

Piotr Jakóbczak

EXCEPTIONAL SETS FOR FUNCTIONS FROM THE WEIGHTED BERGMAN SPACES IN THE BALL

Abstract. In this note we study the behaviour of holomorphic functions in the unit ball \mathbb{B}_N in \mathbb{C}^N on one-dimensional complex subspaces of \mathbb{C}^N . The behaviour of functions is described in terms of L^2 -integrability with weights on the sets $L \cap \mathbb{B}_N$, where L runs over different families E of one-dimensional complex subspaces of \mathbb{C}^N .

1. Introduction

Denote by \mathbb{B}_N the unit ball in \mathbb{C}^N . Given an open subset D of \mathbb{C}^N , denote by $\mathcal{O}(D)$ the space of all functions holomorphic in D , and let $L^2H(D)$ be the space of those holomorphic functions in D for which $\int_D |f(z)|^2 dm(z) < +\infty$ (where m denotes the Lebesgue measure in \mathbb{C}^N).

We have proved in [1] that there exists a function f holomorphic in \mathbb{B}_N such that for every complex subspace L of \mathbb{C}^N , $f|_{L \cap \mathbb{B}_N} \notin L^2(L \cap \mathbb{B}_N)$. Note that such function f cannot be in $L^2H(\mathbb{B}_N)$, by Fubini's theorem. On the other hand, in [2] the following result concerning the functions from the space $L^2H(\mathbb{B}_N)$ was proved:

THEOREM 1 ([2], Theorem 1). *Let E be a subset of one-dimensional complex subspaces of \mathbb{C}^N such that the set $\bigcup\{\Pi \cap \mathbb{B}_N \mid \Pi \in E\}$ is closed in \mathbb{B}_N and of Lebesgue measure zero. Then there exists a function $f \in L^2H(\mathbb{B}_N)$ such that for every one-dimensional complex subspace Π of \mathbb{C}^N ,*

$$(1) \quad \int_{\Pi \cap \mathbb{B}_N} |f(w)|^2 dm(w) = +\infty$$

iff $\Pi \in E$.

(Here m is the Lebesgue measure in $\Pi \cap \mathbb{B}_N$).

1991 *Mathematics Subject Classification*: 32A37, 32A22.

Partially supported by the KBN Grant 2 PO3A 017 14.

It is also known that the following result holds: Given $s > -1$, denote by $A^{2,s}(\mathbb{B}_N)$ the space of all functions holomorphic in \mathbb{B}_N such that

$$\int_{\mathbb{B}_N} |f(z)|^2 (1 - |z|^2)^s dm(z) < +\infty.$$

Let Π be an arbitrary one-dimensional complex subspace of \mathbb{C}^N . Then for every $f \in A^{2,s}(\mathbb{B}_N)$, $f|_{\Pi \cap \mathbb{B}_N} \in A^{2,N-1+s}(\Pi \cap \mathbb{B}_N)$, i.e.

$$(2) \quad \int_{\Pi \cap \mathbb{B}_N} |f(w)|^2 (1 - |w|^2)^{N-1+s} dm(w) < +\infty.$$

(This can be proved e.g. by the use of the orthogonality of the monomials $z_1^{\alpha_1} \dots z_N^{\alpha_N}$ in \mathbb{B}_N and the integration in polar coordinates in \mathbb{C}^N).

Note that $L^2 H(\mathbb{B}_N) = A^{2,0}(\mathbb{B}_N)$. Hence for every function $f \in L^2 H(\mathbb{B}_N)$ and every one-dimensional complex subspace Π of \mathbb{C}^N , we have, by (2),

$$(3) \quad \int_{\Pi \cap \mathbb{B}_N} |f(w)|^2 (1 - |w|^2)^{N-1} dm(w) < +\infty.$$

Because of (1) and (3) the question arises whether for every E as in the assumption of Theorem 1 one can construct the function $f \in L^2 H(\mathbb{B}_N)$ such that f satisfies not only (1), but also such that for every $\Pi \in E$, and for every $0 \leq \eta < N - 1$,

$$(4) \quad f|_{\Pi \cap \mathbb{B}_N} \notin A^{2,N-1-\eta}(\Pi \cap \mathbb{B}_N).$$

In this note we shall show that this is impossible in general :

THEOREM 2. *For every $N \geq 3$ there exists a subset E of one-dimensional complex subspaces of \mathbb{C}^N such that the set $\bigcup\{\Pi \cap \mathbb{B}_N \mid \Pi \in E\}$ is closed in \mathbb{B}_N and of Lebesgue measure zero, and such that for every function $f \in L^2 H(\mathbb{B}_N)$ there exists $\Pi \in E$ and η with $0 < \eta < N - 1$, such that*

$$f|_{\Pi \cap \mathbb{B}_N} \in A^{2,N-1-\eta}(\Pi \cap \mathbb{B}_N).$$

As was already said above, if $f \in L^2 H(\mathbb{B}_N) = A^{2,0}(\mathbb{B}_N)$ and Π is any one-dimensional complex subspace of \mathbb{C}_N , then the condition (3) holds. One can ask whether the converse is true, i.e. if a function f holomorphic in \mathbb{B}_N satisfies (3), then $f \in L^2 H(\mathbb{B}_N)$. We show that this also is not true in general:

THEOREM 3. *For every $N \geq 2$ there exists a function $f \in \mathcal{O}(\mathbb{B}_N)$ such that for every one-dimensional complex subspace Π of \mathbb{C}^N ,*

$$(5) \quad f|_{\Pi \cap \mathbb{B}_N} \in A^{2,N-1}(\Pi \cap \mathbb{B}_N),$$

but $f \notin L^2 H(\mathbb{B}_N)$.

We also prove the following result, concerning the functions satisfying (1) and (2):

THEOREM 4. *There exists a function f holomorphic in \mathbb{B}_N such that for every one-dimensional complex subspace Π of \mathbb{C}_N ,*

$$(6) \quad f|_{\Pi \cap \mathbb{B}_N} \in A^{2,N-1}(\Pi \cap \mathbb{B}_N),$$

but for every $0 < \varepsilon < N$:

$$(7) \quad f|_{\Pi \cap \mathbb{B}_N} \notin A^{2,N-1-\varepsilon}(\Pi \cap \mathbb{B}_N).$$

2. The exceptional sets

In this part we give the proofs of Theorems 2, 3 and 4. We begin with the proof of Theorem 4.

Proof of Theorem 4. The following characterization of the class $A^{2,s}(U)$, where U is the unit disc in the complex plane, and $s > -1$, is well-known, and can be obtained by integration in polar coordinates in \mathbb{C} :

Let $h(w) \in \mathcal{O}(U)$, $h(w) = \sum_{n=0}^{\infty} b_n w^n$. Then $h \in A^{2,s}(U)$, i.e.

$$\int_U |h(w)|^2 (1 - |w|^2)^s dm(w) < +\infty$$

iff $\sum_{n=1}^{\infty} \frac{1}{n^{s+1}} |b_n|^2 < +\infty$.

In the sequel we will use the sequence of homogeneous polynomials in \mathbb{C}^N , constructed by Wojtaszczyk in [3]:

THEOREM 5 ([3], Thm 1). *There exists an integer $K = K(N)$ and a sequence $\{p_n\}$ of homogeneous polynomials in \mathbb{C}^N of degree n such that*

$$(8) \quad |p_n(z)| \leq 2 \text{ for all } z \in \partial \mathbb{B}_N \text{ and for } n \text{ large enough, say } n \geq N_0;$$

$$(9) \quad \text{for each } s \text{ large enough, say } s \geq s_0, \quad \sum_{n=Ks}^{K(s+1)-1} |p_n(z)| \geq 0, 5 \quad \text{for all } z \in \partial \mathbb{B}_N.$$

The function f from Theorem 2, satisfying (6) and (7) will have the form

$$(10) \quad f(z) = \sum_{n=1}^{\infty} c_n p_n(z),$$

where $\{p_n(z)\}_{n=0}^{\infty}$ are as in Theorem 5, and the coefficients c_n , $n = 1, 2, \dots$ will be chosen later. Let f be any function of the form (10), and let z be an arbitrary point of the boundary $\partial \mathbb{B}_N$. Consider the function f_z , defined in the unit disc U in \mathbb{B} by the formula

$$f_z : U \ni w \mapsto f(wz).$$

Then, for a given s , using the properties of polynomials p_n and polar coordinates we obtain

$$\begin{aligned}
 \int_U |f_z(w)|^2 (1 - |w|^2)^s dm(w) &= \int_U |f(wz)|^2 (1 - |w|^2)^s dm(w) \\
 &= \sum_{n=0}^{\infty} |c_n|^2 \int_U |p_n(wz)|^2 (1 - |w|^2)^s dm(w) \\
 &= \sum_{n=0}^{\infty} |c_n|^2 |p_n(z)|^2 \int_U |w|^{2n} (1 - |w|^2)^s dm(w) \\
 &= 2\pi \sum_{n=0}^{\infty} |c_n|^2 |p_n(z)|^2 \int_0^1 r^{2n+1} (1 - r^2)^s dr \\
 &= \pi \sum_{n=0}^{\infty} |c_n|^2 |p_n(z)|^2 \int_0^1 t^n (1 - t)^s dt.
 \end{aligned}$$

For $n \geq 0$ and $s > -1$ we have

$$\int_0^1 t^n (1 - t)^s dt = \frac{n!}{(s+1)(s+2)\dots(s+n+1)}.$$

Therefore

$$\begin{aligned}
 \pi \sum_{n=0}^{\infty} |c_n|^2 |p_n(z)|^2 \int_0^1 t^n (1 - t)^s dt \\
 &= \pi \sum_{n=0}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{n!}{(s+1)(s+2)\dots(s+n+1)}.
 \end{aligned}$$

In particular, according to (6), (7), and the above, if f has the form (10), then: f satisfies (6) (resp. (7)) iff for every $z \in \partial\mathbb{B}_N$

$$\sum_{n=0}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{n!}{N(N+1)\dots(N+n)} < +\infty$$

(resp. for every $z \in \partial\mathbb{B}_N$ and every ε with $0 < \varepsilon < N$:

$$\sum_{n=0}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{n!}{(N-\varepsilon)(N+1-\varepsilon)\dots(N+n-\varepsilon)} < +\infty).$$

We have

$$\frac{n!}{N(N+1)\dots(N+n)} =$$

$$\begin{aligned}
&= \frac{(N-1)!N(N+1)\dots n}{N(N+1)\dots(N+(n-N))(N+(n-N)+1)\dots(N+n)} \\
&= \frac{(N-1)!}{(n+1)\dots(n+N)},
\end{aligned}$$

and, for n sufficiently large,

$$\begin{aligned}
\frac{(N-1)!}{n^N} &\geq \frac{(N-1)!}{(n+1)\dots(n+N)} \geq \frac{(N-1)!}{(n+N)^N} \\
&= \frac{(N-1)!}{n^N} \frac{n^N}{(n+N)^N} = \frac{(N-1)!}{n^N} \frac{1}{(1+\frac{N}{n})^N} \geq \frac{1}{2} \frac{(N-1)!}{n^N}.
\end{aligned}$$

Therefore

$$\sum_{n=0}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{n!}{N(N+1)\dots(N+n)} < +\infty$$

iff

$$\sum_{n=1}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{1}{n^N} < +\infty.$$

Similarly we can prove that

$$\sum_{n=0}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{n!}{(N-\varepsilon)(N+1-\varepsilon)\dots(N+n-\varepsilon)} < +\infty$$

iff

$$\sum_{n=1}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{1}{n^{N-\varepsilon}} < +\infty.$$

Hence, to construct the function f of the form (10) satisfying (6) and (7), it is sufficient to find the coefficients $\{c_n\}_{n=0}^{\infty}$ in such a way that:

For every $z \in \partial \mathbb{B}_N$

$$(11) \quad \sum_{n=1}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{1}{n^N} < +\infty,$$

and for every $z \in \partial \mathbb{B}_N$ and every ε with $0 < \varepsilon < N$:

$$(12) \quad \sum_{n=1}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{1}{n^{N-\varepsilon}} = +\infty.$$

Set

$$(13) \quad c_n = \frac{n^{\frac{N-1}{2}}}{\log(n+1)}, \quad n = 1, 2, \dots,$$

and let, according to (10),

$$(14) \quad f(z) = \sum_{n=1}^{\infty} c_n p_n(z)$$

with the coefficients c_n defined by (13).

Since the polynomials p_n are homogeneous and for $n \geq N_0$ we have $|p_n| \leq 2$ on \mathbb{B}_N by (8), and $|c_n|$ are given by the formula (13), it is not difficult to prove that the series in (14) is locally uniformly convergent in \mathbb{B}_N and defines here a holomorphic function; hence $f \in \mathcal{O}(\mathbb{B}_N)$.

Consider the condition (11). For every $z \in \partial\mathbb{B}_N$, by (8) and (13), we have for some constant d (depending on c_l and $p_l(z)$ with $1 \leq l \leq N_0 - 1$, where N_0 is the constant from the condition (8), i.e. for that (finite) set of polynomials $p_l(z)$ for which (8) does not hold),

$$\begin{aligned} \sum_{n=1}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{1}{n^N} &= \sum_{n=1}^{\infty} \frac{n^{N-1}}{\log^2(n+1)} |p_n(z)|^2 \frac{1}{n^N} \\ &\leq d + 4 \sum_{n=N_0}^{\infty} \frac{n^{N-1}}{n^N \log^2(n+1)} \\ &= d + 4 \sum_{n=N_0}^{\infty} \frac{1}{n \log^2(n+1)} < +\infty, \end{aligned}$$

which gives (11).

We pass now to (12). Let ε with $0 < \varepsilon < N$ be given. Let s_0 be the constant from the condition (9). Then for every $z \in \partial\mathbb{B}_N$ we have, by (9) and (13),

$$\begin{aligned} \sum_{n=1}^{\infty} |c_n|^2 |p_n(z)|^2 \frac{1}{n^{N-\varepsilon}} &= \sum_{n=1}^{\infty} \frac{n^{N-1}}{\log^2(n+1)} |p_n(z)|^2 \frac{1}{n^{N-\varepsilon}} \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{1-\varepsilon} \log^2(n+1)} |p_n(z)|^2 \\ &\geq \sum_{s \geq s_0} \sum_{p=0}^{K-1} \frac{1}{(Ks+p)^{1-\varepsilon} \log^2(Ks+p+1)} |p_{Ks+p}(z)|^2 \\ &\geq \sum_{s \geq s_0} \sum_{p=0}^{K-1} \frac{1}{(Ks+K-1)^{1-\varepsilon} \log^2(Ks+K)} |p_{Ks+p}(z)|^2 \end{aligned}$$

$$\begin{aligned}
&= \sum_{s \geq s_0} \frac{1}{(Ks + K - 1)^{1-\varepsilon} \log^2(Ks + K)} \sum_{p=0}^{K-1} |p_{Ks+p}(z)|^2 \\
&\geq c \sum_{s \geq s_0} \frac{1}{(Ks + K - 1)^{1-\varepsilon} \log^2(Ks + K)} = +\infty,
\end{aligned}$$

where $c > 0$ is some constant independent of s . This proves (12). Hence the function f given by (14) has the desired properties, which ends the proof of Theorem 4. ■

Proof of Theorem 2. Let $N \geq 3$. Set

$$\begin{aligned}
(15) \quad E &= \{L = \{\lambda(0, w_2, \dots, w_N) \mid \lambda \in \mathbb{C}\} \mid \\
&\quad |(w_2, \dots, w_N) \in \mathbb{C}^{N-1}, \sqrt{|w_2|^2 + \dots + |w_N|^2} = 1\};
\end{aligned}$$

then E is a set of complex one-dimensional subspaces of \mathbb{C}^N generated by the vectors $w = (w_1, \dots, w_N)$ with $w_1 = 0$. We have $m(\bigcup E \cap \mathbb{B}_N) = 0$; moreover, the set

$$(16) \quad L = \bigcup E = \{w \in \mathbb{C}^N \mid w_1 = 0\}$$

is a subspace of \mathbb{C}^N of complex dimension $N - 1$.

We need the additional characterization of behavior of functions from the space $A^{2,s}(\mathbb{B}_N)$ on lower-dimensional slices:

If $f \in A^{2,s}(\mathbb{B}_N)$, $s > -1$, and Λ is a complex k -dimensional subspace of \mathbb{C}^N , $k < N$, then

$$(17) \quad f|_{\Lambda \cap \mathbb{B}_N} \in A^{2,N-k+s}(\Lambda \cap \mathbb{B}_N),$$

i.e.

$$(18) \quad \int_{\Lambda \cap \mathbb{B}_N} |f(w)|^2 (1 - |w|^2)^{N-k+s} dm(w) < +\infty$$

(as before, this characterization can be obtained by a computation on the coefficients of the Taylor series of the function f , and the integration in polar coordinates in \mathbb{B}_N).

Now suppose that f is a function from Theorem 1, constructed with respect to the set E defined in (15), i.e. $f \in L^2 H(\mathbb{B}_N) = A^{2,0}(\mathbb{B}_N)$, and for every complex one-dimensional subspace Π of \mathbb{C}^N ,

$$f|_{\Pi \cap \mathbb{B}_N} \notin L^2(\Pi \cap \mathbb{B}_N) \text{ iff } \Pi \in E,$$

with E defined by (15). Suppose moreover that for every $\Pi \in E$, and every η with $0 < \eta < N - 1$,

$$(19) \quad f|_{\Pi \cap \mathbb{B}_N} \notin A^{2,N-1-\eta}(\Pi \cap \mathbb{B}_N).$$

Let L be as in (16). Then, by (17), with $\Lambda = L$, $k = N - 1$ and $s = 0$,

$$(20) \quad f|_{L \cap \mathbb{B}_N} \in A^{2,1}(L \cap \mathbb{B}_N).$$

Hence, by Fubini's theorem, for almost all slices of the form $\Pi \cap \mathbb{B}_N$, where $\Pi \in E$, we have

$$(21) \quad f|_{\Pi \cap \mathbb{B}_N} \in A^{2,1}(\Pi \cap \mathbb{B}_N).$$

Then (19), (21) and the assumption that $N \geq 3$ give the contradiction, say for $\eta = 1/2$. ■

Proof of Theorem 3. Fix $N \geq 2$. For every $n = 1, 2, \dots$, let

$$(22) \quad c_n = \left(\int_{\mathbb{B}_N} |(z_1 z_2)^n|^2 dm(z) \right)^{-1/2},$$

where $z = (z_1, z_2, \dots, z_N)$, and m is, as before, the Lebesgue measure in \mathbb{C}^N . Set

$$(23) \quad f(z) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} c_n (z_1 z_2)^n.$$

We will use the following equality:

If $\alpha = (\alpha_1, \dots, \alpha_N)$ is a multiindex with α_i being positive integers, $i = 1, \dots, N$, then

$$\int_{\mathbb{B}_N} z^\alpha \bar{z}^\alpha dz = \frac{\pi^N \alpha!}{(|\alpha| + N)!},$$

where, as usually, $\alpha! = \alpha_1! \dots \alpha_N!$, $|\alpha| = \alpha_1 + \dots + \alpha_N$. Hence

$$(24) \quad c_n = \frac{\sqrt{(2n + N)!}}{\sqrt{\pi^N} n!}.$$

We have, by Stirling's formula,

$$\begin{aligned} \left(\frac{\sqrt{(2n + N)!}}{\sqrt{\pi^N} n!} \right)^{1/n} &\approx \left(\frac{((2n + N)^{2n + N} e^{-(2n + N)} \sqrt{2\pi(2n + N)})^{1/2}}{n^n e^{-n} \sqrt{2\pi n}} \right)^{1/n} \\ &= \frac{(2n + N)^{1+N/2n} e^{-(1+N/2n)} (2\pi(2n + N))^{1/4n}}{n e^{-1} (2\pi n)^{1/n}}. \end{aligned}$$

This expression tends to 2 as $n \rightarrow \infty$. Since for $z = (z_1, z_2, \dots, z_N) \in \mathbb{B}_N$ we have

$$|z_1 z_2| < \frac{1}{2},$$

the series in (23) is convergent uniformly on compact subsets of \mathbb{B}_N and defines a holomorphic function there.

By the orthogonality of the monomials $(z_1 z_2)^n$ on \mathbb{B}_N for different values of n we have, by (22),

$$\int_{\mathbb{B}_N} |f(z)|^2 dm(z) = \sum_{n=1}^{\infty} \frac{1}{n} c_n^2 \int_{\mathbb{B}_N} |(z_1 z_2)^n|^2 dm(z) = \sum_{n=1}^{\infty} \frac{1}{n} = +\infty.$$

Now let $w = (w_1, w_2, \dots, w_N)$ be an arbitrary point of $\partial \mathbb{B}_N$. Let $\Pi = \{tw \mid t \in \mathbb{C}\}$. Then we have, by the orthogonality of the monomials $(z_1 z_2)^n$ on $\Pi \cap \mathbb{B}_N$,

$$\begin{aligned} (25) \quad \int_{\Pi \cap \mathbb{B}_N} |f(z)|^2 (1 - |z|^2)^{N-1} dm(z) &= \int_U |f(tw)|^2 (1 - |tw|^2)^{N-1} dm(t) \\ &= \sum_{n=1}^{\infty} \frac{1}{n} c_n^2 |w_1 w_2|^{2n} \int_U |t|^{4n} (1 - |t|^2)^{N-1} dm(t), \end{aligned}$$

where U denotes the unit disc in the complex plane. Because of (24) and the fact that for $w \in \partial \mathbb{B}_N$ we have $|w_1 w_2| \leq \frac{1}{2}$, the right-hand side in (25) is not greater than

$$\begin{aligned} (26) \quad &\sum_{n=1}^{\infty} \frac{(2n+N)!}{n\pi^N(n!)^2 4^n} \int_U |t|^{4n} (1 - |t|^2)^{N-1} dm(t) \\ &= \sum_{n=1}^{\infty} \frac{(2n+N)!}{n\pi^N(n!)^2 4^n} \int_0^1 r \int_0^{2\pi} r^{4n} (1 - r^2)^{N-1} d\varphi dr, \\ &\sum_{n=1}^{\infty} \frac{(2n+N)! 2\pi}{n\pi^N(n!)^2 4^n} \int_0^1 r^{4n+1} (1 - r^2)^{N-1} dr \\ &= \sum_{n=1}^{\infty} \frac{(2n+N)!}{n\pi^{N-1}(n!)^2 4^n} \int_0^1 s^{2n} (1 - s)^{N-1} ds \end{aligned}$$

(we have used the substitution $r^2 = s$). We will use another equality:

$$\int_0^1 s^k (1 - s)^p ds = \frac{k!}{(p+1)(p+2) \dots (p+k+1)}, \quad p, k = 0, 1, 2, \dots$$

Hence

$$\int_0^1 s^{2n} (1 - s)^{N-1} ds = \frac{(2n)!}{N(N+1) \dots (N+2n)}, \quad n = 1, 2, \dots$$

Therefore the last sum in (26) is equal to

$$\sum_{n=1}^{\infty} \frac{(2n+N)!(2n)!}{n\pi^{N-1}(n!)^2 4^n N(N+1) \dots (N+2n)} = \sum_{n=1}^{\infty} \frac{(N-1)!(2n)!}{n\pi^{N-1} 4^n (n!)^2}.$$

By Stirling's formula we have

$$\frac{(2n)!}{(n!)^2} \approx \frac{(2n)^{2n} e^{-2n} \sqrt{4\pi n}}{(n^n e^{-n} \sqrt{2\pi n})^2} = \frac{2^{2n} \sqrt{4\pi n}}{2\pi n} = \frac{4^n}{\sqrt{\pi n}}.$$

Therefore, for some $d > 0$,

$$\sum_{n=1}^{\infty} \frac{(N-1)!(2n)!}{n\pi^{N-1}4^n(n!)^2} \leq \sum_{n=1}^{\infty} \frac{d(N-1)!}{\pi^{N-1}\sqrt{\pi n}\sqrt{n}} < +\infty.$$

This shows that

$$\int_{\Pi \cap \mathbb{B}_N} |f(z)|^2 (1 - |z|^2)^{N-1} dm(z) < +\infty,$$

which ends the proof of Theorem 3. ■

Acknowledgements. The author would like to express his gratitude to the Referee for pointing out the error in the original proof of Theorem 3 and for proposing essential simplifications in the proofs of Theorems 3 and 4.

References

- [1] P. Jakóbczak, *Highly nonintegrable functions in the unit ball*, Israel J. Math. 97 (1997), 175–181.
- [2] P. Jakóbczak, *Exceptional sets of slices for functions from the Bergman space in the ball*, Canad. Math. Bull. 44, (2001), 150–159.
- [3] P. Wojtaszczyk, *On highly nonintegrable functions and homogeneous polynomials*, Ann. Polon. Math. 65 (1997), 245–251.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY
ul. Warszawska 24
31-155 KRAKÓW, POLAND

INSTITUTE OF MATHEMATICS
JAGELLONIAN UNIVERSITY
ul. Reymonta 4
30-059 KRAKÓW, POLAND

Received December 17, 2001; revised version April 18, 2002.