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Stevo Stevié

BOUNDEDNESS AND PERSISTENCE OF SOLUTIONS
OF A NONLINEAR DIFFERENCE EQUATION

Abstract. In this paper we obtain sufficient conditions for the boundedness as well
as for the unboundedness of the positive solutions of the difference equation
$n+1=f(mn;--->mn—k+1)a n=0,1,2,...,

where k is a positive integer and the initial conditions € _g 1, £_g42,..., zo are arbitrary
positive numbers.

1. Introduction

In (1] and [2] the authors investigated the boundedness, the persistence
and the asymptotic behaviour of the positive solutions of the difference
equation

A B
(1) In+1:?ﬁ+}2—_f’ n=20,1,...,

where A, B, p, q € (0,00) and the initial conditions z_; and z¢ are arbitrary
positive numbers.

We say that a solution (z,) of a difference equation is bounded and
presists if there exist positive constants P and @ such that

PLz,<Q for n=-1,0,...
In {2] the authors established the following results:

THEOREM A. (a) Assume that pg < 1. Then every solution of Eq.(1) is
bounded and persists.

(b) Assume that pq > 1. Then there ezist solutions of Eq.(1) that are
unbounded and do not persist.
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The special case p = ¢ = 1 was investigated in [5] where it was shown
that the unique positive equilibrium of Eq.(1) is globally asymptotically
stable.

In [3] (see also [4]), the authors investigate the boundedness of the solu-
tions of the difference equation :

Tn+1 = Z p1 xpk ) n=07172a"'7

where z_g,...,zo € (0, ),k € N,p; € (0,00),2 € {0,1,...,k} and 4, €
(0,00), i€ {0,1,...,k—1}.

Motivated by [1]-[5], in this note we investigate the boundedness of the
solutions of the difference equation
(2) Tot1 = f(ZTny - oy Tnky1), n=0,1,2,...,
where k£ € N, the initial conditions z_g41,...,20 are arbitrary positive
numbers and where the function f satisfies the following conditions:

(2) f € C[(0,0)%, [0,00)];
(b) f is decreasing in each variable;
(c) thereis j € {1,...,k} such that lims; .10 f(oo0,...,00,z;,00,...,00)
@) f(1,...,1) > 1.
EXAMPLE 1. It is easy to see that the following functions satisfy the condi-
tions (a)—(d).
1. f(zy,...,zx) = z,_l-,,‘L, Kk A>1, Aupi>0i=1,.. k.
2. f(z,y) = %'FW, a,b>0,a+b>1.
REMARK 1. From (a) and (b) it follows that the equation z— f(z,...,z) =0

has a unique positive equilibrium z = Z such that (z— f(z,...,z))(z—Z) > 0
for r # 7.

From this and the condition (d) it follows 1 < Z < f(1,...,1).
REMARK 2. Note that if lim,_, ¢ f(z,...,z) < 0o, then z, < lim,_, 490 f(z,

.,x) for all n € N. Hence, in this case, every solution of Eq.(2) is bounded,
moreover Eq.(2) is permanent.

Let
gi(z) = f(o0,...,00,%,00,...,00), i=1,...,k, z € (0, 00]
i1 k:i
and
hi(z) = f(&,...,%,2,Z,...,T), 1=1,...,k, z € (0, 00].
LA RN AR A

i-1 k—1i
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Note that g;(z),s = 1,...,k are decreasing continuous functions on (0, c0]
and consequently there are their continuous inverses g; 1(:E),i =1,...,k,
which are decreasing functions, too.

We prove the following results:
THEOREM 1. Consider Eq. (2), where f satisfies the conditions (a), (b) and
(d). If the function
f hk T ,...,h1 T
o o(a) = L) ()

is decreasing on (0, 00), then every positive solution of Eq.(2) is bounded and
persists.

THEOREM 2. Consider Eq.(2), where f satisfies the conditions (a — d). If
there is a 0 > 0 such that

(4) f(gk(ill),--.,gl(l')) <z for ze€ (0’6)’

then there exist solutions of Eq.(1) that are unbounded and do not persist.

2. Auxiliary results
The following lemmas summarize some of the important properties of
the semicycles of Eq.(2).

LEMMA 1. Consider Eq. (2), where f satisfies the condition (b). Then every
semicycle of a nontrivial solution of Eq. (2) contains at most k terms.

Proof. Assume that for a nontrivial solution (z,) and for some N > 0,
TN—k41y---» TN 2 Z. Then ‘

ENe1 = F@N, . oNti1) < (@ 1T) = .
The case where zx_g41,...,ZN < Z is similar.
LEMMA 2. Consider Eq. (2), where f satisfies the conditions (a), (b) and
(d). Then the following statements are true.
(a) If for some N > 0 and some j € {1,...,k},
(5) v < g5 (F(L,--, 1),
then zny; > Z.
(b) If for some N > 1 and some j € {1,...,k},

(6) N Sg](f(la)]-))v
then tn_; > Z.
(c) If for some N > 1,

oy < me =min{g; '(f(1,...,1)), g;(f(L,..., 1)), 5=1,...,k},
then xyt; > Z forj=1,...,k.
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Proof. (a) If for some N > 0 and some j € {1,...,k}, (5) holds, then

INyj = f(:rN+j_1, e 1'N+j-lc) > gj(xN) > f(1,...,1) > Z.
(b) Suppose the contrary zy_; < Z, if for some N > 0 and some j €
{1,...,k}, (6) holds, then
oN = f(zN-1,-- -, TN-k) > gi(2N-5) 2 9;(Z) > ¢;(f(1,..., 1)),
which is a contradiction.
(c) The proof is a direct consequence of (a) and (b).

REMARK 3. If ¢(z) is decreasing on (0, 00), then Z is the unique solution of
the equation ¢(z) = 1 and consequently ¢(z) > 1 for z € (0, Z).

LEMMA 3. Consider Eq.(2), where f satisfies the conditions (a), (b) and (d),
and ¢(x) is decreasing on (0,00). Let my be as in Lemma 2. Suppose that
(zn) is a solution of Eq.(2) such that xx < my for some N > 1.
Then

IN+1,---, TNtk € (T,00) and N < ZNyrq1 < T
Proof. First note that mj;, < z, since my, < g;(f(1,...,1)) < g;(Z) < &. By
Lemma 2 (c) we have xy+; € (Z,00), j =1,...,k. Hence

zN4+; < hj(zn) for j=1,...)k

and consequently

TN+k+1 > f(he(zn), ..., hi(zN)) = zNp(zN) 2> 2N,
where the last inequality holds because zy < my < Z. By Lemma 1 we have
TN+k+1 < Z, as desired.

3. Proof of the main results
We are now in a position to prove the main results.

Proof of Theorem 1. Let m = my and set
M= f(m,...,m) and c¢=min{m,f(M,...,M)}.
Let (z,,) be a solution of Eq.(2). Clearly if l is a lower bound of (z,) then
L = f(l,...,1) is an upper bound. Hence it suffices to show that (z,) is
bounded from below. Now either c is a lower bound of (z,,) or thereis N > k
such that z < ¢. We show that zp is a lower bound of (z,) for n > N. In

contrary there is the first natural number K > N such that zx < zy. By
Lemma 3 we have

zg—; >T>m for j=1,... k.

We show that zx_; < M for j = 1,...,k. If zx_x_1 < m, then by
Lemma 3 we have
TN S ZTg-k-1 S TK < TN,



Boundedness and persistence of solutions 103

which is a contradiction. Hence, zx_x_1 > m. If zx_r_;_1 < m, for some
j €{1,...,k}, then by Lemma 3, zg_x_j—1 < Tx_; < Z. Since zx_; > Z,

we arrive at a contradiction. Therefore zx_x_; 1 > m, for j =1,... k.
Hence

(7) TK-j = fler—j-1,--- ,$K—j-k) < f(m,...,m)=M,

i=1,...,k.

From (2) and (7) we obtain

N >z > f(M,...,.M) > ¢c> zn,
from which the result follows.
Proof of Theorem 2. Let zp € (0,6). Then
z; = f(zj-1,...,Tj—k) > gj(xo) for j=1,...k,
and consequently

Tit1 = f(Zk, -, 71) < f(gk(z0), - . -, 91(x0)) < Zo.
By induction, we can obtain

@) zog+1) < FG(En-1)(k+1)s - 91(EE-1)(k+1))) < T(n-1)(k+1)5
for all n € N.

Hence, there is limn—c0 Tp(k41) = =* € [0,d). Suppose z* € (0,4). Then
from (4) we have f(gr(z*),...,g1(z*)) < z*. On the other hand, letting n —
oo in (8) we obtain f(gr(z*),...,g1(z*)) > z*, arriving at a contradiction.
Hence z* = 0.

From the condition (c) it follows that there is a j € {1,..,k} such that
gi(z) — oo as z — 0. Thus

Tp(ki1)4i+1 = F(Tn(ea1)4do- - Tt 1) +i—k+1) > 95 (Tn(ks1)) — 00
as n — 0o, finishing the proof.
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