

Telemachos Hatziafratis

A PROOF OF THE EHRENPREIS-MARTINEAU THEOREM USING THE BOCHNER-MARTINELLI KERNEL

Abstract. We give an elementary proof of a version of the Ehrenpreis-Martineau theorem, which describes the entire holomorphic functions of exponential type as combinations of exponential functions. The proof uses the Bochner-Martinelli kernel and appropriate derivatives of it.

1. Introduction

To each measure μ with compact support in \mathbb{C}^n , we may associate an entire holomorphic function F_μ which is the combination of the functions $e^{\langle z, \zeta \rangle}$, $z \in \mathbb{C}^n$, with respect to this measure, i.e.,

$$F_\mu(\zeta) = \int_{z \in \mathbb{C}^n} e^{\langle z, \zeta \rangle} d\mu(z), \quad \zeta \in \mathbb{C}^n,$$

where $\langle z, \zeta \rangle = \sum z_j \zeta_j$. If $K = \text{supp}(\mu)$ then

$$|F_\mu(\zeta)| \leq \int_{z \in K} |e^{\langle z, \zeta \rangle}| d|\mu|(z) \leq A \cdot e^{B|\zeta|}, \quad \text{for } \zeta \in \mathbb{C}^n,$$

where

$$B = \sup\{|z| : z \in K\} \quad \text{and} \quad A = |\mu|(K).$$

Thus the function F_μ is an entire function of exponential type. As usual, we say that an entire function F is of exponential type if there exist positive constants A and B , depending only on F , so that

$$(*) \quad |F(\zeta)| \leq A \cdot e^{B|\zeta|}, \quad \text{for every } \zeta \in \mathbb{C}^n.$$

A version of the Ehrenpreis-Martineau theorem asserts that, conversely, any entire function of exponential type is a combination of the exponential functions $e^{\langle z, \zeta \rangle}$, $z \in \mathbb{C}^n$. (For variations of this theorem see for example [2] and [3]). We will give a proof of this version of the theorem using only the

Bochner-Martinelli formula for holomorphic functions. Thus we will prove the following theorem.

THEOREM. *Let F be an entire holomorphic function in \mathbb{C}^n , of exponential type. Then there exists a measure μ with compact support in \mathbb{C}^n , so that*

$$F(\zeta) = \int_{z \in \mathbb{C}^n} e^{\langle z, \zeta \rangle} d\mu(z), \quad \text{for } \zeta \in \mathbb{C}^n.$$

Before we prove this theorem we will recall some facts about the Bochner-Martinelli kernel.

2. The Bochner-Martinelli kernel

For $z \neq w$, set

$$M(z, w) = \frac{\beta_n}{|z - w|^{2n}} \sum_{j=1}^n (-1)^{j-1} (\bar{z}_j - \bar{w}_j) d\bar{z}_1 \wedge \dots \wedge (j) \dots \wedge d\bar{z}_n,$$

where $\beta_n = (n-1)!/(2\pi i)^n$, and, as in [1], for each $k = (k_1, \dots, k_n)$ (where k_j are non-negative integers), define

$$\begin{aligned} \eta_k(z) &= \frac{\partial^{k_1+\dots+k_n} M(z, w)}{\partial w_1^{k_1} \dots \partial w_n^{k_n}} \Big|_{w=0} \\ &= \beta_n n(n+1) \dots (n+k_1 + \dots + k_n - 1) \frac{\bar{z}_1^{k_1} \dots \bar{z}_n^{k_n}}{|z|^{2(n+k_1+\dots+k_n)}} \times \\ &\quad \times \sum_{j=1}^n (-1)^{j-1} \bar{z}_j d\bar{z}_1 \wedge \dots \wedge (j) \dots \wedge d\bar{z}_n. \end{aligned}$$

Then $\eta_k \in Z_{\bar{\partial}}^{(0, n-1)}(\mathbb{C}^n - \{0\})$, i.e., η_k is a $(0, n-1) - \bar{\partial}$ -closed form with C^∞ coefficients in $\mathbb{C}^n - \{0\}$.

Also, by the Bochner-Martinelli formula (see [4]), for $f \in \mathcal{O}(\mathbb{C}^n)$, (i.e., a function f , holomorphic in \mathbb{C}^n),

$$\int_{z \in S(0, r)} f(z) M(z, w) \wedge \omega(z) = f(w) \quad (\text{for } w \text{ close to } 0 \in \mathbb{C}^n),$$

where $\omega(z) = dz_1 \wedge \dots \wedge dz_n$, $S(0, r) = \{z \in \mathbb{C}^n : |z| = r\}$ and $r > 0$.

Applying to the above equation the operator $\frac{\partial^{k_1+\dots+k_n}}{\partial w_1^{k_1} \dots \partial w_n^{k_n}}$ and evaluating at $w = 0$, we obtain

$$(1) \quad \int_{z \in S(0, r)} f(z) \eta_{k_1, \dots, k_n}(z) \wedge \omega(z) = \frac{\partial^{k_1+\dots+k_n} f(w)}{\partial w_1^{k_1} \dots \partial w_n^{k_n}} \Big|_{w=0}.$$

3. The proof of the Theorem

Let F be an entire function which satisfies (*). In order to construct a measure μ with the required property, we expand $F(\zeta)$ in power series:

$$F(\zeta) = \sum_{k_1, \dots, k_n \geq 0} c_{k_1, \dots, k_n} \zeta_1^{k_1} \dots \zeta_n^{k_n}, \quad \zeta = (\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n,$$

where

$$c_{k_1, \dots, k_n} = \frac{1}{k_1! \dots k_n!} \left. \frac{\partial^{k_1 + \dots + k_n} F(\zeta)}{\partial \zeta_1^{k_1} \dots \partial \zeta_n^{k_n}} \right|_{\zeta=0}.$$

It follows from (*) and Cauchy's inequalities that

$$|c_{k_1, \dots, k_n}| \leq A \frac{e^{B(R_1 + \dots + R_n)}}{R_1^{k_1} \dots R_n^{k_n}}, \quad \text{for every } R_1, \dots, R_n > 0.$$

Applying this inequality with $R_1 = k_1/B, \dots, R_n = k_n/B$ we obtain that

$$|c_{k_1, \dots, k_n}| \leq A \frac{(eB)^{k_1 + \dots + k_n}}{k_1^{k_1} \dots k_n^{k_n}}, \quad \text{for all } k_1, \dots, k_n.$$

We claim that this implies that

$$(2) \quad \sum_{k_1, \dots, k_n \geq 0} n(n+1) \dots (n+k_1 + \dots + k_n - 1) |c_{k_1, \dots, k_n}| s_1^{k_1} \dots s_n^{k_n} < \infty$$

when

$$0 < s_j < \frac{1}{(n+1)eB}.$$

Indeed, it suffices to observe that

$$(3) \quad \sum_{k_1, \dots, k_n \geq 0} \frac{n(n+1) \dots (n+k_1 + \dots + k_n - 1)}{k_1^{k_1} \dots k_n^{k_n}} \sigma_1^{k_1} \dots \sigma_n^{k_n} < \infty$$

when

$$0 < \sigma_j < 1/(n+1).$$

To justify (3), let us first consider the series

$$(4) \quad \sum_{n \leq k_1 \leq \dots \leq k_n} \frac{n(n+1) \dots (n+k_1 + \dots + k_n - 1)}{k_1^{k_1} \dots k_n^{k_n}} \sigma_1^{k_1} \dots \sigma_n^{k_n}.$$

Writing

$$\begin{aligned} \frac{n(n+1) \dots (n+k_1 + \dots + k_n - 1)}{k_1^{k_1} \dots k_n^{k_n}} \sigma_1^{k_1} \dots \sigma_n^{k_n} &= \frac{n \dots (n+k_1 - 1)}{(2k_1)^{k_1}} \dots \\ \frac{(n+k_1 + \dots + k_{n-1}) \dots (n+k_1 + \dots + k_n - 1)}{[(n+1)k_n]^{k_n}} (2\sigma_1)^{k_1} \dots [(n+1)\sigma_n]^{k_n} & \end{aligned}$$

and observing that $n \leq k_1 \leq \dots \leq k_n$ implies

$$\frac{n \cdots (n+k_1-1)}{(2k_1)^{k_1}} \leq 1, \dots,$$

$$\frac{(n+k_1+\dots+k_{n-1}) \cdots (n+k_1+\dots+k_n-1)}{[(n+1)k_n]^{k_n}} \leq 1,$$

we see that the general term of (4) is dominated by $(2\sigma_1)^{k_1} \cdots [(n+1)\sigma_n]^{k_n}$.

Therefore the series (4) converges if $2\sigma_1 < 1, \dots, (n+1)\sigma_n < 1$, i.e., if $\sigma_1 < 1/2, \dots, \sigma_n < 1/(n+1)$.

Since the general term of the series in (3) is symmetric with respect to k_1, \dots, k_n , we conclude that (3) holds.

Next writing the factor $\frac{\bar{z}_1^{k_1} \cdots \bar{z}_n^{k_n}}{|z|^{2(n+k_1+\dots+k_n)}}$ of $\eta_{k_1, \dots, k_n}(z)$ in the form

$$\frac{1}{|z|^{2n}} \left(\frac{\bar{z}_1}{|z|^2} \right)^{k_1} \cdots \left(\frac{\bar{z}_n}{|z|^2} \right)^{k_n},$$

we see that (2) implies that the series

$$\eta(z) = \sum_{k_1, \dots, k_n \geq 0} c_{k_1, \dots, k_n} \eta_{k_1, \dots, k_n}(z)$$

converges for $|z| > (n+1)eB$ and defines a $(0, n-1)$ -form with C^∞ coefficients in $\mathbb{C}^n - E_\rho$, where $E_\rho = \{z \in \mathbb{C}^n : |z| \leq \rho\}$ and $\rho = (n+1)eB$.

Finally we claim that

$$\int_{z \in S(0, r)} e^{\langle z, \zeta \rangle} \eta(z) \wedge \omega(z) = F(\zeta), \quad \text{for } \zeta \in \mathbb{C}^n,$$

provided that $r > \rho$.

To prove it, we apply (1) with $f(w) = e^{\langle \zeta, w \rangle}$ (with ζ fixed) and we find that

$$\int_{z \in S(0, r)} e^{\langle \zeta, z \rangle} \eta_{k_1, \dots, k_n}(z) \wedge \omega(z) = \zeta_1^{k_1} \cdots \zeta_n^{k_n}.$$

But by (2), the series $\sum_{k_1, \dots, k_n \geq 0} c_{k_1, \dots, k_n} e^{\langle \zeta, z \rangle} \eta_{k_1, \dots, k_n}(z) \wedge \omega(z)$ converges uniformly for $z \in S(0, r)$, and therefore

$$\begin{aligned} \int_{z \in S(0, r)} e^{\langle \zeta, z \rangle} \eta(z) \wedge \omega(z) &= \sum_{k_1, \dots, k_n \geq 0} c_{k_1, \dots, k_n} \int_{z \in S(0, r)} e^{\langle \zeta, z \rangle} \eta_{k_1, \dots, k_n}(z) \wedge \omega(z) \\ &= \sum_{k_1, \dots, k_n \geq 0} c_{k_1, \dots, k_n} \zeta_1^{k_1} \cdots \zeta_n^{k_n} = F(\zeta). \end{aligned}$$

Thus as a measure μ we may choose the restriction of the differential form $\eta(z) \wedge \omega(z)$ to the sphere $S(0, r)$:

$$d\mu(z) = \eta(z) \wedge \omega(z)|_{z \in S(0, r)}.$$

This completes the proof of the theorem.

REMARKS. It follows from (2) that

$$\begin{aligned}\bar{\partial}\eta &= \bar{\partial}\left(\sum_{k_1, \dots, k_n \geq 0} c_{k_1, \dots, k_n} \eta_{k_1, \dots, k_n}\right) \\ &= \sum_{k_1, \dots, k_n \geq 0} c_{k_1, \dots, k_n} \bar{\partial}\eta_{k_1, \dots, k_n} = 0, \quad \text{in } \mathbb{C}^n - E_\rho,\end{aligned}$$

i.e., $\eta \in Z_{\bar{\partial}}^{(0, n-1)}(\mathbb{C}^n - E_\rho)$.

In particular, any measure λ with compact support in \mathbb{C}^n , is equivalent to a $(n, n-1) - \bar{\partial}$ -closed form $\eta(z) \wedge \omega(z)$ in $\mathbb{C}^n - E_\rho$ (when ρ is sufficiently large), in the sense that, for $r > \rho$,

$$\int_{z \in S(0, r)} f(z) \eta(z) \wedge \omega(z) = \int_{w \in \mathbb{C}^n} f(w) d\lambda(w), \quad \text{for every } f \in \mathcal{O}(\mathbb{C}^n).$$

And of course the sphere $S(0, r)$, in the first of the above integrals, may be replaced by any simple closed $(2n-1)$ -dimensional surface in $\mathbb{C}^n - E_\rho$, which surrounds 0.

References

- [1] T. Hatziafratis, *On a class of $\bar{\partial}$ -equations without solutions*, Comment. Math. Univ. Carolinae 39, 3 (1998), 503–509.
- [2] T. Hatziafratis, *Note on the Fourier-Laplace transform of $\bar{\partial}$ -cohomology classes*, Z. Anal. Anwendungen 17 (1998), 907–915.
- [3] L. Hörmander, *An Introduction to Complex Analysis in Several Variables*, North-Holland, Amsterdam, 1990.
- [4] A. Kytmanov, *The Bochner-Martinelli Integral and its Applications*, Birkhauser, Basil, 1995.

UNIVERSITY OF ATHENS
DEPARTMENT OF MATHEMATICS
PANEPISTEMIOPOLIS
15784 ATHENS, GREECE
E-mail: thatzias@math.uoa.gr

Received March 29, 2002.

