

A. Ganczar, M. Michalska, J. Szynal

THE CONJECTURE PARALLEL
 TO THE KRZYŻ CONJECTURE

Abstract. For any fixed integer k let us denote

$$\begin{aligned} F_k(t; z) &= \frac{1}{(1-z)^{1+k}} \exp \left\{ -t \frac{1+z}{1-z} \right\} \\ &= e^{-t} + \sum_{n=1}^{\infty} A_n^{(k)}(t) z^n, \quad t > 0, z \in D = \{z : |z| < 1\}. \end{aligned}$$

We say that a holomorphic function f in D of the form:

$$f(z) = e^{-t} + a_1 z + a_2 z^2 + \dots, \quad z \in D, t > 0$$

belongs to the class \mathcal{B}_0^k if and only if $f(z) \prec F_k(t; z)$, $z \in D$, where the sign \prec denotes the subordination.

The class $\mathcal{B}_0^{-1} \equiv \mathcal{B}_0$, where \mathcal{B}_0 denotes the class of holomorphic, bounded and nonvanishing functions in D . We find the sharp bounds for $|a_1|$, $|a_2|$, $|a_3|$ and observe the different behaviour of these estimates depending on k . We conjecture that if $f(z) = e^{-t} + a_1 z + \dots \in \mathcal{B}_0^{-2}$, then

$$(1) \quad \max_{f \in \mathcal{B}_0^{-2}} |a_n| = \frac{2}{\sqrt{e}} = 1.21306\dots \quad n = 1, 2, \dots$$

and the sign of the equality holds (up to the rotation) only for the function

$$F_{-2} \left(\frac{1}{2}; z^n \right) = (1 - z^n) \exp \left\{ -\frac{1}{2} \frac{1+z^n}{1-z^n} \right\} = \frac{1}{\sqrt{e}} - \frac{2}{\sqrt{e}} z^n + \dots$$

1. Introduction

Let $H(D)$ denote the set of holomorphic functions in the unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$. In the sequel we consider the following families of functions:

- (2) $\mathcal{B}_0 := \{f \in H(D) : f(z) = a_0 + a_1 z + \dots, 0 < |f(z)| < 1, z \in D\}$
- (3) $\Omega := \{\omega \in H(D) : \omega(z) = c_1 z + c_2 z^2 \dots, |\omega(z)| < 1, z \in D\}.$

With no loss of generality we may assume for $f \in \mathcal{B}_0$ the normalization

$$a_0 = e^{-t}, \quad t > 0.$$

The Krzyż conjecture [5] asserts that for $f(z) = e^{-t} + \sum_{n=1}^{\infty} a_n z^n \in \mathcal{B}_0$:

$$(4) \quad \max_{f \in \mathcal{B}_0} |a_n| = \frac{2}{e} = 0.73575 \dots, \quad n = 1, 2, \dots.$$

with the equality (up to the rotation) for the function $F_n(z) = F(z^n)$, $n = 1, 2, \dots$, where

$$(5) \quad F(z) = \exp\left(-\frac{1+z}{1-z}\right) = \frac{1}{e} - \frac{2}{e}z + \dots, \quad z \in D.$$

So far the conjecture has been proved only for $n = 1, 2, 3, 4$. In general, it is known that $|a_n| < 0.99918$ ([3] and [2]). For more information concerning the problem as well as some of its generalizations or special versions we refer to [4], [10], [1], [7], [11], and [6].

The connection of the Krzyż conjecture with the Laguerre polynomials $L_n^{(-1)}$ is well-known. Namely we have (e.g. [6]):

$$(6) \quad f(z) = e^{-t} + \sum_{n=1}^{\infty} a_n z^n \in \mathcal{B}_0 \iff f(z) = \exp\left\{-t \frac{1+\omega(z)}{1-\omega(z)}\right\}$$

where $\omega \in \Omega$. Denoting

$$(7) \quad F(t; z) = \exp\left\{-t \frac{1+z}{1-z}\right\} = e^{-t} + \sum_{n=1}^{\infty} A_n(t) z^n, \quad z \in D$$

we have

$$(8) \quad A_n(t) = e^{-t} L_n^{(-1)}(2t), \quad t > 0, \quad n = 1, 2, \dots, \quad A_0 = e^{-t},$$

because the generating function for the Laguerre polynomials $L_n^{(\alpha)}(x)$, $\alpha \in R$, $x > 0$ has the form:

$$(9) \quad \frac{1}{(1-z)^{1+\alpha}} \exp\left\{-\frac{xz}{1-z}\right\} = \sum_{n=0}^{\infty} L_n^{(\alpha)}(x) z^n, \quad z \in D.$$

The relation (6) can be written equivalently in terms of subordination, namely

$$f(z) = e^{-t} + a_1 z + a_2 z^2 + \dots \in \mathcal{B}_0 \iff f(z) \prec F(t; z), \quad z \in D.$$

One can extend the above coefficient problem (4) as follows. For any fixed integer k (positive, negative or zero) let us set

$$(10) \quad \begin{aligned} F_k(t; z) &= \frac{1}{(1-z)^{1+k}} \exp\left\{-t \frac{1+z}{1-z}\right\} \\ &= e^{-t} + \sum_{n=1}^{\infty} A_n^{(k)}(t) z^n, \quad t > 0, \quad z \in D. \end{aligned}$$

By the relation (9) we have the following equality

$$(11) \quad A_n^{(k)}(t) = e^{-t} L_n^{(k)}(2t).$$

We propose the study of the coefficient problems in the classes \mathcal{B}_0^k defined as follows:

$$(12) \quad f(z) = e^{-t} + a_1 z + a_2 z^2 + \dots \in \mathcal{B}_0^k \iff f(z) \prec F_k(t; z), z \in D.$$

Naturally, we have $\mathcal{B}_0^{-1} \equiv \mathcal{B}_0$. In this note we obtain the sharp bounds for $|a_n|$, $n = 1, 2, 3$; $f \in \mathcal{B}_0^k$ and observe their different behaviour depending on whether k is a positive or negative integer. At the end of this paper we propose the parallel conjecture to the Krzyż conjecture for the class \mathcal{B}_0^{-2} .

2. The coefficient problem in the classes \mathcal{B}_0^k

From the definition (12) of the class \mathcal{B}_0^k we have:

$$(13) \quad f(z) = e^{-t} + a_1 z + a_2 z^2 + \dots \in \mathcal{B}_0^k \iff f(z) = F_k(t; \omega(z))$$

where $\omega \in \Omega$.

Therefore, by (3), (10) and (13) we easily find that

$$(14) \quad \begin{cases} a_1 = A_1^{(k)}(t)c_1 \\ a_2 = A_1^{(k)}(t)c_2 + A_2^{(k)}(t)c_1^2 \\ a_3 = A_1^{(k)}(t)c_3 + 2A_2^{(k)}(t)c_1c_2 + A_3^{(k)}(t)c_1^3 \end{cases}$$

where $A_n^{(k)}(t) = e^{-t} L_n^{(k)}(2t)$ are given by the following formulae:

$$(15) \quad \begin{aligned} A_1^{(k)}(t) &= e^{-t}(k+1-2t) \\ A_2^{(k)}(t) &= e^{-t} \left[\frac{1}{2}(k+1)(k+2) - 2(k+2)t + 2t^2 \right] \\ A_3^{(k)}(t) &= e^{-t} \left[\frac{1}{6}(k+1)(k+2)(k+3) \right. \\ &\quad \left. - (k+2)(k+3)t + 2(k+3)t^2 - \frac{4}{3}t^3 \right]. \end{aligned}$$

In what follows we assume $k \neq -1$. The cases $k \geq 0$, $k = -2$ and $k \leq -3$ will be treated separately.

THEOREM 1. *If $f(z) \in \mathcal{B}_0^k$ then we have the following sharp estimates:*

$$(16) \quad |a_1| \leq e^{-t}|k+1-2t| \leq |k+1|, \quad k \neq -1, -2;$$

$$\begin{aligned} |a_2| &\leq \max \left\{ e^{-t}|k+1-2t|, e^{-t} \left| \frac{1}{2}(k+1)(k+2) - 2(k+2)t + 2t^2 \right| \right\} \\ &\leq \frac{1}{2}(k+1)(k+2), \quad k \geq 0, \quad k \leq -5. \end{aligned}$$

Proof. From (14) and (15) we easily get (16) by using the inequalities $|c_1| \leq 1$ and $|c_2| \leq 1 - |c_1|^2$ valid for $\omega \in \Omega$.

The maximal value in both cases for the right-hand side is attained at $t = 0$ and $\omega(z) = z$ respectively. Therefore, the extremal function for $|a_1|$ and $|a_2|$ has the form (up to the rotation)

$$(17) \quad f_0(z) = \frac{1}{(1-z)^{k+1}} = (1-z)^{-(k+1)} = 1 - \binom{-(k+1)}{1} z + \dots$$

$$= 1 + (k+1)z + \frac{1}{2}(k+1)(k+2)z^2 + \dots \blacksquare$$

In the case $k = -2, -3$ and -4 the situation is different.

THEOREM 2. *If $f \in \mathcal{B}_0^{-2}$, then we have the following sharp estimates:*

$$(18) \quad |a_1| \leq e^{-t}(1+2t) \leq \frac{2}{\sqrt{e}}$$

$$(19) \quad |a_2| \leq \max\{e^{-t}(1+2t), e^{-t}2t^2\} \leq \frac{2}{\sqrt{e}}.$$

The extremal functions have the form:

$$(20) \quad f_0(z) = (1-z) \exp \left\{ -\frac{1}{2} \frac{1+z}{1-z} \right\}$$

in (18) and

$$(21) \quad f_{00}(z) = (1-z^2) \exp \left\{ -\frac{1}{2} \frac{1+z^2}{1-z^2} \right\}$$

in (19).

Proof. From the formulae (14) and (15) we obtain

$$(22) \quad |a_1| \leq |A_1^{(-2)}(t)| = e^{-t}(1+2t) \leq \frac{2}{\sqrt{e}}$$

and

$$|a_2| \leq \max\{e^{-t}(1+2t), e^{-t}2t^2\} = e^{-t} \begin{cases} 2t+1 & \text{if } 0 \leq t \leq \frac{1+\sqrt{3}}{2} \\ 2t^2 & \text{if } t \geq \frac{1+\sqrt{3}}{2}. \end{cases}$$

The maximal values are $\frac{2}{\sqrt{e}}$ for $t = \frac{1}{2}$ and $\frac{8}{e^2}$ for $t = 2$ respectively, which implies (19).

The form of the extremal function follows from the fact that we have $|c_1| = 1$, i.e. $\omega(z) = z$ in the case of $\max |a_1|$, and $|c_2| = 1$, i.e. $\omega(z) = z^2$ in the case of $\max |a_2|$. ■

THEOREM 3. *If $f \in \mathcal{B}_0^{-3}$, then we have the following sharp estimates:*

$$(23) \quad |a_1| \leq 2(1+t)e^{-t} \leq 2$$

$$(24) \quad |a_2| \leq \max\{e^{-t}(2t+2), e^{-t}(2t^2+2t+1)\} \leq 2.$$

P r o o f. The estimates (23) and (24) again follow from the formulae (14) and (15) and the extremal functions have the form

$$f_1(z) = (1-z)^2$$

and

$$f_2(z) = (1-z^2)^2$$

respectively. ■

THEOREM 4. *If $f \in \mathcal{B}_0^{-4}$, then we have the following sharp estimates:*

$$(25) \quad |a_1| \leq e^{-t}(2t+3) \leq 3,$$

$$(26) \quad |a_2| \leq \max\{e^{-t}(2t+3), e^{-t}(2t^2+4t+3)\} \\ \leq 2(\sqrt{2}+2)e^{-\frac{\sqrt{2}}{2}} \approx 3.34\dots$$

The extremal functions have the form:

$$\hat{f}_1(z) = (1-z)^3,$$

and

$$\hat{f}_2(z) = (1-z)^3 \exp\left\{-\frac{\sqrt{2}}{2} \frac{1+z}{1-z}\right\}$$

respectively.

REMARK 1. [4] If $f \in \mathcal{B}_0^{-1}$, then the following sharp estimates hold:

$$(27) \quad |a_1| \leq e^{-t}2t \leq \frac{2}{e},$$

$$(28) \quad |a_2| \leq \max\{e^{-t}2t, e^{-t}|2t^2-2t|\} \leq \frac{2}{e}.$$

The extremal functions have the form:

$$f^0(z) = \exp\left(-\frac{1+z}{1-z}\right),$$

and

$$f^{00}(z) = \exp\left(-\frac{1+z^2}{1-z^2}\right).$$

respectively.

The problem of estimating $|a_3|$ is much more complicated. However, it could be resolved by the following Lemma from [8].

LEMMA 1. If $\omega \in \Omega$, then for any real numbers p and q the following sharp estimate holds:

$$(29) \quad \Psi(\omega) := \left| c_3 + pc_1c_2 + qc_1^3 \right| \leq H(p, q)$$

where

$$(30) \quad H(p, q) = \begin{cases} 1 & \text{for } (p, q) \in D_1 \cup D_2 \\ |q| & \text{for } (p, q) \in \bigcup_{n=3}^7 D_n \\ \frac{2}{3}(|p| + 1) \left(\frac{|p|+1}{3(|p|+1+q)} \right)^{\frac{1}{2}} & \text{for } (p, q) \in D_8 \cup D_9 \\ \frac{1}{3}q \left(\frac{p^2-4}{p^2-4q} \right) \left(\frac{p^2-4}{3(q-1)} \right)^{\frac{1}{2}} & \text{for } (p, q) \in D_{10} \cup D_{11} \setminus (\pm 2, 1) \\ \frac{2}{3}(|p| - 1) \left(\frac{|p|-1}{3(|p|-1-q)} \right)^{\frac{1}{2}} & \text{for } (p, q) \in D_{12}. \end{cases}$$

The sets D_1, \dots, D_{12} are defined as follows:

$$(31) \quad \begin{aligned} D_1 &:= \left\{ (p, q) : |p| \leq \frac{1}{2}, |q| \leq 1 \right\}, \\ D_2 &:= \left\{ (p, q) : \frac{1}{2} \leq |p| \leq 2, \frac{4}{27}(|p| + 1)^3 - (|p| + 1) \leq q \leq 1 \right\}, \\ D_3 &:= \left\{ (p, q) : |p| \leq \frac{1}{2}, q \leq -1 \right\}, \\ D_4 &:= \left\{ (p, q) : |p| \geq \frac{1}{2}, q \leq -\frac{2}{3}(|p| + 1) \right\}, \\ D_5 &:= \left\{ (p, q) : |p| \leq 2, q \geq 1 \right\}, \\ D_6 &:= \left\{ (p, q) : 2 \leq |p| \leq 4, q \geq \frac{1}{12}(p^2 + 8) \right\}, \\ D_7 &:= \left\{ (p, q) : |p| \geq 4, q \geq \frac{2}{3}(|p| - 1) \right\}, \\ D_8 &:= \left\{ (p, q) : \frac{1}{2} \leq |p| \leq 2, -\frac{2}{3}(|p| + 1) \leq q \leq \frac{4}{27}(|p| + 1)^3 - (|p| + 1) \right\}, \\ D_9 &:= \left\{ (p, q) : |p| \geq 2, -\frac{2}{3}(|p| + 1) \leq q \leq \frac{2|p|(|p| + 1)}{p^2 + 2|p| + 4} \right\}, \\ D_{10} &:= \left\{ (p, q) : 2 \leq |p| \leq 4, \frac{2|p|(|p| + 1)}{p^2 + 2|p| + 4} \leq q \leq \frac{1}{12}(p^2 + 8) \right\}, \\ D_{11} &:= \left\{ (p, q) : |p| \geq 4, \frac{2|p|(|p| + 1)}{p^2 + 2|p| + 4} \leq q \leq \frac{2|p|(|p| - 1)}{p^2 - 2|p| + 4} \right\}, \\ D_{12} &:= \left\{ (p, q) : |p| \geq 4, \frac{2|p|(|p| - 1)}{p^2 - 2|p| + 4} \leq q \leq \frac{2}{3}(|p| - 1) \right\}. \end{aligned}$$

THEOREM 5. *If $f(z) = e^{-t} + a_1 z + \dots \in \mathcal{B}_0^k$, then we have the following sharp estimate ($x = 2t > 0$)*

$$(32) \quad |a_3| \leq e^{-\frac{x}{2}} |(k+1) - x| H(p, q) \quad \text{if } x \neq k+1$$

where $H(p, q)$ is given by (30) with

$$(33) \quad \begin{cases} p = \frac{(k+1)(k+2) - 2(k+2)x + x^2}{(k+1) - x} \\ q = \frac{1}{6} \frac{(k+1)(k+2)(k+3) - 3(k+2)(k+3)x + 3(k+3)x^2 - x^3}{(k+1) - x} \end{cases}$$

and

$$(34) \quad |a_3| \leq \frac{2}{3} (k+1) e^{-\frac{k+1}{2}} \quad \text{if } x = k+1, \quad k = 0, 1, 2, \dots$$

P r o o f. From the formulae (14) and (15) we obtain (32) with p and q given by (33).

In order to apply Lemma 1 we have to find the equation of the curve (33), call it Γ_k , in the form $q = q(p)$ and find the intersection of Γ_k and the boundary curves of the domains D_k given by (31).

The elimination of the parameter x (obtained by long calculations) from (33) gives the equation of Γ_k which consists of two parts Γ_k^+ and Γ_k^- :

$$(35) \quad \Gamma_k^+ : \quad q = q(p) = \frac{1}{12} \left\{ p^2 + 6p + p\sqrt{p^2 - 4p + 4(k+2)} - 4(k+2) \right\},$$

if $k = 0, 1, 2, \dots$; and p is running from $(k+2)$ to $-\infty$,
($x \in (0, k+1)$);

and

$$(36) \quad \Gamma_k^- : \quad q = q(p) = \frac{1}{12} \left\{ p^2 + 6p - p\sqrt{p^2 - 4p + 4(k+2)} - 4(k+2) \right\},$$

if $k = 0, 1, 2, \dots$; and p is running from $+\infty$ to $-\infty$,
($x \in (k+1, \infty)$);

and if $k = -2, -3, \dots$; and p is running from $(k+2)$ to $-\infty$,
($x \in (0, \infty)$);

and

$$(37) \quad \Gamma_{-1}^- : \quad q = q(p) = \frac{1}{6}(p^2 + 2p - 2), \quad p \in (-\infty, -2]. \blacksquare$$

Because of the complicated nature of the equation of Γ_k we explicitly consider only the cases $k = -2$ and $k = -3$.

THEOREM 6. *If $f \in \mathcal{B}_0^{-2}$ then we have the following sharp estimates*

$$(38) \quad |a_3| \leq e^{-\frac{x}{2}} \begin{cases} (x+1) & \text{if } x \in (0, x_1] \\ \frac{2\sqrt{2}}{3} \frac{(x^2+x+1)^{\frac{3}{2}}}{(x^3+3x^2+6x+6)^{\frac{1}{2}}} & \text{if } x \in [x_1, x_2] \\ \frac{\sqrt{2}}{6} \frac{(x-3)(x^4-4(x+1)^2)^{\frac{3}{2}}}{(x+1)^{\frac{1}{2}}(x^2+4x+6)(x^3-3x^2-6x-6)^{\frac{1}{2}}} & \text{if } x \in [x_2, x_3] \\ \frac{2\sqrt{2}}{3} \frac{(x^2-x-1)^{\frac{3}{2}}}{(-x^3+9x^2-6x-6)^{\frac{1}{2}}} & \text{if } x \in [x_3, x_4] \\ \frac{1}{6}x^2(x-3) & \text{if } x \in [x_4, +\infty). \end{cases}$$

The numbers $x_1 \approx 2.17 \dots, x_2 \approx 5.06 \dots, x_3 \approx 5.62 \dots, x_4 \approx 6.26 \dots$ are the roots of the following equations

$$(39) \quad 9(x+1)^2(x^3+3x^2+6x+6) - 8(x^2+x+1)^3 = 0$$

$$(40) \quad 12(x+1)(x^2+x+1) - (x-3)(x^2+x+1)^2 - 3(x+1)^2(x-3) = 0$$

$$(41) \quad 12(x+1)(x^2-x-1) - (x-3)(x^2-x-1)^2 - 3(x+1)^2(x-3) = 0$$

$$(42) \quad x^3 - 7x^2 + 4x + 4 = 0$$

respectively.

P r o o f. In this particular case the equation of $\Gamma_k = \Gamma_{-2}^-$ is of the form

$$(43) \quad q = \frac{1}{12}p \left\{ p + 6 - \sqrt{p^2 - 4p} \right\} = \frac{1}{6}x^2 \frac{x-3}{x+1}, \quad x \geq 0,$$

because $p = -\frac{x^2}{x+1} \leq 0$. ■

The results (38)–(42) follow from Lemma 1 by the investigation of the intersection of Γ_{-2}^- given by (43) with the boundary curves of the domains D_k given by (31).

COROLLARY 1. *If $f \in \mathcal{B}_0^{-2}$ then*

$$(44) \quad |a_3| \leq \frac{2}{\sqrt{e}} \approx 1.21 \dots$$

and the extremal function has the form

$$f(z) = (1-z^3) \exp \left\{ -\frac{1}{2} \frac{1+z^3}{1-z^3} \right\}.$$

Maximization of the corresponding functions in (38) with the use of Mathematica leads to (44).

THEOREM 7. *If $f \in \mathcal{B}_0^{-3}$ then we have the following sharp estimates*

$$(45) \quad |a_3| \leq$$

$$e^{-\frac{x}{2}} \begin{cases} (x+2) & \text{if } x \in (0, x_1^*] \\ \frac{2\sqrt{2}}{3} \frac{(x^2+3x+4)^{\frac{3}{2}}}{(x^3+6x^2+18x+24)^{\frac{1}{2}}} & \text{if } x \in [x_1^*, x_2^*] \\ \frac{\sqrt{2}}{6} \frac{x^3(x^4+4x^3+4x^2-8x-12)^{\frac{3}{2}}}{(x+1)^{\frac{1}{2}}(x^3-6x-12)^{\frac{1}{2}}(x^4+8x^3+24x^2+24x+12)} & \text{if } x \in [x_2^*, x_3^*] \\ \frac{2\sqrt{2}}{3} \frac{x(x+1)^{\frac{3}{2}}}{(-x^2+6x+6)^{\frac{1}{2}}} & \text{if } x \in [x_3^*, x_4^*] \\ \frac{1}{6}x^3 & \text{if } x \in [x_4^*, +\infty). \end{cases}$$

The numbers $x_1^* \approx 0.94 \dots$, $x_2^* \approx 3.64 \dots$, $x_3^* \approx 4.27 \dots$, $x_4^* = 2 + 2\sqrt{2}$ are the roots of the following equations

$$(46) \quad 8x^6 + 63x^5 + 222x^4 + 378x^3 + 168x^2 - 360x - 352 = 0,$$

$$(47) \quad x^7 + 6x^6 + 8x^5 - 48x^4 - 236x^3 - 456x^2 - 432x - 192 = 0,$$

$$(48) \quad x^6 + 2x^5 - 8x^4 - 48x^3 - 108x^2 - 120x - 48 = 0,$$

$$(49) \quad x^2 - 4x - 4 = 0,$$

respectively.

P r o o f. In this case the equation of $\Gamma_k = \Gamma_{-3}^-$ is of the form

$$(50) \quad q = \frac{1}{12}p \left\{ p + 6 - \sqrt{p^2 - 4p - 4} \right\} + 4 = \frac{1}{6} \frac{x^3}{x+2}, \quad x \geq 0,$$

because $p = -\frac{x^2+2x+2}{x+2} \leq -1$. ■

The results (45)–(49) follow from Lemma 1 by the investigation of the intersection of Γ_{-3}^- given by (50) with the boundary curves of the domains D_k given by (31).

COROLLARY 2. *If $f \in \mathcal{B}_0^{-3}$ then*

$$(51) \quad |a_3| \leq 2$$

and the extremal function has the form

$$f(z) = (1 - z^3)^2.$$

Maximization of the corresponding functions in (45) with the use of Mathematica leads to (51).

3. Concluding remarks

The behaviour of the few first coefficients of a function $f \in \mathcal{B}_0^{-2}$ as well as those of functions $f \in \mathcal{B}_0^k$, $k \leq -3$ leads us to the following conjecture, parallel to the Krzyż conjecture:

if $f(z) = e^{-t} + a_1 z + \dots \in \mathcal{B}_0^{-2}$, then

$$\max_{f \in \mathcal{B}_0^{-2}} |a_n| = \frac{2}{\sqrt{e}} = 1.21306 \dots \quad n = 1, 2, \dots$$

and the sign of the equality holds (up to the rotation) only for the function

$$F_{-2} \left(\frac{1}{2}; z^n \right) = (1 - z^n) \exp \left\{ -\frac{1}{2} \frac{1 + z^n}{1 - z^n} \right\} = \frac{1}{\sqrt{e}} - \frac{2}{\sqrt{e}} z^n + \dots$$

REMARK 2. Some support for the above conjecture is given in particular by the function $F_{-2}(t, z)$. Indeed, for $n \geq 10$ from the estimate obtained by Rooney [9]:

$$|A_n^{(-2)}(t)| = e^{-t} |L_n^{(-2)}(2t)| \leq 4 \frac{[(2n)!]^{1/2}}{2^{n+(1/2)} n!}, \quad n = 1, 2, \dots$$

and for $n = 4, 5, \dots, 9$ by direct calculations with the use of Mathematica one can show that $|A_n^{(-2)}(t)| < 1$.

References

- [1] J. E. Brown, *On a coefficient problem for nonvanishing H^p functions*, Complex Variables 5 (1985), 1–7.
- [2] R. Ermers, *Coefficient estimates for bounded nonvanishing functions*, Wibro Dissertatiedrukkerij, Helmond 1990.
- [3] C. Horowitz, *Coefficients of nonvanishing functions in H^∞* , Israel J. Math. 30 (1978), 285–291.
- [4] J. A. Hummel, S. Scheinberg and L. Zalcman, *A coefficient problem for the bounded nonvanishing functions*, J. Analyse Math. 31, (1977), 169–190.
- [5] J. G. Krzyż, *Problem 1*, posed in: *Fourth Conference on Analytic Functions*, (Łódź, 1966), Ann. Polon. Math. 20 (1967–68), 314.
- [6] Z. Lewandowski and J. Szynal, *On the Krzyż conjecture and related problems*, XVIth Rolf Nevanlinna Colloquim, Eds.: Laine/Martio, Walter de Gruyter & Co., Berlin-New York, (1996), 257–268.
- [7] R. Peretz, *Some properties of extremal functions for Krzyż problem*, Complex Variables 16 (1991), 1–7.
- [8] D. V. Prokhorov and J. Szynal, *Inverse coefficients for (α, β) -convex functions*, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143.
- [9] P. G. Rooney, *Further inequalities for generalized Laguerre polynomials*, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), 273–275.
- [10] T. J. Suffridge, *Extremal problems for non-vanishing H^p functions*, Computational Methods and Function Theory, Proceedings, Valparaiso 1989, St. Ruscheweyh, E. B. Saff, L. C. Salinas, R. S. Varga (eds.), Lecture Notes in Mathematics 1435, 177–190.

[11] W. Szapiel, *A new approach to the Krzyż conjecture*, Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994), 169–192.

INSTITUTE OF MATHEMATICS
DEPARTMENT OF APPLIED MATHEMATICS
M. CURIE-SKŁODOWSKA UNIVERSITY
20-031 LUBLIN, POLAND
E-mail: (A. Ganczar) aganczar@golem.umcs.lublin.pl
(M. Michalska) daisy@golem.umcs.lublin.pl
(J. Szynal) jsszynal@golem.umcs.lublin.pl

Received January 28, 2002.

