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THE CONJECTURE PARALLEL
TO THE KRZYZ CONJECTURE

Abstract. For any fixed integer k let us denote

1 1+ 2
At = e {5 )

oo
=6_t+ZA51k)(t)znv t>0, ze D={z:]z| < 1}.
n=1

We say that a holomorphic function f in D of the form:
f2)=e " +ajz+ax2®+..., 2D, t>0
belongs to the class Bg if and only if f(z) < Fi(t;z), z € D, where the sign < denotes

the subordination.

The class By ! = By, where By denotes the class of holomorphic, bounded and
nonvanishing functions in D. We find the sharp bounds for |ai|, |az!, |asg| and ob-
serve the different behaviour of these estimates depending on k. We conjecture that if
fz)=et4aiz+... € 352, then

2
(1) max |an| = —==121306... n=1, 2,...
feBg? T Ve

and the sign of the equality holds (up to the rotation) only for the function

1 ) n 1142°) 1 2 ,
F-g(z,z)—(l z)exp{ 21—2"}_\/2 \/Ez +...

1. Introduction

Let H(D) denote the set of holomorphic functions in the unit disk
D = {z € C: |z| < 1}. In the sequel we consider the following families
of functions:
(2) Bo:={feHD): f(z)=av+aiz+..., 0<|f(2)| <1, z€ D}
(3) Q:={weHD):w(z)=crz+c2?..., w(z)| <1, z€ D}.
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With no loss of generality we may assume for f € By the normalization
ag=et t>0.
The Krzyz conjecture [5] asserts that for f(z) =e™" + 332, an2" € By :
2
4 = - =0.73575... =1,2,....
( ) ?éagg |an| e ) n Y <y

with the equality (up to the rotation) for the function F,(z) = F(2"), n =
1,2,..., where

(5) F(z)=exp<—1+z>=%—§z+...,zeD.
So far the conjecture has been proved only for n = 1,2, 3,4. In general, it
is known that |a,| < 0.99918 ([3] and [2]). For more information concerning
the problem as well as some of its generalizations or special versions we refer
to [4], [10], [1], [7], [11], and [6].

The connection of the Krzyz conjecture with the Laguerre polynomials
L5V is well-known. Namely we have (e.g.[6]):

= 1—w(z)

-z

where w € Q. Denoting

(7 F(t;z):exp{—t1+z}=e_t+§:An(t)z", z2€D
1-2 —

we have

(8) An(t) = e tLEV(2L), t>0, n=1,2,..., Ag=e",

because the generating function for the Laguerre polynomials L (z), €
R, z > 0 has the form:

1 TZ ad
(9) mexp {—1 — } = Z Lgf’)(m)z", z€D.

z n=0

The relation (6) can be written equivalently in terms of subordination,
namely

f)=et+aiz+a® +... €By & f(2) < F(t;z), =z€D.

One can extend the above coefficient problem (4) as follows. For any
fixed integer k (positive, negative or zero) let us set

(10) Fi.(t;2) = u—_lz—)mexp{—tiiz}

oo
=et+ Z AR, t>0, ze D.
n=1
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By the relation (9) we have the following equality
(11) AP(t) = e LP (21).

We propose the study of the coefficient problems in the classes B defined
as follows:

(12) f(2) = e P+ a1z + a2’ +... € BE < f(2) < Fi(t;2), z€ D.

Naturally, we have By 1 = By. In this note we obtain the sharp bounds for
lan], n = 1,2,3; f € BE and observe their different behaviour depending
on whether & is a positive or negative integer. At the end of this paper we
propose the parallel conjecture to the Krzyz conjecture for the class B 2,

2. The coefficient problem in the classes B}
From the definition (12) of the class B we have:

(13) f(2)=et+arz+a® +... € B = f(2) = Fi(t;w(2))

where w € .
Therefore, by (3), (10) and (13) we easily find that

a; = Agk) (t)er
(14) ay = AP (t)ey + AP ()2
as = AP (t)cs + 240 (t)cres + AP (£)c3

where A,(lk)(t) = et (2t) are given by the following formulae:
AP @) = etk +1-21)
(15) AP () = et E(k +1)(k+2) —2(k +2)t + 2t2]

AB (1) = et [é (k+1)(k +2)(k +3)

—(k+2)(k+3)t+2(k+3)t2—§t].

In what follows we assume k # —1. The casesk > 0, k= —2and k < -3
will be treated separately.
THEOREM 1. If f(2) € BE then we have the following sharp estimates:
(16) |ag| < e flk+1—-2t| < |k+1|, k#-1,-2;

lag| < max {e_t|k +1-2t], e %(k + 1)(k+2) — 2(k + 2)t + 2t*

}

SSADk+2), k20, k<5
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Proof. From (14) and (15) we easily get (16) by using the inequalities
le1] <1 and |eg| < 1—|c1]? valid for w € Q.

The maximal value in both cases for the right-hand side is attained at
t = 0 and w(z) = z respectively. Therefore, the extremal function for |a|
and |az| has the form (up to the rotation)

(17)  fo(2) = ﬁ —(1—2) ) — 1 = (—(k1+ 1)>z N

1
=1+(k+1)z+§(k:+1)(k+2)22+... n

In the case k = —2, —3 and —4 the situation is different.

THEOREM 2. If f € 362, then we have the following sharp estimates:

2
8 < et < 2
(18) lai| <e (1+2t)_\/e_3
2
< ~t “to2y < =
(19) laz| < max{e™*(1 + 2t),e”"2t°} < 7
The extremal functions have the form:
1142
(20) fole) = (1 - 2)exp { -5 1= |
in (18) and
11+ 22
2
(21) foo(2) = (1 = ) exp {—51 * 22}
in (19).
Proof. From the formulae (14) and (15) we obtain
(-2) )| = ot 2
(22) lar] < [A7P ()] = e +20) < 22
and

241 if0<t< e

< max{e *(1 4 2t ,e_t2t2 =et
laz] < max{e™( ) J 22 ift> L8

The maximal values are % fort = % and ;8; for t = 2 respectively, which
implies (19).

The form of the extremal function follows from the fact that we have
le1| = 1, i.e. w(2) = z in the case of max|a;|, and |c3| =1, i.e. w(z) = 2% in
the case of max |as|. »
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THEOREM 3. If f € By 3 then we have the following sharp estimates:
(23) la1] <2(1+t)e t <2
(24) lag| < max{e (2t +2),e {(2t2 + 2t + 1)} < 2.

Proof. The estimates (23) and (24) again follow from the formulae (14)
and (15) and the extremal functions have the form

fi(z) = (1-2)?
and
fa(z) = (1 - 2%)°
respectively. =
THEOREM 4. If f € 854, then we have the following sharp estimates:
(25) la1] < e (2t +3) <3,
(26) laz| < max{e~(2t + 3),e"(2t2 + 4t + 3)}
<2vV2+2)eF ~334...

The extremal functions have the form:

filz)=(1-2)%

- V21+2
fo(z) = (l—z)3exp{—71_z}

and

respectively.

REMARK 1. [4] If f € By ! then the following sharp estimates hold:

2
(27) jon| S €72 < =,
(28) lag| < max{e?2t,e7t|2t? — 2t|} < %.

The extremal functions have the form:

fO(z) = exp (—1 i z) ,

1-2
and
1+ 22
00/.\ _ _
f (Z) = €Xp ( — Z2>
respectively.

The problem of estimating |ag| is much more complicated. However, it
could be resolved by the following Lemma from |[8].
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LEMMA 1. If w € Q, then for any real numbers p and q the following sharp
estimate holds:

U(w) := ‘03 + pcica + QC?. < H(p,q)

for (p,q) € Dy U Dy
for (p,q) € Ul—3 Dy,

1
2(pl+1) (3—(]¥|JL+1—14_,,5) * for (p,q) € DgU Dy

(29)
where
(1
la]
(30) H(p,q) =
lq(
The sets Dy, ...
-Dl — {(p, Q) .
D2 = {(pa q)
D3 := {(P, q):
D4 = {(p7 q) :
Ds = {(p, )
Dg := {(P, q):
(31)
Dy := {(p, q):
De:={(pa):
2
DQ = {(pv q)
Dyo := {(IL q)
Dyy = {(p, q)
D12 {(pa q)

2

Z=2) (=) for (p,q) € D1oU Dii\(£2,1)

1
| 3(0pl = 1) (g({;'.ﬁ’l__l—l_q;) * for (p,q) € Dia.

, D12 are defined as follows:

1
<1
pl<y la<t),

1 4
: 5s|p|sz, (ol + 17— (pl+ D < g <1},

1
2 < |p| <4, qzﬁ(p2+8)},
2
lp| > 4, qu(Ipl—l),
_S|p|<2,

—3(pl+1) <g< 27(|p|+) (|p|+1)},

2 2|pl(|p|+ )}
L p| > 2, Z(lpl +1 ST S
Ip| > 3(Izvl ) < p >+ 2lp] 1 4
2Ipl(lpl+1) 1 }
2 < , VBT o) 2.8
2lp|(lp| + 1) 2|pl(lp| = 1)
Pl 24, S5 < 4S o 4}
p? +2|p| + 4 p | +

>4 ——=<qg< = —-1)5.
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THEOREM 5. If f(2) = e+ a1z +... € BE, then we have the following
sharp estimate (x = 2t > 0)

(32) jos| < e E|(k+ 1) —2|H(p,g) if s#k+1
where H(p, q) is given by (30) with

p= (k+1)(k+2) — 2(k + 2)z + z?

(k+1)—=
(33)
_1(k+1)(k+2)(k+3) — 3(k+2)(k + 3)z + 3(k + 3)z? — 2°
"6 (k+1)—z
and
(34) |a3|§§(k+1)6_% if z=k+1, k=0,1,2,...

Proof. From the formulae (14) and (15) we obtain (32) with p and ¢ given
by (33).

In order to apply Lemma 1 we have to find the equation of the curve
(33), call it ', in the form g = ¢(p) and find the intersection of 'y and the
boundary curves of the domains Dy, given by (31).

The elimination of the parameter z (obtained by long calculations) from
(33) gives the equation of I'y, which consists of two parts FZ’ and I';:

(35) T} : q=q<p)=i{p2+6p+p¢p2—4p+4<k+2)—4(k+2>},

12
ifk=0,1,2... ; and p is running from (k + 2) to — oo,
(z € (0,k + 1));
and
(36) Ty : g=qlp)= -1%{172+6p—p\/p2—4p+4(k+2)—4(k+2)},
if k=0,1,2... ; and p is running from + oo to — o0,
(z € (k+1,00));
and if k= -2,-3,...; and p is running from (k + 2) to — oo,
(z € (0,00));
and
B7) T : g=4q(p) = %(:D2 +2p—2), p€(-00,-2]. u

Because of the complicated nature of the equation of I'y, we explicitly
consider only the cases k = —2 and k& = -3.
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THEOREM 6. If f € By? then we have the following sharp estimates
(38) as| <
((z+1) if z € (0, z1]
3
2v2 (22 +zx+1)2
1
3 (3 + 322 + 62 + 6)2
V2 (z~3)(a" ~ 4z + 1))
iy 1
6 (z+1)2(2? + 4z + 6)(z3 — 322 — 6 — 6)%
3
22 (z?2 —z —1)2
T
3 (—a® 4922 — 62— 6)2
1
\ 6x2(z -3) if © € [z4,+00).

The numbers £1 =~ 2.17...,20~5.06...,2z3~5.62...,14 = 6.26... are
the roots of the following equations

if T € [z1, 2]

if x € [zg, z3)

nig

if x € [x3, 24

(39) 9z + 1)%(z* 4+ 322+ 62 +6) —8(z>+2+1)2 =0

40) 12(z+1)(z®+2+1) = (2= 3) (=" +2+1)* -3(z+1)*(z-3) =0
(41) 12+ 1)z -2-1) - (z-3) (22 -2z-1)2 -3+ 1)2%(z-3) =
(42) 2~ T2 +4r+4=0

respectively.

Proof. In this particular case the equation of I'y =I'_, is of the form

1 1 ,z-3
43 == 6—/p2—4pp = =z’ >0
(43) q 12p{p+ p p} 6%z 220
because p = ——%21 <0.m
The results (38)~(42) follow from Lemma 1 by the investigation of the
intersection of I'”, given by (43) with the boundary curves of the domains

Dy, given by (31).
COROLLARY 1. If f € By ? then

2
4 <—=1.21...
(44) Jas| < Z= ~ 1.21
and the extremal function has the form
11+ 28
_ 3
fR)=(1-2 )eXP{—EITZ—g,} .

Maximization of the corresponding functions in (38) with the use of
Mathematica leads to (44).
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THEOREM 7. If f € By 3 then we have the following sharp estimates
(45) las| <
((z+2) if = €(0,z7]
3
2v/2 (2?2 +3x+4)2
1

3 (z3 + 622 + 18z + 24)2 ,
V2 r3(x? + 423 + 42% — 8z - 12)2 , .
o T i if z € [z}, 3]

(J:+1)5(z3—63x— 12)2 (244823 +2422+24z+12)

2v2  z(z+1)2
3

if x € [z], z}]

9]
[S11

T if « € [23, 2]
(—x% + 62 + 6)2

3 if € [z}, +00).

(6"
The numbers x} ~ 0.94...,z3 ~ 3.64...,25 ~ 4.27...,2} = 2+ 2v/2 are
the roots of the following equations

(46) 828 + 632> 4 2222 + 37823 4 16822 — 360z — 352 = 0,

(47)  z7 + 625 4 8% — 48x* — 23623 — 4562 — 4320 — 192 = 0,

(48) 2%+ 225 — 80* — 4823 — 10822 — 120z — 48 = 0,

(49) 2 —4z—-4=0,

respectively.

Proof. In this case the equation of I'y, = I'_5 is of the form

3

1 1 z
50 = — 6— 2 _ —_ = —— >
(50) q 12p{p+ VPP —4p 4}+4 6$+2,$_0,

because p = —ﬁzﬁy <-1m
The results (45)—(49) follow from Lemma 1 by the investigation of the

intersection of I'”5 given by (50) with the boundary curves of the domains
Dy, given by (31).

COROLLARY 2. If f € By® then

(51) |as] <2

and the extremal function has the form
fz)=(1-2%"

Maximization of the corresponding functions in (45) with the use of
Mathematica leads to (51).
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3. Concluding remarks

The behaviour of the few first coefficients of a function f € B;? as well
as those of functions f € BE, k < —3 leads us to the following conjecture,
parallel to the Krzyz conjecture:

if f(2) =et4+a1z+... € By?, then

2
max |a,| = —==1.21306... n=1, 2,...
feBy? Ve

and the sign of the equality holds (up to the rotation) only for the function

1 11427 1 2
Fol=;2")=(01-2" ——— = — — 2"} ...
2(2,z) ( z)exp{ 21_2n} 7 \/Ez +
REMARK 2. Some support for the above conjecture is given in particular by
the function F_5(¢, z). Indeed, for n > 10 from the estimate obtained by

Rooney [9]:

[(2n)/
on+(1/2)p 1’
and for n = 4,5,...,9 by direct calculations with the use of Mathematica
one can show that |A$,_2) )| < 1L

AT ()] = LD (20| <4 n=12,..
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