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ON BAIRE ONE POINT OF FUNCTIONS 

Abstract. We show that the subspace of the space of almost continuous first recover-
able with respect to some trajectory {xn} functions, consisting of first return continuous 
functions with respect to { i n } , is porous at each point of whole space. Next we define a 
class of strongly ^-"-almost everywhere first return recoverable functions and we describe 
some properties of these functions. We also prove that the subspace of the space of strongly 
^-almost everywhere first return recoverable functions consisting of measurable functions 
is superporous at each point of whole space. 

Several standard subcollections of the class of real-valued Baire 1 func-
tions defined on [0,1] have been characterized utilizing first return limiting 
notions. For example, for a function / : [0,1]—>M it is known that / is Baire 
1 function if and only if / is first return recoverable with respect to some 
trajectory ([1]) and / is almost continuous Baire 1 function if and only if / is 
first return continuous with respect to some trajectory ([3]). In this paper we 
shall show that for each trajectory the subset of the space of almost continu-
ous first recoverable with respect to some trajectory functions, consisting of 
first return continuous functions with respect to this trajectory, is "small" 
in the sense of category. It will be formulated more precisely in Theorem 1. 
Next we define a class of functions which are different from first return recov-
erable functions on a "small" set. It turns out that in this class of functions 
the set of measurable functions is "small" in sense of category (Theorem 2). 

We apply the classical symbols and notions. By R (N) we denote the set 
of real (positive integers) numbers. The symbol m\ stands for the Lebesque 
measure on the real line. Let A (int(j4)) denote a closure (an interior) of A, 
where A C [0,1], 

By Df we denote the set of all points of discontinuity of a function 
/ : [0,1] —> E. A function xa> where A C [0,1], is characteristic function 
defined as follows: XA{X) = 1 for 2; 6 A and XA{X) — 0 for x € [0,1] \ A. 

By B\ (A, V) we denote a set of Baire 1 (almost continuous, Darboux) 
functions / : [0,1] —> R. By p we denote the metric of uniform convergence. 



54 R. J. Pawlak, B. Swiq.tek 

We say that a function / : [0,1] —> R satisfies the Young condition if for 
every x 6 [0,1] there exist sequences xn f x and yn \ x such that both 
{f(xn)} and {f(yn)} converge to /(x) . 

If (X,d) is a metric space, then the open ball with center at x and 
radius R > 0 we denote by B(x,R). Let M c X, x 6 X, R > 0. Then 
7 ( x , R , M) denotes the supremum of the set of all r > 0 for which there 
exists z E X such that B(z, r) c B(x, R) \ M. The set M is porous at x if 
p(M, x) = l imsu P i ^ 0 + 7 ( x ' j j ' M ) > 0. 

By a trajectory we mean any sequence {xn }%Lo of distinct points in [0,1], 
which is dense in [0,1]. 

Let {xn} be a fixed trajectory. For a given interval, or finite union of 
intervals, H C [0,1], r(H) will be the first element of the trajectory { x n } 
in H. 

For 0 < x < 1, the left return path to x based on { x n } , P^ = {ifc}, is 
defined recursively via 

t\ = r(0, x) and tk+i = r(tk,x). 

For 0 < x < 1, the right first return path to x based on { x n } , = {sfc}, is 
defined analogously. 

A function / : [0,1] —* R is first return continuous from the left [right] 
at x with respect to the trajectory { x n } provided 

lim f(t) = f(x) [ lim /(s) = f(x)]. 

We say that for any x € (0,1), / : [0,1] —> R is first return continuous at 
x with respect to the trajectory {xn} provided it is both left and right first 
return continuous at x with respect to the trajectory {xn}. 

We say that x & [0,1] is a first return continuity (from the left, from the 
right) point of / : [0,1] —> R with respect to { x n } if / is first return contin-
uous (from the left, from the right) with respect to { x n } at x. For a fixed 
function / let C(f, { x „ } ) denote the set of all first return continuity points 
of / with respect to { x „ } . Moreover let CA (/, { £ „ } ) = [0,1] \ C(/, { x „ } ) . 

For x € [0,1] we define what we shall mean by the first return route to 
x based on the trajectory {xn}. The first return route to x, Rx = {y/J^Lj, 
is defined recursively via 

y\ = Z0) 

_ \ r{B(x,\x - yk\)) i f x ^ y f c ; 
y k + 1 ~ \ yk if x = yk. 

We say that / : [0,1] —» R is first return recoverable with respect to {xn} at 
x provided that 

lim f(yk) = /(x) , fe—• oo 
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and if this happens for each x € [0,1], we say that / : [0,1] —» R is first 
return recoverable with respect to {xn}. 

We say that x 6 [0,1] is Baire one point of / : [0,1] —> R with respect 
to {x„} if / is first return recoverable with respect to {xn} at x. For a fixed 
function / let Bi(f, { x n } ) denote the set of all Baire one points of / with 
respect to {xn}. Moreover let B±(/, { x n } ) = [0,1] \ Bi(f, {xn}). 

Let denote a subsequence of a sequence {xn} consisting of all xn 

such that xn € A. 

REMARK 1. There exists a function / : [0,1] -> R such that [a, b] c [0,1] C 
(/ , {zn}) and [a, 6] \ 5i(/| [ a 6], {x„}| [a 6]) / 0 for some trajectory {xn}. 

P r o o f . It is enough to consider a function / : [0,1] —> R defined as follows: 
f(x) = X|(ii](^)- Then there exists a trajectory {xn} such that [0,1] c 

B i ( / , { * n } ) 2 and e & 1] \ B 1 ( f l [ h l ] , { x n } U l ] ) j i 0. . 

But it turns out that we can slightly modify a trajectory {xn} in such a 
way that above situation is impossible. 

We say that a trajectory {zn} is a finite extension of a trajectory {x„ } 
if {xn} is a subsequence of the sequence {zn} and card({zn : n = 1, 2 , . . . } \ 
{xn:n = 1 , 2 , . . . } ) < 

PROPOSITION 1. Let / : [0,1] R be such that (a, b) c [0,1] n {xn}). 
Then there exists a finite extension {zn} of a trajectory {^n}|(a,6) such that 
[a, b] C £l(/|[a,fe],{2n}). 

P r o o f . Let {xn} be a fixed trajectory. Consider a trajectory {zn} defined 
in the following way: 

zo = a, zi — b, 
zt = r((a, b) \ {zi : i < i } ) for t > 2. 

Obviously {zn} is a finite extension of the trajectory {:r„}. In order to com-
plete the proof, it is sufficient to show that 

(1) M C * W | [ a , 6 ] , { ^ } ) . 
It is easy to see that a, b G #i(/|[a,t]> {zn})- So let x € (a, b). Assume for 
example that \x — a| < \x — b\. Let Rx = t>e the first return route to x 
based on the trajectory {xn}. Let = be the first return route 
to x based on the trajectory {zn}. Then y[z^ = a and y^ = r(B(x, \x — a|)). 
Consider the following cases: 

• If XQ 6 B(x, \x — a|) then y^ = xo and yjf* = yk-i for k > 3. Hence 
lim fc^oo /(¿2)) = limfc_oo f(Vk) = f(x), so x € £i(/|[a,fc], {zn}). 
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• If \x — xo| = \x — a\ then B(x, \x — a|) = B(x, \x — xo|) and y^ = yk 
(z) 

for k > 2. Hence l i m ^ ^ f(yKk ') = l i m ^ o o f(yk) = f(x), so x € 

Bl(f\[a,b]>{Zn})-

• If xo $ B(x, \x — a|) note that y^ € {zn : n > 2 } C { x n : n > 1} . So (z) 

let ?/2 — xm for some m > 1. Note that 

( 2 ) y{2z) e { y k : k > 1}. 

If xm = yi the condition (2) is obvious. In the opposite case let y\ = 
x s i , 2/2 = xS2, ..., yj = xSj be all of elements of the sequence {yk} 
such that Si < m for i € { 1 , 2 , . . . , j } . Then from the definition of 
r(B(x, \x — a|)) we infer that xSi £ B(x, \x — a|) for j € { 1 , 2 , . . . 
Consider yj+i — r(B(x, \x — yj|)). Let yj+i = xsj+i- Hence S j + i > m, 

so yj+i = xm, which finishes the proof of (2). 
Let y^ = yk0 for some ko > 1- Therefore y^ = yk0+k-1 for k > 3. 

Hence limfc_*oo /(y£2)) = limfc_*oo f(yk) = f{x), so x G ^i(/|[a>b], {z„}). 
The proof of (1) is finished. • 

From the last proposition it is easy to deduce the following fact: 

LEMMA 1. Let f : [0,1] R and ( a , b ) C [0,1]. If (a, b) C B i { f , { x n } ) then 

f\[a,b] and f\(a,b) a r e Baire 1 functions, m 

It is known that 
( 1 ) / : [0,1] —> R is a Baire 1 function iff there exists a trajectory { x n } 

such that B f { f , { x n } ) = 0 [1]; 
( 2 ) / : [0,1] —> R is an almost continuous Baire 1 function iff there exists 

a trajectory {xn} such that CA(/, { x n } ) = 0 [3]. 
Let { x n } be a fixed trajectory. B y Bi({xn}) we denote a set of all func-

tions which are first return recoverable with respect to {xn}. Obviously 
£1 ( { * „ } ) C 8 i . 

By C({xn}) we denote a set of all functions which are first return con-
tinuous with respect to {a : n } . Obviously C({xn}) C B\ Pi A. 

By - 4 * ( { z n } ) we denote the set of all bounded functions / : [0,1] —> R 
such that f € Bi({xn}) D A. 

T H E O R E M 1. For each trajectory { x n } the set C({xn}) n ^ . * ( { x n } ) is porous 

at each point of the space A*({xn}) (with the metric p). 

P r o o f . Let {xn} be an arbitrary fixed trajectory and without loss of gen-
erality assume that ^ is term in the trajectory, say xno E (0 ,1) = 
Then X[i,i] € Bx{{xn}) (if / = X[i,i] w e h a v e I0»1] \ K fii(/,{xn}) and 
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limfc^oo f(yk) = limfc^oo / ( $ ) = where Ri = {j/jfe}^ is the first re-
turn route to ^ based on the trajectory {xn}, so ^ € Bi( f , {xn})). 

Let / € .A*({xn}) and let e > 0. Let a = We shall consider two 
following cases: 

1° The function / is not first return continuous from the left at ^ with 
respect to the trajectory {xn}. 

Then there exists no € N and a subsequence { z n } of a sequence P[ such 
2 

that limn^oo zn = 5 and f(zn) 0 [a — a + for each n £ N . We shall 
show that 

(3) B ( f , J - ) n ( C ( K } ) n ^ ( { x n } ) ) = 0. 

Indeed, if g 6 B ( f , g(zn) g [a - a + for each n € N. Therefore 
limn^oo Zn — h a rid {zn} is a subsequence of a sequence P[, the function g is 

2 
not first return continuous from the left at ^ with respect to the trajectory 
{xn}. Hence g $ C({xn}). The proof of (3) is finished. 

Hence for R < 

B ( f , R) fi (C({xn}) n / ( { i n } ) ) = 0, 

so 
p ( « n / ( W ) , / ) = i . 

2° The function / is first return continuous from the left at ^ with respect 
to the trajectory {xn}. 

2a) The function / is continuous from left at ^• 
Then there exists Sq > 0 such that 

(4) / 
1 A 1 

2 _ 2 
£ £ 

C I a — - , a + -

Let {tk} be a sequence such that limfc^ooifc = \ and tk € — ¿0, b] H P[ 
2 

for each k € N. We define a function g : [0,1] —> R in the following way 

( / ( * ) + ! i f x e [0,^- tfo] ; 
lo(x) if x € [5 - <50, ii]; 

9{x) = lk(x) i f x e [tk,t-*±$*±],k = l,2,... 
lk(x) i f x e = 

( f ( x ) i f x € [ i , l ] ; 

where IQ is a linear function such that IQ(^ — ¿o) = / ( ^ — ¿0) + | a n d 
lo{t\) = a + | ; lk (k = 1 ,2 , . . . ) is a linear function such that lk(tk) = 
a + | and lk(tk+lk+1) = a; lk (k = 1 ,2 , . . . ) is a linear function such that 
[fc(M£*±1) = a and lk(tk+1) = a + f . 
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The function g is continuous at each point of — ¿0, 5), so 

Q - io, I ) cBx{g,{xn}). 

Moreover 
1 „ \ n 

C Bi{g,{xn}), 

because g][0i_So) = /|[0,i-5o) + f ' = /|(i,i] and / e ®i ( {®„} ) . 

Since 5|[o,i-<5] = /|[o,i-<5] + I ' / G ^ ( K l ) a n d 9\[\-¿,1) i s continuous, 

^ - ¿0 € Bi(g, { x n } ) . 

Now, note that 

(5) i e 0 i ( 5 , { x n } ) . 

Indeed, let Ri = {yk}kLi be the first return route to \ (based on the 

trajectory { x n } ) . Since ^qi^ € £ i ( { x „ } ) , limk-+ooX[i,i](yk) = = 

Hence almost all of points of {yk} belongs to 1], so g(yk) = f{yk), for 
almost all fc£N. Therefore (by the fact that / € i ? i ( { x n } ) ) 

lim g(yk) = lim f(yk) = f ( h = 
K—• 00 fc—>00 Z A 

so ^ G Bi(g, { x „ } ) . The proof of (5) is finished. 
We have just showed that x 6 B\(g, { x n } ) for each x G [0,1], so 

9 e Bi({xn}). 

Since / € - 4 * ( { x „ } ) = Bi({xn})nAc BiHAand = 
B\ fl A we can infer that 

g e A . 

Moreover 

(6) B ( g , - ^ c B ( f , e ) . 

In fact, let h G B(g, Then 

(7) p(h, f ) < p(h, g) + p(g, f ) < ± + p(g, / ) . 

Consider the following cases: 
1) x G [0, ± - ¿0]. Then | 5 (x) - /(x)| = f . 
2) x G [ ¿ - ¿ o , ii]- Then (by (4) and the definition of l 0 ) 0 < a + | - / ( x ) < 

g(x) - f(x) = l0(x) - f(x) < §, so | g ( x ) - f(x)\ < f . 
3) x G tk+t2k+1], k = 1 , 2 , . . . Then (by (4) and the definition of lk) 

- § = a - a - § < Zfc(x) - /(x) = g{x) - /(x) < f , so | g{x) - /(x)| < §. 
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4) X 6 [tk+lk+1 ,tk+l], k = 1,2,.. . Then (by (4) and the definition of lk) 
-§ = a - a - §< lk(x) - f{x) = g(x) - / (x ) < §, so \g(x) - f(x)\ < f . 

5) x G [ i , 1], Then \g(x) - /(x)| = | f(x) - f(x)| = 0. 
We have just showed that |g(x) — / (x ) \ < | for each x G [0,1], so 

p ( 5 , / ) < § . Hence (by (7)) 
p(h, /) < e, 

which finishes the proof of (6). 
Now, note that 

(8) B(s, n (C ( {xn } ) n a * ( M ) ) = 0. 

Indeed, if h G B(g, 

and for each k € N 

Since moreover l im^oo tk = A and { i^ } is the subsequence of P\, the 
2 

function h is not first return continuous from the left at ^ with respect to 
the trajectory {xn}. Hence h $ C({xn}), which finishes the proof of (8). 

From (8) and (6) we deduce that 

p(C({xn}) n A*, /)) > ^ > 0. 
26) The function / is not continuous from the left at 
Then 

l imsup/(x) > a or l iminf/(x) < a. 
„ i - i • 

x~*2 2 

Suppose that limsup i - / (x ) > a. Let e > 0 be an arbitrary real number x—>2 

such that a + § < limsup x- f(x). 
x—>2 

We define a function g : [0,1] —> R in the following way: 

o M - i f ( x ) i f ® € [0, i ) ; 
9{X)~\f(x) + | i f x G [ i , l ] . 

Since / G £ i ( { x n } ) n .4 C B\ fl A = B\ n V, it is obvious that the 
function g satisfies the Young's condition at each point x G [0, U (5,1]. 
Moreover, there exists a sequence {u>n} such that wn \ ^ and f ( w n ) —> 

= a. Next, by the assumption that l imsup^ 1- / (x ) > a + | and by 
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the fact / € B\ fl T>, there exists a sequence {zn} such that zn / \ and 
limn^oo f(zn) = a + f , so 

1 £ 1 
wn \ o and lim g(wn) = lim f(wn) + - = g(-) 2 n—too n—> oo 4 2 

and 
zn / - and lim g(zn) = lim f(zn) = g(-). 2 n—>oo n—»oo 2 

Hence the function g satisfies the Young condition at 
The above considerations show that 

g G B\ n V C A. 

It is easy to note that 
g G £i({z n}) . 

Indeed, obviously x G Bi(g, {£n})> for e a ch x G [0,1] \ For x = \ 
the proof is analogous as the proof of (5). 

It is not difficult to show that 

(9) B(g,^)cB(f,e). 

Now note that 
(10) B(g, n (C({xn}) n / ( { . „ } ) ) = 0. 

Indeed, if h G B(g, -A), for a sequence such that tk / * b and tk € P[ 
2 

for each k e N, 

lim sup h(tk) < lim (g(tk) + = lim ( f ( t k ) + 
k—»oo \ lO/ V 10/ 

On the other hand 

so the function h is not first return continuous from the left at ^ with respect 
to the trajectory {xn}. Hence h # C({xn}). This finishes the proof of (10). 

From (9) and (10) we obtain that 

K C ( { * n } ) n X ( { * n } ) , / ) > l > o , 

so the set C({xn}) fl -4*({:rn}) is porous at / . • 

PROPOSITION 2. Let f G £i({x n}) . Then f G A i f f there exists a trajectory 
{yn} such that [0,1] \ C(f, {zn}) C C(f, {yn}). 
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Proo f . Let / € A. Then / G A D Bi({xn}) C A D B\. Then there exists a 
trajectory {yn} such that C(f, {yn}) = [0, lj. 

Now let {yn} be a trajectory such that [0,1] \ C(f, { x n } ) C C(f, { y n } ) -
Let XQ G [0,1]. 

• If xo G C(f, { x n } ) , there exist sequences { a „ } , {/3n} such that an \ xo, 
Pn / x0 and limn^00 f(an) = f(x0) = l i m ^ « , /(/?„). 

• If xo ^ C ( f , { x n } ) , xo G C(f,{yn}) (by the assumption) and hence 
there exist sequences {*7„}, { ¿ „ } such that yn \ xo, Sn /* xo and 
limn_>00 / ( 7 n ) = / ( x o ) = limn-,00 f(Sn). 

Hence, by the Young condition and the fact that / 6 B\({xn}) C B\, 

f e Bi nv c An 

Now we will define some classes of functions wider than the class 
Bl( {Sn} ) . 

Let T be an ideal of subsets of real line such that: if A G T, then 
int(A) = 0. A function / : [0,1] —> R is T— almost everywhere first return 
recoverable with respect to the trajectory {xn} if Bi(f, { x n } ) € T. 

A function / : [0,1] —> R is strongly T— almost everywhere first return 
recoverable with respect to the trajectory { x n } if B±(f, { x n } ) € T. 

We will consider the second class. Let us denote this class (of strongly 
T— almost everywhere first return recoverable with respect to the trajectory 
{ x n } by the symbol B f ( { i n } ) . We will say that a function / : [0,1] —> R 
is strongly T— almost everywhere first return recoverable if there exists a 
trajectory { x n } such that / G B^({xn}). Let Bf denote a set of all strongly 
T— almost everywhere first return recoverable functions / : [0,1] —> R. 

Note that B f contains a large class of functions. For example, all func-
tions / : [0,1] —> R such that Df is a nowhere dense set, are strongly T— 

almost everywhere first return recoverable. Moreover the following fact is 
obvious: 

PROPOSITION 3. If f : [0,1] —> R is Baire 1 function, f e B{. • 

The following three propositions show that functions in B f have prop-
erties similar to those of Baire one functions. 

PROPOSITION 4. The set of all points of discontinuity of an arbitrary func-

tion f G B^ is meager. 

Proo f . Let { x n } be a trajectory such that the set B\ (/, { x n } ) has a dense in-
terior. Let {(an,fen ) }^L1 be a sequence of all components of the set 
int(Z3i(/, { i n } ) ) . Then /|(an,6n) is Baire 1 function for each n G N (Lemma 1), 
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so -D/|(an 6n) is a meager set for each n E N. Hence 
oo 

DfC U Df\i«n,bn)
 U K : n = 1, 2 , . . . } U {bn : n = 1, 2 , . . . } U ( / , {xn}) 

n=l 
is a meager set, too. 

PROPOSITION 5 . If f : [0 ,1] R , g : [0 ,1] - > R , f , g e Bf and a, (3 E 
af + f3g e B f . 

P r o o f . Let { i ^ } , { x ^ } be trajectories such that B£(/ , { i ^ ' } ) € T and 

Bf(g, {xi9)}) 6 T. Then U = int(Bi( / , { s ^ } ) ) and W = mt{Bi{g, {xifl)})) 
are dense in [0,1]. Hence V = U n W is open and dense in [0,1], Moreover 
it is easy to note that f\y and g\y are Baire 1 functions (Lemma 1). Then 
obviously [af + (ig)\v is Baire 1 function. We define a function (f>: [0,1] —> R 
in the following way: 

- faf(x)+Pg(x) i f x e V -
> ~ \ 0 if ® € [0,1] \ V. 

It is not difficult to show that 

</> e B\. 

Hence there exists a trajectory {zn} such that (f> £ Bi({x„}). Note that 

(11) VcB1(af + /3g,{xn}). 

Indeed, let xo € V. Then l im^oo <j>(yk) = <j>(xo), where the sequence 
Rx0 — is the first return route to xo based on the trajectory {xn}. 
Then yk € V for k large enough. Hence lim/c_<00(a/ + (3g)(yk) = ( a / + 
f3g)(xo), so xo E Bi(af + ¡3g, {zn}). The proof of (11) is finished. 

By inclusion (11) it is to easy to infer that B£(af + (3g, {zn}) E F, so 
af + (3g£Bf({zn})cBf. . 

In the analogous way we can prove the following fact: 

PROPOSITION 6. If f , g £ B f , f g E B f . • 

It turns out that in the space By the set of measurable functions is small 
in category sense. 

THEOREM 2. In the space Bi a set L of all function f £ Bf measurable in 
the sense of Lebesgue is superporous at each point of this space. 

P r o o f . Let / € Bf and let $ c Bf be a porous set at / . Let R > 0 and let 
r[ = > 0. Then there exists r\ > r[ and h € Bf such that 

(12) B(h,n)cB(f,R)\^. 
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We shall show that 

(13) there exists g G such that B (g, y ^ C B(h, n.) \ C. 

Let {xn} be a trajectory such that B±(h, {a;«}) G T. There exists xo G Ch 
(Proposition 4). Let 5 > 0 be a number such that [xo — S, xq + <S] C [0,1] and 

(14) h([xo -6,x0 + S\) C (fc(x0) - j , h(x0) + j ) • 

Denote by C the Cantor-like set such that C C [xo — 6, xo + and 
mi(C) > 0. Then there exists a non-measurable set C* C C. We define a 
function g : [0,1] —> R in the following way: 

' h(x) if x G [0, x 0 - ¿) U (x0 + <5, l]; 

t \ _ H*o) if x G [xo - <5, xo + i] \ C; 
9 { x ) ~ h(x0) + ^ if x G C*; 

if xeC\C*. 
Note that 

geB{. 

Indeed, 

Bi(g, {®„}) D (Bi(h, { x n } ) n ([0, xo - S) U ( x 0 + S, 1])) U ( [x 0 - x 0 + S\ \ C), 

so the set Bi(g,{xn}) has a dense interior. Hence B±(g, {x„} ) ) € T and 
geB{. 

It is easy to observe that 

(15) 

Now, we shall show that 

(16) = 
Let ^ € B ( g T h e n 

^ - 1 ( ( / 1 ( x 0 ) , + o o ) ) n c = c * . 

Indeed, if x G C * , ip(x) > g{x) — ^ = h{xo) and x G ip~1((h(xo), + o o ) ) D 
C. If x G ip~1((h(x0), + o o ) ) n C, g{x) > h(xo) - ^ and x G C. Hence, by 
the definition of the function g, x G C*. 

The equality we have just proved shows that ip £ C. The proof of (16) 
is finished. 

Prom (15) and (16) it follows (13). From (13) and (12) we infer that 

B ( g , j ) CB(f,R)\($\JC). 

Hence 
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SO 

U C, f ) > 2 lim sup > 0. 

Hence the set $ U £ is superporous at /. • 

EXAMPLE. There exists a function / E Bf which satisfies Young condition 
and /([0,1]) = {0 ,1 } (so / is not almost continuous). 

Let C be a sum of closures of components of complement of Cantor set 
C "removed" at odd steps of the construction of C. We define a function 
/ : [0,1] R as follows: 

f ( x ) _ { 0 if x e c -
J { ) \ l if x G [0,1] \ C. 

Then / € B f ( { x n } ) , where { x n } is an arbitrary trajectory contained in 
[0,1] \ C, because B^ (/, { x n } ) c C 6 T. The fact that / satisfies Young 
condition follows from the fact that both sets C and [0,1] \ C is bilateral 
dense in itself, M 

References 

[1] U . B. D a r j i , M . J. E v a n s and R . J. O ' M a l l e y A first return characterization of 
Baire one functions, Real Analysis Exchange 19 (1993-94), 510-515. 

[2] U. B. D a r j i , M . J. E v a n s and R . J. O ' M a l l e y , First return path systems: differ-
entiability, continuity, and orderings, A c t a Math . Hungar. 66 (1 -2 ) (1995), 83-103. 

[3] U. B. D a r j i , M . J. E v a n s and R . J. O ' M a l l e y , Some interesting small subclasses 
of the Darboux Baire 1 functions, Real Analysis Exchange 19(1) (1993-94), 328-331. 

[4] M . J. E v a n s and R . J. O ' M a l l e y , Fine tuning the recoverability of Baire one 
functions, Real Analysis Exchange 21(1) (1995-96), 165-174. 

Ryszard J. Pawlak 

DEPARTMENT OF MATHEMATICS 
L6DZ UNIVERSITY 
Banacha 22 

90-238 L6DZ, POLAND 
E-mail: rpawlak@imul.uni.lodz.pl 

Bozena ¿wi^tek 

INSTITUTE OF MATHEMATICS 
TECHNICAL UNIVERSITY OF L6DZ 
Al.Politechniki 11 
90-924 LODZ, POLAND, 
E-mail: bswiatek@ck-sg.p.lodz.pl 

Received November 12, 2001; revised version May 6, 2002. 


