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Piotr Jakobczak 

EXCEPTIONAL SETS FOR FUNCTIONS FROM 
THE WEIGHTED BERGMAN SPACES IN THE BALL 

A b s t r a c t . In this note we study the behaviour of holomorphic functions in the unit 
ball BJV in on one-dimensional complex subspaces of C N . The behaviour of functions 
is described in terms of L2-integrability with weights on the sets L n B/v, where L runs 
over different families E of one-dimensional complex subspaces of CN. 

1. Introduction 
Denote by B jv the unit ball in CN . Given an open subset D oiCN, denote 

by 0{D) the space of all functions holomorphic in D, and let L2H(D) be the 
space of those holomorphic functions in D for which \D \f(z)\2dm(z) < +oo 
(where m denotes the Lebesgue measure in CN). 

We have proved in [1] that there exists a function / holomorphic in Bjv 
such that for every complex subspace L of , f\cnBN 

£ L2(L(~)Bn). Note 
that such function / cannot be in L2H(Mm), by Fubini's theorem. On the 
other hand, in [2] the following result concerning the functions from the 
space L2H(Mn) was proved: 
THEOREM 1 ([2], Theorem 1). Let E be a subset of one-dimensional complex 
subspaces of CN such that the set (J{n flBjv|n € E} is closed in Bjv and 
of Lebesgue measure zero. Then there exists a function f E L2H(B^r) such 
that for every one-dimensional complex subspace II of CN, 
(1) J \f(w)\2dm(w) = +oo 

nnffljv 
iff lie E. 

(Here m is the Lebesgue measure in II fi Bjv)-
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It is also known that the following result holds: Given s > — 1, denote 
by A2's(1Bjv) the space of all functions holomorphic in B/v such that 

S \f(z)\2(l — \z\2)sdm(z) < +00. 
Bn 

Let II be an arbitrary one-dimensional complex subspace of C^. Then for 
every / € A2<s(BN), f |nnffiN € A^^+'iJi n MN), i.e. 

(2) J |/M| 2(1 - \w\2)N-l+sdm(w) < +00. 
nnBw 

(This can be proved e.g. by the use of the orthogonality of the monomials 
zf1 . . . in Bjv and the integration in polar coordinates in C^) . 

Note that L2H(MN) = j42>0(Bn). Hence for every function / G L2H(MN) 
and every one-dimensional complex subspace n of CN, we have, by (2), 

(3) J |/(u;)|2(l — \w\2)N~1dm(w) < + 0 0 . 

Because of (1) and (3) the question arises whether for every E as in the 
assumption of Theorem 1 one can construct the function / e L2H(Bjv) such 
that / satisfies not only (1), but also such that for every II G E, and for 
every 0 < 77 < N — 1, 

(4) f \ n n M N i A 2 ' N - ^ ( u n M N ) . 
In this note we shall show that this is impossible in general : 

THEOREM 2. For every N > 3 there exists a subset E of one-dimensional 
complex subspaces 

of CN such that the set ( J { n fl Bjv|n G E} is closed in 
Bat and of Lebesgue measure zero, and such that for every function f G 
L2H(Bjv) there exists II G E and 77 with 0 < 77 < N — 1, such that flnn^eA^-^iUnM»). 

As was already said above, if / G L2H(Bjv) = j42'°(Bjv) and II is any 
one-dimensional complex subspace of C^, then the condition (3) holds. One 
can ask whether the converse is true, i.e. if a function / holomorphic in 
Bjv satisfies (3), then / G L2H(Bjv). We show that this also is not true in 
general: 

THEOREM 3. For every N >2 there exists a function f G (D(B^) such that 
for every one-dimensional complex subspace II of CN, 

(5) f\nnMN€A2'N-\un] 

but f t L2H{ Bjv). 
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We also prove the following result, concerning the functions satisfying 
(1) and (2): 

T H E O R E M 4 . There exists a function f holomorphic in 3n such that for 
every one-dimensional complex subspace II of Cjv, 

(6) f \ n m N e A 2 > N - \ n n M N ) , 
but for every 0 < e < N: 

(7) / Inn!* <M 2 " ' v ~ 1 _ e (nnB;v ) . 

2. The exceptional sets 
In this part we give the proofs of Theorems 2, 3 and 4. We begin with 

the proof of Theorem 4. 

P r o o f of T h e o r e m 4. The following characterization of the class 
A2<S(U), where U is the unit disc in the complex plane, and s > —1, is 
well-known, and can be obtained by integration in polar coordinates in C: 

Let h(w) € 0{U), h(w) = J2n=obnWn- Then h € A2<S(U), i.e. 

J | /*M| 2 (1 - M 2 ) s d m { w ) < +oo 
u 

In the sequel we will use the sequence of homogeneous polynomials in 
CN, constructed by Wojtaszczyk in [3]: 

T H E O R E M 5 ([3], Thm 1). There exists an integer K = K(N) and a sequence 
{Pn} of homogeneous polynomials in CN of degree n such that 
(8) \pn(z)\ < 2 for all 2 € <9®at and for n large enough, say n> No; 

K(s+1)-1 

(9) for each s large enough, say s > so, ^^ |Pn(z)| > 5 
n=Ks 

for all 2 € dMN. 

The function / from Theorem 2, satisfying (6) and (7) will have the form 
00 

(10) f (z ) = Y,CnP n(z) , 
n= 1 

where { p n ( z ) a r e as in Theorem 5, and the coefficients cn, n = 1 ,2 , . . . 
will be chosen later. Let / be any function of the form (10), and let 2: be an 
arbitrary point of the boundary c>B/v- Consider the function / 2 , defined in 
the unit disc U in B by the formula 

fz '• U 3—> f(wz). 
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Then, for a given s, using the properties of polynomials pn and polar coor-
dinates we obtain 

5 | / * M ! 2 ( 1 - M 2 ) s d m M = 5 l / M I 2 ( l - H 2 ) s d m ( w ) 

u u 
oo 

= E l c - | 2 5 I P n M I ^ 1 - H 2 ) S d m ( w ) 

n=0 U 

oo 

= E \Cn\2\Pn(z) |2 J W 2 n ( l ~ \ W \ 2 ) ' d m ( w ) 

n=0 U 

oo 1 
= 2 n J 2 \ c n \ 2 \ P n ( z ) \ 2 \ r 2 n + 1 ( l - r 2 ) s d r 

n=0 0 
oo 1 

= 7 r J 2 \ C n \ 2 \ P n ( z ) \ 2 \ t n ( l - t ) S d t . 

n=0 0 

For n > 0 and s > — 1 we have 
l 

\ t n { 1 t y d t ~ ( s + l ) ( s + 2 ) . . . ( s + n + i y 

Therefore 
oo 1 

n J 2 K \ 2 \ P n ( z ) \ 2 \ t n ( i - t y d t 

0 
oo _ | 

= * 5 > I 2 M * ) I S 

n = 0 0 
oo 

n = 0 
(s + l ) (s + 2 ) . . . (s + n + 1) 

In particular, according to (6), (7), and the above, if / has the form (10), 
then: / satisfies (6) (resp. (7)) iff for every z 6 <?Bjv 

OO I 

E i ^ i 2 M ^ ) i 2 i V ( A r + 1 ) n ; - ( i V + n ) < +oo 

(resp. for every z £ cffi/y and every e with 0 < s < N: 

OO j 

E 1^1 (AT _ £ ) ( i V + 1 - n £ ) . . . (iV + n - s) < + Q o ) -

We have 
n\ 

N ( N + l ) . . . ( N + n ) 
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(N — 1)\N(N + 1).. .n 

~ N{N + 1 ) . . . (iV + (n - N))(N + (n - N) + 1 ) . . . {N + n) 

( N - 1)! 
(n + 1 ) . . . (n + N)' 

and, for n sufficiently large, 
( j V - 1 ) . ^ (JV — 1)! ^ (AT- 1)! 

nN ~ (n + 1 ) . . . (n + N) ~ (n + N)N 

_ (N — 1)! nN _ ( N - 1 ) \ 1 1 (iV — 1)! 

Therefore 

iff 

nN (n + N)N nN (\ + ~ 2 

OO J 

g \Cn\2\Pn(z)\2
 + _(iV + n ) 

nN 

n\ 
< +oo 

oo 1 

Y^ lCn|2bn(2)|2^v < +00. 
71=1 

Similarly we can prove that 

n\ 
Y , \ C n \ 2 \ P n ( z ) \ 2 - -
n=0 ^ •e)(N + l - e ) . . . ( N + n - e ) 

iff 
OO J 

< +oo 

n' n=l 
Hence, to construct the function / of the form (10) satisfying (6) and (7), 
it is sufficient to find the coefficients { c n } ^ 0 in such a way that: 

For every z € c®/v 
OO J 

(11) y " M 2 | P n ( z ) | 2 — < +00, L—' nJV 
n=l 

and for every z € SBjy and every e with 0 < e < N: 
oo 1 

(12) £ M 2 M 2 ) i 2 ^ = +°o. 
n=l 

Set 
N-l 

(13) c n = n = 1 ,2 , . . . , log(n + 1) 
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and let, according to (10) 
oo 

(14) /(*)= 52CnPn(z) 
n= 1 

with the coefficients cn defined by (13). 
Since the polynomials pn are homogeneous and for n > No we have 

\pn| < 2 on Byy by (8), and |cn| are given by the formula (13), it is not 
difficult to prove that the series in (14) is locally uniformly convergent in 
MN and defines here a holomorphic function; hence / e ©(B/v). 

Consider the condition (11). For every z € SB at, by (8) and (13), we 
have for some constant d (depending on c¿ and pi(z) with 1 < I < No — 1, 
where No is the constant from the condition (8), i.e. for that (finite) set of 
polynomials pi(z) for which (8) does not hold), 

which gives (11). 
We pass now to (12). Let e with 0 < e < TV be given. Let «o be the 

constant from the condition (9). Then for every z € <9B/v we have, by (9) 
and (13), 

OO 1 oo JV—1 1 

Ewvwi '^-Eis^M' )^ 
n=1 n=1 ° v ' 

oo ¡V_1 

K-1 
1 a E E (Ks + p)l~e log2 (Ks + p + 1) 

\PKS+p{Z)\ 
2 

S>SQ p = 0 

K-1 
1 £EE (Ks + K - l )1 -^ log2(KS + K) 

\PKS+p{Z)\ 
2 

s>so P=0 
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1 K ~ l 

= £ (JKs + K-iy-*\og\Ks + K) g |P^+p(2)|2 

> c V s = +00, 
- £<0{Ks + K-iy-nog2{Ks + K) 

where c > 0 is some constant independent of s. This proves (12). Hence the 
function / given by (14) has the desired properties, which ends the proof of 
Theorem 4. • 

P r o o f of T h e o r e m 2. Let N >3. Set 

(15) £ = { L = {A(0 ,™ 2 , . . . , U ; , v )|AgC}| 

|(™2,...,wN)e CN~\ v W + ' - . + M 2 = 1 } ; 

then E is a set of complex one-dimensional subspaces of CN generated by 
the vectors w = (u>i,... ,wn) with w\ = 0. We have m ( { J E fl Bjv) = 0; 
moreover, the set 

(16) L = \^JE = {w E C^lioi = 0 } 

is a subspace of CN of complex dimension N — 1. 
We need the additional characterization of behavior of functions from 

the space A2 's(Bjv) on lower-dimensional slices: 
If / € j 4 2 ' s ( B j v ) , S > — 1 , and A is a complex fc-dimensional subspace of 

CN, k < N, then 

(17) /UnBN 6 ^ - " " ^ ( A n B i v ) , 

i.e. 

( 1 8 ) J | / ( i y ) | 2 ( l — \w\2)N~k+sdm(w) < + 0 0 

AnBjv 

(as before, this characterization can be obtained by a computation on the 
coefficients of the Taylor series of the function / , and the integration in polar 
coordinates in Bjv). 

Now suppose that / is a function from Theorem 1, constructed with 
respect to the set E defined in (15), i.e. / G L2H(MN) = A2-°(BN) , and for 
every complex one-dimensional subspace II of CN, 

/InnB* £ £ 2 ( n n B t f ) iff n G 

with E defined by (15). Suppose moreover that for every II G E, and every 
? 7 with 0 < 7 7 < N - 1, 

(19) / U M ^ H ( n n ] 
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Let L be as in (16). Then, by (17), with A = L, k = N - 1 and s = 0, 

(20) /IlhBn g A2A(L HMn). 
Hence, by Fubini's theorem, for almost all slices of the form II fl Bat, where 
II € E, we have 

(21) f\nnBN€A2>\llnMN). 
Then (19), (21) and the assumption that N >3 give the contradiction, say 
for 77 = 1/2. • 

P r o o f of T h e o r e m 3. Fix N >2. For every n = 1,2, . . . , let 

(22) cn = ( \ I ( z i z 2 ) n \ 2 d m ( z ) \ 
\Bn / 

where z — (z\, . . . ,ZN), and m is, as before, the Lebesgue measure in 
CN. Set 

(23) 
00 

We will use the following equality: 
If a = ( a i , . . . , a/v) is a multiindex with a* being positive integers, i = 

1,..., N, then 

f z ^ d z = ^ I < M + " ) ' ' 

where, as usually, a! = a i ! . . . a^! , |a | = a i + . . . + CXN- Hence 

(24) = VtxNn\ 
We have, by Stirling's formula, 

/ V ( 2 n + iV)!\ 1 / n _ / ((2n + N)2n+Ne^2n+N^2n(2n + iV))1/2 \ V" 
^ VT^UI J ~ nne~n^/2wn ) 

(2 n + iV)1+iV/2"e-(1+N/2n)(27r(2n + AT))1/«" 
ne_1(27rn)1/n 

This expression tends to 2 as n —> 00. Since for 2 = (21,22> • • •, zn) € 
we have 

< g» 

the series in (23) is convergent uniformly on compact subsets of Bn and 
defines a holomorphic function there. 
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By the orthogonality of the monomials (ZTLZ2)n on B/v for different values 
of n we have, by (22), 

OO 1
 00 1 

5 \f(z)\2dm{z) = 5 \(^2)n\2dm(z) = £ - = + 0 0 . 

Bn n=1 Bjv n = 1 

Now let w = (w\,w2, • • • ,wn) be an arbitrary point of dM^. Let II = 
{tw\t 6 C}. Then we have, by the orthogonality of the monomials (ziz2)n 

on IIn®Ar, 

(25) J | / ( z ) | 2 ( l - \z\*)N-Hm{z) = \ \ f ( t w ) \ \ l - I M 2 ) " " 1 ^ * ) 
nnl N u 

0 0 1 

= E ^ n i w i 2 " s l i r a - l i i 2 ) " - 1 ^ ) , n n=1 U 

where U denotes the unit disc in the complex plane. Because of (24) and 
the fact that for w G c?Bjv we have \w\w2\ < the right-hand side in (25) 
is not greater than 

= Y \ r T r 4 - ( l - r2)N~1dtpdr, Ti7r (71!) 4" ' ' ) r > 71=1 v ' 0 0 

^ mrN(n\)2An * U ' ^ n=1 V > 0 

^ nTT^-Hn )24" J V 7 
71 = 1 V ' 0 

(we have used the substitution r2 = s). We will use another equality: 

(p + l)(p + 2 ) . . . ( p + fc + l ) ' 

(2n)! 

0 
Hence 

I s ^ dS N(N + 1 ) . . . (N + 2n)' n 

Therefore the last sum in (26) is equal to 

(2n + iV)!(2n)! (N - l)!(2n)! 
mr^—l fn.n^An /VY /V -4- "H . . ( N 4- ~~ nir n= 1 

l(n!)24niV(./V + 1 ) . . . (JV + 2n) ^ nTr^-U^n! ) 5 
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By Stirling's formula we have 

(2n)! _ (2n)2ne~2n\/47rn _ 2 2 n y W _ 4n 

(n!)2 (nne_nv/27rn)2 27m v ^ ' 
Therefore, for some d > 0, 

( i V - l ) ! ( 2 n ) ! ^ d(N — 1)! 
Z ^ n 7 r N - i 4 n ( n n 2 - T r N - i ^ F n v ^ 
n = 1 v ' n = l y v 

This shows that 

j |/(z)| 2( l -|^| 2)N- 1dm(z)<+oo, 
nnBjv 

which ends the proof of Theorem 3. • 
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