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ON BAIRE ONE POINT OF FUNCTIONS

Abstract. We show that the subspace of the space of almost continuous first recover-
able with respect to some trajectory {zn} functions, consisting of first return continuous
functions with respect to {z»}, is porous at each point of whole space. Next we define a
class of strongly F-almost everywhere first return recoverable functions and we describe
some properties of these functions. We also prove that the subspace of the space of strongly
F-almost everywhere first return recoverable functions consisting of measurable functions
is superporous at each point of whole space.

Several standard subcollections of the class of real-valued Baire 1 func-
tions defined on [0, 1] have been characterized utilizing first return limiting
notions. For example, for a function f:[0,1] —R it is known that f is Baire
1 function if and only if f is first return recoverable with respect to some
trajectory ([1]) and f is almost continuous Baire 1 function if and only if f is
first return continuous with respect to some trajectory ([3]). In this paper we
shall show that for each trajectory the subset of the space of almost continu-
ous first recoverable with respect to some trajectory functions, consisting of
first return continuous functions with respect to this trajectory, is ”small”
in the sense of category. It will be formulated more precisely in Theorem 1.
Next we define a class of functions which are different from first return recov-
erable functions on a ”small” set. It turns out that in this class of functions
the set of measurable functions is “small”in sense of category (Theorem 2).

We apply the classical symbols and notions. By R (N) we denote the set
of real (positive integers) numbers. The symbol m1 stands for the Lebesque
measure on the real line. Let A (int(A)) denote a closure (an interior) of A,
where A C [0, 1].

By Dy we denote the set of all points of discontinuity of a function
f:[0,1] = R. A function x4, where A C [0,1], is characteristic function
defined as follows: x4(z) =1 for z € A and xa(z) =0 for z € [0,1] \ A.

By B; (A, D) we denote a set of Baire 1 (almost continuous, Darboux)
functions f : [0,1] — R. By p we denote the metric of uniform convergence.
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We say that a function f : [0,1] — R satisfies the Young condition if for
every = € [0, 1] there exist sequences z, / z and y, \, z such that both
{f(zy)} and {f(yn)} converge to f(z).

If (X,d) is a metric space, then the open ball with center at = and
radius R > 0 we denote by B(z,R). Let M € X, z € X, R > 0. Then
v(z, R, M) denotes the supremum of the set of all » > 0 for which there
exists z € X such that B(z,r) C B(z,R) \ M. The set M is porous at z if
p(M,z) = limsupg_,o+ ﬁ_;R’rM) > 0.

By a trajectory we mean any sequence {z, }52., of distinct points in [0, 1],
which is dense in [0, 1].

Let {z,} be a fixed trajectory. For a given interval, or finite union of
intervals, H C [0,1], »(H) will be the first element of the trajectory {z,}
in H.

For 0 < z < 1, the left return path to = based on {x,}, P. = {t}, is
defined recursively via

ty = r(0,z) and tgy1 = r(tg, x).
For 0 < z < 1, the right first return path to = based on {z,}, P} = {s}, is
defined analogously.
A function f : [0,1] — R is first return continuous from the left [right]
at = with respect to the trajectory {z,} provided

im  f(t) = f(z) [ _lim_f(s) = f(z)].

t—z,te Pl s—z,s€PT

We say that for any z € (0,1), f : [0,1} — R is first return continuous at
z with respect to the trajectory {z,} provided it is both left and right first
return continuous at z with respect to the trajectory {z,}.

We say that z € [0, 1] is a first return continuity (from the left, from the
right) point of f : [0,1] — R with respect to {z,} if f is first return contin-
uous (from the left, from the right) with respect to {z,} at z. For a fixed
function f let C(f, {zn}) denote the set of all first return continuity points
of f with respect to {z,}. Moreover let C*(f,{zn}) = [0,1] \ C(f, {zn}).

For z € [0,1] we define what we shall mean by the first return route to
x based on the trajectory {z,}. The first return route to z, Ry = {yx}3>,,
is defined recursively via

Y1 = Zo,
Yors = {T(B(l‘, [z —yel)) ifz# oy
Yk if £ = ys.
We say that f : [0,1] — R is first return recoverable with respect to {z,} at
x provided that

kli{go flyx) = f(=),
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and if this happens for each z € [0,1], we say that f : [0,1] — R is first
return recoverable with respect to {z,}.

We say that z € [0, 1] is Baire one point of f : [0,1] — R with respect
to {z,} if f is first return recoverable with respect to {z,} at z. For a fixed
function f let Bi(f, {zn}) denote the set of all Baire one points of f with
respect to {z,}. Moreover let B{*(f, {z»}) = [0, 1]\ B1(f, {zn})-

Let {x,} 4 denote a subsequence of a sequence {z,} consisting of all z,
such that z,, € A.

REMARK 1. There exists a function f : [0,1] — R such that [a,b] C [0,1] C
Bi(f,{zn}) and [a,b] \ B1(fjjat)s {Zn}|fap) # O for some trajectory {z,}.

Proof. It is enough to consider a function f : [0,1] — R defined as follows:
f(z) = X|(2,1) (). Then there exists a trajectory {z,} such that [0,1] C

Bi(f,{zn}) and {3} € [5,1]\ Bl(f]{%,ua {mn}i[%,n) #0.u

But it turns out that we can slightly modify a trajectory {z,} in such a
way that above situation is impossible.

We say that a trajectory {z,} is a finite extension of a trajectory {z,}
if {z,} is a subsequence of the sequence {z,} and card({z, : n=1,2,...}\
{zn:n=1,2,...}) < No.

PROPOSITION 1. Let f : [0,1] — R be such that (a,b) C [0,1] N Bi(f, {zn}).
Then there erists a finite extension {z,} of a trajectory {T,})(ap) such that
[a,b] C Bi(fifa,b) {2n})-

Proof. Let {z,} be a fixed trajectory. Consider a trajectory {z,} defined
in the following way:

zg=a, z1 =Ub,
ze =r((a,b)\ {zi 1t < t}) for t > 2.

Obviously {z,} is a finite extension of the trajectory {z,}. In order to com-
plete the proof, it is sufficient to show that

(1) [a,b] C Bi(fi[a,5) {2n})-

It is easy to see that a,b € Bi(fja ), {2n})- So let z € (a,b). Assume for
example that [x—a| < |z—b|. Let Ry = {yx}32, be the first return route to x
based on the trajectory {z,}. Let R = {y,(cz)}i"=1 be the first return route
to = based on the trajectory {z,}. Then 3{”) = a and yéz) = r(B(z, |z —al)).
Consider the following cases:

o If zg € B(z,|z — a|) then yéz) = zo and y,(cz) = yr_1 for k > 3. Hence

limg 0 f(y](:)) = limg oo f(yk) = f(.’l?), sore Bl(fl[a,b]7 {Zn}).
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o If |z — zo| = |z — a| then B(z,|z — a|) = B(z, |z — zo|) and yl(cz) =y

for £ > 2. Hence limg_, f(y,(cz)) = limg o0 flyx) = f(z), so z €
Bi(fila)> {2n])-

o If 2o & B(z, |z — a|) note that ygz) €{zn:n>2}C{zn:n>1}. So
let yéz) = z,, for some m > 1. Note that

2) v € {yk k> 1),
If z,, = y1 the condition (2) is obvious. In the opposite case let y; =
Ts;, Y2 = Tsy, --+ Yj = Ts; De all of elements of the sequence {yx}

such that s; < m for ¢ € {1,2,...,5}. Then from the definition of
r(B(z, |z — a|)) we infer that z,, & B(z,|z — a|) for € {1,2,...,5}.
Consider y; 11 = r(B(z, |z — y;|)). Let y;j41 = x5, . Hence s;11 > m,
SO Yj+1 = Zm, Which finishes the proof of (2).

Let ygz) = Yy, for some ko > 1. Therefore yl(cz) = Yko+k-1 for k > 3.

Hence limg_, o f(yl(cz)) = limgoo fyx) = f(z), s0 z € Bl(f|[a7b], {z.}).
The proof of (1) is finished. m
From the last proposition it is easy to deduce the following fact:

LEMMA 1. Let f : [0,1] — R and (a,b) C [0,1]. If (a,b) C Bi(f,{zn}) then
Sl and fi(ap) are Baire I functions. =

It is known that

(1) f:[0,1] — R is a Baire 1 function iff there exists a trajectory {z,}
such that B (f, {zn}) = 0 [1];

(2) f:[0,1] — R is an almost continuous Baire 1 function iff there exists
a trajectory {z,} such that C*(f, {z,}) =0 [3].

Let {z,} be a fixed trajectory. By Bi({z,}) we denote a set of all func-
tions which are first return recoverable with respect to {z,}. Obviously
Bi({zx}) C B1.

By C({z»}) we denote a set of all functions which are first return con-
tinuous with respect to {z,}. Obviously C({z,}) C B1 N A.

By A*({z.}) we denote the set of all bounded functions f : [0,1] — R
such that f € Bi({zn}) N A.

THEOREM 1. For each trajectory {zn} the set C({zn}) N A*({z,}) is porous
at each point of the space A*({zn}) (with the metric p).

Proof. Let {z,} be an arbitrary fixed trajectory and without loss of gen-

erality assume that % is term in the trajectory, say z,, € (0,1) = 3.

Then X1,y € Bi({zn}) (if f = X[1,1 We have [0,1] \ § C Bi(f,{zn}) and
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limg o0 f(yk) = limgoo f(3) = F(3), where R% = {yk}32, is the first re-
turn route to 3 based on the trajectory {z,}, so 3 € Bi(f,{za}))-

Let f € A*({z,}) and let € > 0. Let a = f(}). We shall consider two
following cases:

19 The function f is not first return continuous from the left at % with
respect to the trajectory {z,}.

Then there exists ng € N and a subsequence {z,} of a sequence P} such

2

that lim, o0 2, = % and f(z,) & [a — n—o,a + 0] for each n € N. We shall
show that )
(3) B(/, 3_no) N(C({zn}) N A*({zn})) =

Indeed, if g € B(f, 3—7110), 9(zn) & [a— 3n0 ya+ g ] for each n € N. Therefore
limy, o0 2 = % and {z,} is a subsequence of a sequence P , the function g is

not first return continuous from the left at = w1th respect to the trajectory
{zn}. Hence g ¢ C({zn}). The proof of (3) i IS finished.
Hence for R < ﬁ

B(f,R) N (C({zn}) N A*({za}) =
P(C({za}) N A ({2n}), f) = 1

20 The function f is first return continuous from the left at % with respect
to the trajectory {z,}.

2a) The function f is continuous from left at 3.

Then there exists g > 0 such that

4) f([%—(so,%DC(a—-;—,a—i-—;—).

Let {tc} be a sequence such that limy_,tx = 3 and t; € [ — &0, 3] N P!
2
for each k € N. We define a function g : [0,1] — R in the following way
flz)+5§ ifze0,3—d);

lo(l’) ifx e [—% — 50,t1];

9@ = { h@)  ifze b BB k=12,
le(z) ifze [%ﬂ,tkﬂ],k: 1,2,...;
f(z) if z € [3,1];

where ly is a linear function such that lo(3 — &) = f(3 — do) + £ and
lo(th) = a+ & I (k = 1,2,...) is a linear function such that [i(tx) =
a+ § and lk(M) =o; I (k=1,2,...) is a linear function such that
Ip(Eet1) = o and Ig(tpy1) = @+ .
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The function ¢ is continuous at each point of [% — 4o, %), SO

(% b, %) C Bi(g, {zn}).
Moreover
0.2 6) o (L] € B e

because 90,1 _s5) = fio,1-60) T T 93,1 = fii,y 2nd £ € Bi({za})-
Since 9i0,1—8) = fl[o,%—él + £, f € Bi({zn}) and Ia-sd) is continuous,

% — 8 € Bi(g, {zn}).
Now, note that
5) 5 € Ba(g, {zn)).
Indeed, let R% = {yx}{, be the first return route to 5 (based on the

trajectory {z,}). Since X[L) € Bi({zn}), limgoo X1, (yk) = X[%—,l](%) =1
Hence almost all of points of {yx} belongs to [%, 1), so g(yx) = f(yk), for
almost all k € N. Therefore (by the fact that f € Bi({z,}))
. . 1 1
Jm g(ye) = lim f(ye) = f(5) = 9(3),

so 3 € Bi(g, {zn}). The proof of (5) is finished.

We have just showed that z € Bi(g, {z,}) for each z € [0, 1], so

g c Bl({:l?n})

Since f € A*({zn}) = Bi({zn})NAC B1NAand 9Ii-s0,3] € BiND =

B1 N A we can infer that

g € A
Moreover
©) B(9,55) < B(£,2)
In fact, let h € B(g, 55). Then
(M p(h, f) < p(h,g) + p(g, f) < % + p(g, f)-

Consider the following cases:

1) z € [0,3 — o). Then |g(z) — f(z)| = §.

2) z € [£—do, t1]. Then (by (4) and the definition of lp) 0 < a+§—f(z) <
g9(z) = f(z) = lo(z) — f(z) < §, so0 |g(z) - f(z) < 5.
3) © € [ty, 2FT&41] k = 1,2,... Then (by (4) and the definition of I)
—a-a-§ <) - f(z) = 9(@) - f(z) < 5, 50 lo(z) — f(=)| < §.

oolm
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)z € [it;iﬂ,tk_,_l], k=1,2,... Then (by (4) and the definition of Ij)
—§ =a—a—g <h(z) - f(e) = g(z) - f(z) < §, so |g(z) - f(2)| < 5.
5) z € [3,1]. Then |g(z) — f(z)| = |f(z) - f(z)| = 0.
We have just showed that |g(z) — f(x)| < § for each = € [0,1], so
p(g, f) < §. Hence (by (7))
p(h, f) <,

which finishes the proof of (6).
Now, note that

(8) B(g, %) N (€@} 1A ({zn}) = 8.
Indeed, if h € B(g, 35),

h1)<(1)+€—a+15
2)S9\5) T3 T3

€ € € 3

Since moreover limg_,oc tp = % and {tr} is the subsequence of Pi , the
2

and for each kK € N

function h is not first return continuous from the left at % with respect to
the trajectory {z,}. Hence h & C({z,}), which finishes the proof of (8).
From (8) and (6) we deduce that

P(C({za)) VA%, 1)) 2 55 > 0.

2b) The function f is not continuous from the left at %
Then

limsup f(z) > a or liminf f(z) < a.
1- z—vl_
:t—-»i 2

Suppose that limsup__ ;- f (z) > c. Let € > 0 be an arbitrary real number
2
such that o+ § <limsup__ ;- f(z).
2
We define a function g : [0,1] — R in the following way:
_ ) (@) if z € [0, 3);
9(z) = {f(:c) +< ifzell).

Since f € Bi({zn}) N A C BiN.A = By ND, it is obvious that the
function g satisfies the Young’s condition at each point z € [0, %) U (%, 1].
Moreover, there exists a sequence {w,} such that w, \ % and f(wp) —
f(%) = a. Next, by the assumption that lim SUp,_,1- f(z) > a+ £ and by
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the fact f € By N D, there exists a sequence {z,} such that z, % and
limp o0 f(2n) = @+ §, sO
1

wn \ % and lim g(ws) = lim f(wn) + Z = 9(5)

and 1 1
#n /5 and lm g(zn) = lim f(zn) = g(35)-

Hence the function g satisfies the Young condition at %
The above considerations show that

geBNDCA
It is easy to note that
g € Bi({zn})-

Indeed, obviously z € Bi(g, {z»}), for each z € [0,1]\ {3}. For z = 1
the proof is analogous as the proof of (5).
It is not difficult to show that

(9) B(g, ) € B(f,e).
Now note that
(10) B(g, 35) N (C({za}) N A*({20})) = 0

Indeed, if h € B(g, $5), for a sequence {t;} such that t; % and t, € P!
for each k € N, ’

limsuph(ty) < lim ( (t) + 156) = Jm (f(tk) + %>

k—o00
& €
On the other hand

h(1)> <1) a3,
2)79\3) 16T *T 167

so the function A is not first return continuous from the left at % with respect
to the trajectory {z,}. Hence h ¢ C({z,}). This finishes the proof of (10).
From (9) and (10) we obtain that
. 1
P(C({En}) N A ({2a}), ) 2 75> 0,
so the set C({z,}) N A*({zn}) is porous at f. m
PROPOSITION 2. Let f € Bi({z.}). Then f € A iff there ezists a trajectory

{yn} such that [0,1]\ C(f,{zn}) C C(f,{tn})-
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Proof. Let f € A. Then f € AN Bij({zn}) C AN B;. Then there exists a
trajectory {y»} such that C(f, {yn}) = [0, 1].

Now let {y,} be a trajectory such that [0,1]\ C(f,{zn}) C C(f,{yn})-
Let zp € [0, 1].

o If 2o € C(f,{zn}), there exist sequences {a,}, {Bn} such that a, \ zo,
Br /" zo and lim, oo f(an) = f(zo) = limp—oo f(Bn)-

o If zg & C(f,{zn}), zo € C(f,{yn}) (by the assumption) and hence
there exist sequences {v,}, {0n} such that v, \, zo, 6, / zo and

liMp—00 f(7n) = f(20) = lima—o0 f(6n)-
Hence, by the Young condition and the fact that f € B;({z,}) C By,
feBNDcAO

Now we will define some classes of functions wider than the class
Bi({zn})-

Let F be an ideal of subsets of real line such that: if A € F, then
int(A) = 0. A function f : [0,1] — R is F— almost everywhere first return
recoverable with respect to the trajectory {z,} if B{(f, {zn}) € F.

A function f : [0,1] — R is strongly F— almost everywhere first return
recoverable with respect to the trajectory {z,} if B{(f, {zn}) € F.

We will consider the second class. Let us denote this class (of strongly
F — almost everywhere first return recoverable with respect to the trajectory
{z,} by the symbol Bf ({z,}). We will say that a function f : [0,1] — R
is strongly F— almost everywhere first return recoverable if there exists a
trajectory {z,} such that f € Bf ({z,}). Let B{ denote a set of all strongly
F— almost everywhere first return recoverable functions f : [0,1] — R.

Note that B contains a large class of functions. For example, all func-
tions f : [0,1] — R such that Dy is a nowhere dense set, are strongly F—
almost everywhere first return recoverable. Moreover the following fact is
obvious:

PROPOSITION 3. If f : [0,1] — R is Baire 1 function, f € Bf . =

The following three propositions show that functions in Bf have prop-
erties similar to those of Baire one functions.

PROPOSITION 4. The set of all points of discontinuity of an arbitrary func-
tion f € B is meager.

Proof. Let {z,} be a trajectory such that the set B1(f, {zn}) has a dense in-
terior. Let {(an,b)}52; be a sequence of all components of the set
int(Bi(f, {z~})). Then fi(,, s, is Baire 1 function for each n € N (Lemma 1),
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so Dy, is a meager set for each n € N. Hence
1(an,bn)

o0
Dsc | Dfirwy U{an in=12,..3U{by:n=1,2,...}UB(f,{zn})
n=1

is a meager set, too. =

PROPOSITION 5. If f : [0,1] = R, g : [0,1] = R, f,g € B and o, € R,
af +Bg € Bf.

Proof. Let {a:glf)}, {xﬁi’)} be trajectories such that B{(f, {zslf)}) € F and

B)Mg, {z9}) € F. Then U = int(By(f, {z5})) and W = int(Bi(g, {z}))
are dense in [0,1]. Hence V = U N W is open and dense in [0, 1]. Moreover
it is easy to note that f;,y and gy are Baire 1 functions (Lemma 1). Then
obviously (af +B8g)v is Baire 1 function. We define a function ¢ : [0,1] — R
in the following way:
_ [af(z)+pg(z) ifzeV;
¢(“’)‘{0 ifze0,1]\V.

It is not difficult to show that

(,b € Bi.
Hence there exists a trajectory {z,} such that ¢ € Bi({z,}). Note that
(11) V C Bi(af + Bg, {zn}).

Indeed, let 2o € V. Then limg_o ¢(yx) = ¢(z0), where the sequence
Rz = {yk}2 is the first return route to zo based on the trajectory {z,}.
Then y, € V for k large enough. Hence limy ,o(af + B9)(yx) = (af +
B9)(z0), so zo € Bi(af + Bg,{zn}). The proof of (11) is finished.

By inclusion (11) it is to easy to infer that B'(a.f + Bg,{zn}) € F, so
af +Bge Bl ({z}) C Bf. =

In the analogous way we can prove the following fact:

PROPOSITION 6. If f,g€ Bf, fge Bf. =

It turns out that in the space B{ the set of measurable functions is small
in category sense.

THEOREM 2. In the space B a set L of all function f € Bf measurable in
the sense of Lebesgue is superporous at each point of this space.

Proof. Let f € Bf and let ® C B] be a porous set at f. Let R > 0 and let
Ty = %#2 > 0. Then there exists 1 > r{ and h € Bf such that

(12) B(h’ Tl) - B(f7 R) \ d.



On Baire one point of functions 63

We shall show that
(13) there exists g € BY such that B(g, %1) C B(h,r1) \ L.

Let {z,} be a trajectory such that B{(h, {z,}) € F. There exists zg € Cj,
(Proposition 4). Let § > 0 be a number such that [zg— 9,20+ 6] C [0,1] and
(14) Alzo 5,20+ 8]) < (h(zo) ~ 2 h(zo) + 2.

Denote by C the Cantor-like set such that C C [zo — 6,0 + 4] and
m1(C) > 0. Then there exists a non-measurable set C* C C. We define a
function g : [0,1] — R in the following way:

h(z) if z €[0,z0 — ) U (z0+6,1];

_ ) h(zo) if £ € [zo — 6,20 + 9]\ C,;
9=\ h(zo) + 7 ifzeCn
h(zo) — 3 ifzeC\C*
Note that
g€ B’f.
Indeed,

Bi(g,{zn}) D (Bi(h,{zn}) N ([0,z0 — ) U (zo+ 6, 1])) U([zo — 6, zo + 8]\ C),
so the set Bi(g,{zn}) has a dense interior. Hence B{ (g, {z.})) € F and
geBf.

It is easy to observe that

(15) B(5,3) € Blh,m).
Now, we shall show that
(16) B(g, %1) ne=0.

Let ¢ € B(g,%). Then
¥~ ((h(2o), +00)) N C = C*.

Indeed, if z € C*, ¥(z) > g(z) — 3 = h(zo) and z € P~ ((h(zo), +00)) N
C. If z € Y~ ((A(zo),+00)) N C, g(z) > h(zo) — % and x € C. Hence, by
the definition of the function g, z € C*.

The equality we have just proved shows that ¢ € £. The proof of (16)
is finished.

From (15) and (186) it follows (13). From (13) and (12) we infer that

B(g,%) c B(f,R)\ (3 UL).

Hence
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/
V(f’R"I’Uﬁ)ZT—l>%=M

3 3 ’
% R,®)
p(dUL, f) > 2limsup1(f’—’— > 0.
R—0t 3R

Hence the set ® U £ is superporous at f. =

EXAMPLE. There exists a function f € Bf which satisfies Young condition
and f([0,1]) = {0,1} (so f is not almost continuous).

Let C be a sum of closures of components of complement of Cantor set
C "removed” at odd steps of the construction of C. We define a function
f:]0,1] — R as follows:

__Jo ifmeé’;
f(m)'{1 if z €[0,1]\ C.

Then f € B ({x,}), where {z,} is an arbitrary trajectory contained in
[0,1] \ C, because B (f,{zn}) C C € F. The fact that f satisfies Young
condition follows from the fact that both sets C and [0,1] \ € is bilateral
dense in itself. =
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