \infty \\ \text{as } n \rightarrow \infty, \text{ finishing the proof.}$$

References

- [1] R. DeVault, G. Ladas and S. W. Schultz, *On the recursive sequence $x_{n+1} = \frac{A}{x_n^p} + \frac{B}{x_{n-1}^q}$* , Proceedings of the Second International Conference on Difference Equations, Veszprem, Hungary, Aug. 7–11, 1995, pp. 125–136, Gordon and Breach Science Publishers, New York, 1997.
- [2] R. DeVault, G. Ladas and S. W. Schultz, *Necessary and sufficient conditions for the boundedness of $x_{n+1} = \frac{A}{x_n^p} + \frac{B}{x_{n-1}^q}$* , J. Differ. Equations Appl. 4 (3) (1998), 259–266.
- [3] G. Papaschinopoulos and C. J. Schinas, *On the difference equation $x_{n+1} = \sum_{i=0}^{k-1} (A_i/x_{n-i}^{p_i}) + (1/x_{n-k}^{p_k})$* , J. Differ. Equations Appl. 6 (1) (2000), 75–89.

- [4] G. Papaschinopoulos and C. J. Schinas, *Errata on the paper "On the difference equation $x_{n+1} = \sum_{i=0}^{k-1} (A_i/x_{n-i}^{p_i}) + (1/x_{n-k}^{p_k})$," by G. Papaschinopoulos and C. J. Schinas*, J. Differ. Equations Appl. 6 (1) (2000), 75–89 (to appear).
- [5] Ch. G. Philos, I. K. Purnaras and Y. G. Sficas, *Global attractivity in a nonlinear difference equation*, Appl. Math. Comput. 62 (1994), 249–258.

MATEMATIČKI FAKULTET
Studentski Trg 16
11000 BEOGRAD, SERBIA, YUGOSLAVIA
E-mail: sstevo@matf.bg.ac.yu, sstevic@ptt.yu

Received October 31st, 2001; revised version September 4, 2002.