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Piotr Jakébcezak

EXCEPTIONAL SETS FOR FUNCTIONS FROM
THE WEIGHTED BERGMAN SPACES IN THE BALL

Abstract. In this note we study the behaviour of holomorphic functions in the unit
ball By in €V on one-dimensional complex subspaces of C™. The behaviour of functions
is described in terms of L2-integrability with weights on the sets L N By, where L runs
over different families F of one-dimensional complex subspaces of cN.

1. Introduction

Denote by By the unit ball in CV. Given an open subset D of CV, denote
by O(D) the space of all functions holomorphic in D, and let L2H (D) be the
space of those holomorphic functions in D for which {, | f(2)|*dm(z) < +o0
(where m denotes the Lebesgue measure in CV).

We have proved in [1] that there exists a function f holomorphic in By
such that for every complex subspace L of CV, f| LBy L?*(LNBy). Note
that such function f cannot be in L2H(By), by Fubini’s theorem. On the
other hand, in [2] the following result concerning the functions from the
space L2H(By) was proved:

THEOREM 1 ([2], Theorem 1). Let E be a subset of one-dimensional complex
subspaces of CN such that the set | J{IINBy|II € E} is closed in By and
of Lebesgue measure zero. Then there exists a function f € L2H(By) such
that for every one-dimensional complezx subspace II of CV,

1) | 1f@)Pdm(w) = +o0

TINB N
ifflle E.

(Here m is the Lebesgue measure in IINBy).
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It is also known that the following result holds: Given s > —1, denote
by A%s(By) the space of all functions holomorphic in By such that

[ 172121 = [21%)*dm(z) < +oo.
By

Let II be an arbitrary one-dimensional complex subspace of CN. Then for
every f € A>*(By), flnsy € AZN-+s(TTNBy), ie.

(2) | 1F @) = )N dm(w) < +oo.
INBy
(This can be proved e.g. by the use of the orthogonality of the monomials
2 ... 23" in By and the integration in polar coordinates in CV).
Note that L2ZH(Bx) = A>%(By). Hence for every function f € L2H(By)
and every one-dimensional complex subspace II of CV, we have, by (2),

3) 17 @)= [w)N dm(w) < +oo.
IINByN

Because of (1) and (3) the question arises whether for every E as in the
assumption of Theorem 1 one can construct the function f € L2H(By) such
that f satisfies not only (1), but also such that for every Il € E, and for
every 0 <n < N —1,

(@) flnemy & AT NBY).
In this note we shall show that this is impossible in general :

THEOREM 2. For every N > 3 there exists a subset F of one-dimensional
complex subspaces of CN such that the set J{IINBy|II € E} is closed in
By and of Lebesgue measure zero, and such that for every function f €
L2H(By) there ezists 1 € E and n with 0 <n < N — 1, such that

flnry € A2V (TN BY).

As was already said above, if f € L2H(By) = A>°(By) and II is any
one-dimensional complex subspace of Cp, then the condition (3) holds. One
can ask whether the converse is true, i.e. if a function f holomorphic in
By satisfies (3), then f € L2H(By). We show that this also is not true in
general:

THEOREM 3. For every N > 2 there ezists a function f € O(By) such that
for every one-dimensional complex subspace II of CV,

(5) flansy € A*Y 1T NBy),
but f ¢ L2H(By).
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We also prove the following result, concerning the functions satisfying
(1) and (2):

THEOREM 4. There exists a function f holomorphic in By such that for
every one-dimensional complex subspace Il of Cy,

(6) flucs, € A*M TN By),
but for every 0 < e < N:
(7) flas, ¢ A*VTITH(INBY).

2. The exceptional sets
In this part we give the proofs of Theorems 2, 3 and 4. We begin with
the proof of Theorem 4.

Proof of Theorem 4. The following characterization of the class

A%3(U), where U is the unit disc in the complex plane, and s > —1, is

well-known, and can be obtained by integration in polar coordinates in C:
Let h(w) € O(U), h(w) = > o2 ybyw™. Then h € A>*(U), i.e.

§ 1R(w)IP(1 = [w]?)*dm(w) < +o00
U
iff Yoo ) = |bal? < +oo.
In the sequel we will use the sequence of homogeneous polynomials in
CV, constructed by Wojtaszczyk in [3):

THEOREM 5 ([3], Thm 1). There ezists an integer K = K(N) and a sequence
{pn} of homogeneous polynomials in CV of degree n such that

(8) |pn(2)| <2 for all z € By and for n large enough, say n > No;
K(s+1)-1
(9) for each s large enough, say s > sq, Z lpn(2)] = 0,5
n=Ks
for all 2 € OBy.

The function f from Theorem 2, satisfying (6) and (7) will have the form

(10) [(2)= 3 eapn(2),

where {p,(2)}32, are as in Theorem 5, and the coefficients ¢,, n = 1,2, ...
will be chosen later. Let f be any function of the form (10), and let z be an
arbitrary point of the boundary 8By . Consider the function f,, defined in
the unit disc U in B by the formula

fz:U 33— f(wz).
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Then, for a given s, using the properties of polynomials p,, and polar coor-
dinates we obtain

J1£:(w)P(1 ~ fwl?)*dm(w) = [ 1f (w2)P(1 = [w]*)*dm(w)
U

U

= Z leal® S [P (w2)*(1 = |w]?)*dm(w)

n=0
= Zlcnl pn(2)] Slwlz"(1 |w[?)*dm(w)
oo 1
=213 feal?lpa(2)? 2™ (1 - r2)%dr
n=0 0

= wZ leal2lpa(z S "(1 - t)*ds.

For n > 0 and s > —1 we have

1

n!
ét e )T P sy Py &

Therefore
00 1
7> feal?lpa(2) [ § (1 - )°dt
n=0 0

n!

:W;lcnl2lpn('z)|2(s+1)(8+2)(s+n+ 1)

In particular, according to (6), (7), and the above, if f has the form (10),
then: f satisfies (6) (resp. (7)) iff for every z € OBy

> n!
> lenllon ()P o1y <

(resp. for every z € OBy and every € with 0 < e < N:

> 9 n!
g;'c"' l1""(‘2)'2(1\1 TN Fi=e (Nin_a ST

We have
n! _

NN+1)..(N+n)
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_ (N-1DIN(N+1)...n
T NN4+1D...(N+(n=N)(N+(n—-N)+1)...(N+n)
_ -y
T (n+1...(n+ N)’

and, for n sufficiently large,

(N —-1)! > (N -1)! S (N —1)!
nV T (n+l)...(n+N) = (n+N)N
_WN-pt e (N-D! 1 1V
St MV e DV T2 AN
Therefore
!
3 leaPlpn(2)P n < +oo
n=0 N(N+1)...(N +n)
iff
= 1
> |0n|2lpn(z)l2~ﬁﬁ < 4o0.
n=1
Similarly we can prove that
S 2 2 n!
n n <
gc I C ey oy s py e S

iff
Z |cn| |pn (2

Hence, to construct the functlon f of the form (10) satisfying (6) and (7),
it is sufficient to find the coefficients {c,}52 in such a way that:
For every z € 0By

(11) Z lea P lpn(2)|* 5 < +o0,

and for every z € OBy and every € with 0 < e < N:

> 1
(12) Z |cn|2|pn(z)|2nN_€ = +oo
n=1
Set
n
(13) ™ = 1727 b

~ log(n+ 1)’
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and let, according to (10),

(14)

Cnpn

HF’J8

with the coefficients c,, defined by (13)

Since the polynomials p,, are homogeneous and for n > Ny we have
|pn] < 2 on By by (8), and |c,| are given by the formula (13), it is not
difficult to prove that the series in (14) is locally uniformly convergent in
By and defines here a holomorphic function; hence f € O(By).

Consider the condition (11). For every z € 0By, by (8) and (13), we
have for some constant d (depending on ¢; and p;(z) with 1 <1 < N — 1,
where Nj is the constant from the condition (8), i.e. for that (finite) set of
polynomials p;(z) for which (8) does not hold),

1 nN 1 1
2 2 2
Cn n\2Z = ~|Pn\Z2)| —7
n§ l:l I |p ( )I N § :l 2( l)lp ( )l nN

RN-1
<d+4
Z anog (n+1)

=d+4 < +o00,
nz‘:, nlog n+1)

which gives (11). :
We pass now to (12). Let ¢ with 0 < € < N be given. Let sq be the

constant from the condition (9). Then for every z € 9By we have, by (9)
and (13),

Y leal?lpn(2)?
n=1
1

2-—
-3 A

lpn(2)[®

1
B Z: nl=¢log?(n + 1)

Z Z 12 lpKstp(2)[?
- (Ks+p)l—clog*(Ks+p+1)

s>so p=0

1 2
2 E E s
(Ks+ K — 1)1 log®(Ks + K) IPrs+(2)]

s>so p=0
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2 : K-—1
= 2
— K s z
s>s0 (KS+ K 1)1—5 10g2( S+K) pgo |PK +p( )l

1
>
- c; (Ks+ K —1)1-¢log*(Ks + K)

= +OO,

where ¢ > 0 is some constant independent of s. This proves (12). Hence the
function f given by (14) has the desired properties, which ends the proof of
Theorem 4. =

Proof of Theorem 2. Let N > 3. Set
(15) E ={L={\0,ws,...,un)|A € C}|
|(ws, ..., wn) € CY 7L \/JwaP + ..+ [wn|? = 1};

then E is a set of complex one-dimensional subspaces of CV generated by
the vectors w = (wy,...,wy) with w; = 0. We have m(|JFE NBy) = 0;
moreover, the set

(16) L=|JE={weCVluw =0}

is a subspace of C¥ of complex dimension N — 1.
We need the additional characterization of behavior of functions from
the space A%*(By) on lower-dimensional slices:

If f € A2*(By), s > —1, and A is a complex k-dimensional subspace of
CN, k < N, then

(17) flargy € A2V F(ANBY),

ie.

(18) V1) = )N +dm(w) < 400
AMNBy

(as before, this characterization can be obtained by a computation on the
coefficients of the Taylor series of the function f, and the integration in polar
coordinates in By ).

Now suppose that f is a function from Theorem 1, constructed with
respect to the set E defined in (15), i.e. f € L?H(By) = A2°(By), and for
every complex one-dimensional subspace II of CV,

flarey € L2(MNBy) iff 1 € E,

with E defined by (15). Suppose moreover that for every Il € E, and every
nwith0<np<N-—-1,

(19) flinsy € APV 1IN BY).
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Let L be as in (16). Then, by (17), with A=L, k=N —-1and s =0,
(20) floasy € A¥H(LNBy).

Hence, by Fubini’s theorem, for almost all slices of the form II N By, where
IT € E, we have

(21) flansy € AN TN By).

Then (19), (21) and the assumption that N > 3 give the contradiction, say
forn=1/2. =m

Proof of Theorem 3.Fix N > 2. Foreveryn=1,2,..., let

—1/2
(22) Cn = (S I(zlzz)"lzdm(Z)> ;

Bn

where z = (21, 29,...,2n), and m is, as before, the Lebesgue measure in
CV. Set

(23) Z 21 22

We will use the following equahty.

If a = (a,...,an) is a multiindex with «a; being positive integers, ¢ =
1,...,N, then
Nt
7 al
S 297Z%dz =
'7
) (ol + )
where, as usually, o! = a;!...an!, |¢| = a1 + ... + an. Hence
(2n + N)!
2 =
(24) o Valn!

We have, by Stirling’s formula,

( (27’L+N)!)1/n N (((2n+N)2n+Ne—(2n+N)\/27r(2n—+]v))1/2>l/

\/,,Tﬁn! n"e‘”\/é_ﬁ
(2TL+ N)1+N/2n —(14+N/2n) (27r(2n+N))1/4n
ne~1(2wn)l/n

This expression tends to 2 as n — oo. Since for z = (z1,29,...,2n) € By
we have

|z122 < bX
the series in (23) is convergent uniformly on compact subsets of By and
defines a holomorphic function there.
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By the orthogonality of the monomials (z129)™ on By for different values
of n we have, by (22),

o0

1, 1
S |f(2)|2dm(z) E —Cn S 2123)"%dm(z) = Z ~= +00.
By n= n=1
Now let w = (w;,ws,...,wy) be an arbitrary point of dBy. Let II =

{tw|t € C}. Then we have, by the orthogonality of the monomials (z;22)"
on IIN By,

(25) | 17 @R = [PV dm(2) = [ If (tw) P(L — [tw]?) ¥~ dm(t)

TINB N U
1
= 3 2wy | (1 (1) 2dm (o),
n=1 U

where U denotes the unit disc in the complex plane. Because of (24) and
the fact that for w € 0By we have jwyws| < -;—, the right-hand side in (25)
is not greater than

(26) Z @en + N) § (L W)Y am

n7rN(n' 24n

Z (2n+ ! Sr S rin(1 — rH)N"dydr,

nN (n!)24»

= @nA N)2T 4 2\N—1
Z n (n))24n ST (L=r)" dr
1 0

n—=

[ 1

(2n+N)' 2n N-
=Y v o Ey s (1—s)¥"1ds
n=1 0

(we have used the substitution 72 = s). We will use another equality:
1

k!
(S]sk(l—s)pds: PTG 10 i kED) p,k=0,1,2,....
Hence
: !
§)s2"(1 —s)N-1ds = NV T 1()2.7.1).(N+2n)’ n=12,....
Therefore the last sum in (26) is equal to
i (2n + N)!(2n)! B i (N = 1)1(2n)!
naN=1(n)24"N(N +1)... (N +2n)  “— nrN-14n(nl)2
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By Stirling’s formula we have
(2n)! (2n)2"e="/dmn  2Vdwn 4"
(n!)2 - (nre—n/2mn)? 2 mn
Therefore, for some d > 0,

(N = 1)!(2n)! 2. d(N-1)!
$S (VDG N1

—_— T ——= < .
naN-14n(nl)2 = 7N-1/mn\/n oo

n=1 n=1

This shows that

| 1f@IP - 12N dm(z) < +oo,
IINBxN
which ends the proof of Theorem 3. =
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