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LEFT-OUTERMOST EXTENSIONS OF SOME VARIETIES

Abstract. Let 7 : F — N be a type of algebras F is a nonempty set of fundamental
operation symbols and N is the set of all positive integers. An identity ¢ = 1 of type
7 we call left-outermost if the left-outermost variables in ¢ and % are the same. For a
variety V' of type 7 we denote by V] the variety of type 7 defined by all left-outermost
identities from Id(V). V; is called the left-outermost extension of V. In this paper we
study minimal generics, subdirectly irreducible algebras and lattices of subvarieties in left-
outermost extensions of some generalizations of the variety D of all distributive lattices.

0. Preliminaries

We shall consider algebras of type 7 : F' — N where F' is a nonempty set
of fundamental operation symbols and N is the set of all positive integers. It
means that we do not admit nullary operation symbols. Let ¢ be a term of
type 7. We denote by Var(p) the set of all variables occurring in ¢ and we
denote by F(¢) the set of all fundamental operation symbols occurring in .
Writing ¢(z;,, ..., z;,) instead of ¢ we mean that Var(p) = {z;,...,Zi, }-
For a variety V of type 7 we denote by Id(V) the set of all identities satisfied
in every algebra from V.

An identity ¢ ~ ¢ is called regular (see [13]) if Var(p) = Var(y). We
denote by R(7) the set of all regular identities of type 7. An identity ¢ =~ 7
of type 7 is called uniform (see [16]) if it satisfies one of the following two
conditions:

(0.1) F(p) = F(y) = F,

(0.2) F(p) = F(3) # F and Var(p) = Var(y).

We denote by U(7) the set of all uniform identities of type 7. An identity ¢ ~
Y of type 7 is called biregular (see [16]) if Var(y) =Var(y) and F(p) = F(¢).
We denote by B(7) the set of all biregular identities of type 7. Obviously each
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of the sets R(7), U(7) and B(7) is an equational theory. For a variety V of
type 7 we denote by V., V,,, V,, the variety of type 7 defined by all regular,
all uniform, all biregular identities from Id(V'), respectively. So Id(V,) =
Id(V) N R(7), Id(V,,) =1d(V) N U(7) and 1d(V,) =1d(V) N B(7).

Let Vi and V4 be two varieties of type 7. We denote by Vi V V5 the join
of V1 and V5, and we denote by Vi x V5 the class of all algebras 2 isomorphic
to the direct product of some algebras 2; and s where 2; runs over V4 and
s runs over Vj.

Two varieties Vp and V; of type 7 are called independent (see [9]) if there
is a term f(zo,x1) of type T such that z; € Var(f(zo,z;)) and the identity
f(zo, 1) = zi belongs to Id(V;) for k =0, 1.

The following statement was proved in [9, Theorem 1}:

(0.i) If Vp and V; are independent, then Vo vV Vi = Vj x V1.

In [13] the construction S(A) was defined (quoted also in [8]) called the sum
of a semilattice ordered system .A of algebras 2;, i € I.
It was shown in [13] that:
(0.ii) If |I] > 1 then Id(S(A)) = (N Id(A)) N R(7).
iel
It was shown in [14]:

(0.iii) If V' is a variety of type 7 and there is a term z oy of type 7 such that
Var(z oy) = {z,y} and the identity z o y ~ z belongs to Id(V'), then
V; consists exactly of all possible sums of semilattice ordered systems
of algebras from V.

For f € F we put f = F\ {f}. In [22] an algebra 2L was defined as
follows: 2f = ({f'}er U {F};Fg‘f), where for f € F and Aj,..., Ay €
({f,}fEF U {F}) we have fﬂf(Al’ .. .,AT(f)) =AjU...U AT(f) U {f}

It was proved in [22]:

(0.iv) Id(AF) = U (7).

An algebra 2 from a variety V is called a generic of V (see [27}) if
HSP(2A) =V, i.e. Id(2) = Id(V). A is called a minimal generic of V if it is a
generic of a minimal possible cardinality. We denote by ¢g(V') the cardinality
of a minimal generic of V.

We shall consider the following condition:

(0.v) For every f € F there exists a term gy(z) with F(qs(z)) = {f} such
that the identity g¢(z) ~ = belongs to Id(V).

If oA = (A; F?) is an algebra of type 7, then an element a € A is called
an idempotent of 2 if for every f € F we have f%*(a,...,a) = a. An element
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a € Ais called an absorbing element of Aif for every f € F,ay,...,a,5 € A
we have: if a € {a1,...,a.(5)}, then f%(a1,...,a,p) = a.

Let 21 = (A;; F™), 2o = (Ag; F*2) be algebras of type 7, a; be an
absorbing element of 203, ag be an idempotent of 2,. Take the direct product
Ay X Ay = (A1 X Ag; F*). Let us consider a subdirect product of 2; and 2y,
namely the algebra ((A;1 X {az})U({a1} x A2); F*|(4;x{a2})U({a1}x 42))- This
algebra will be denoted by 2; x 2o and will be called the (a;, as)-joining of

(a‘laa2)
2; and 2y (see [22]). Note that |2 X g| = |A;| + |As] — 1. Obviously, we
ai,a2
have in ?A; x Ao subalgebras isomorphic with 20; and 2s, respectively. We

{a1,a2)
have:

Id(A; x 2Ap) = Id(Ay) NId(™As).
{a1,a2)
Let us observe that the element F is an absorbing element of the algebra
af,
It was proved in [22, Theorem 5.12]:
(0.vi) Let V be a variety of type T satisfying (0.v), F be finite, % = (4; F%)

be a minimal generic of V with an idempotent a. Then 2F ( X )Ql isa
Fia

minimal generic of V,, and g(V,,) = |F| + g(V).
It was proved in [22, Corollary 5.9]:

(0.vil) If V = V,, V satisfies (0.v), F is finite, 2 = (A4; F?) is a minimal
generic of V having an idempotent 7, then Af X 2 is a minimal
generic of V;, and g(V;,) = |F| + g(V). W)

For |F| > 1 we denote by V©?2 the variety of type 7 defined by all
identities ¢ = ¢ from Id(V') satisfying one of the following two conditions:

(0.3) F(p) = F(¥), |F(#)] = 1;
(0-4) [F(p)l, [F(¥)] = 2.

In the sequel V;c; Vi denotes the join of the family {V;}icr of varieties.
Further, @;c; Vi is the class of all algebras isomorphic to a subdirect product
of the family {2;}:cs of algebras where 2; runs over V; for every i € I.

For a variety V of type 7 and for f € F' we denote by V(f) the variety
of type 7 defined by all identities ¢ =~ 1 of type 7 satisfying one of the
following two conditions:

(0.5) F(p)\ {f} #0 # F(¥) \ {f};
(0.6) (p ~ ) € 1d(V) and F(p) U F(¢) C {f}.

We denote by V(0) the variety of 0-algebras of type 7, i.e. the variety
defined by all identities ¢ & ¢ of type 7 with F(p) # 0 # F(¢).
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It was proved in [20, Theorem 1.10]:
(0.viii) If |F| > 1 and the variety V satisfies (0.v), then

VvV V(HVV0)=V?=Ve Q) V()®V().
feF feF

Let F1 and Fy be two sets such that F; UFy, = F and F1 N Fy = {.
We denote by Vg, the variety of type 71 = 7|p, defined by all identities of
type 71 from Id(V). An identity ¢ = v of type 7 is called Fj-regular (see
[28]) iff it is regular and of type 7. An identity ¢ & 1 of type T is called
Fy-symmetrical (see [28]) iff F'(¢) N F2 # 0 # F(¢) N Fy. For a variety V of
type 7 we denote by V(Fi) the variety of type 7 defined by all Fj-regular
identities from Id(V) and all Fy-symmetrical identities of type 7.

Let 21 = (A; F}') be an algebra of type ;. Let ¢ ¢ A and put A* = AU{c}.
Then the algebra 2* = (A*; F%") of type 7 will be called an Fy-supalgebra
of the algebra 2 if for every f € F' and ay,...,a,(5) € A" we have

fm(ala"'aaﬂ‘(f)) lff € Fla{ala"'7a'7(f)} - A7
c otherwise .

fm‘(alv'“,aT(f)) = {

If F5 = 0, then an Fy-supalgebra coincides with a supalgebra in the sense
of [12].
Consider the following condition:

(0.ix) There exists a term ¢(z,y) such that F(p(z,y)) C Fy and (¢(z,y) ~
z) € Id(V).
The following two facts were proved in [26, Corollary 2.3, Corollary 2.11,
respectively]:

(0.x) Let V be a variety of type 7, V be trivial or V satisfy (0.ix). Then 2 =
(A; F*) belongs to V; and is subdirectly irreducible iff 2% belongs to
V and is subdirectly irreducible , or 2 is a supalgebra of a subdirectly
irreducible algebra from the variety V.

(0.xi) Let Fy # 0 # F», let V be a variety of type 7 and let V satisfy (0.ix).
Then an algebra A = (A; F?) belongs to V(F}) and is subdirectly
irreducible iff A is trivial or A is an Fh-supalgebra of a subdirectly
irreducible algebra from the variety Vg, .

In (0.x) and (0.xi) a 1-element algebra is considered to be subdirectly
irreducible. However in the sequel we do not do that.

We shall denote by T the trivial variety of type 7, i.e. defined by =z = y.

An identity ¢ = 1 of type 7 is called left-outermost if the left-most
variables in ¢ and 1 are the same. For example z + x =~ z is left-outermost
but z -y = y -z is not. This notion was considered in [6] and [4] where
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the terminology “first-regular” was used. We denote by L(7) the set of all
left-outermost identities of type 7. For a variety V of type 7 we denote by
V] the variety of type 7 defined by all left-outermost identities from Id(V').
The variety V; will be called the left-outermost extension of V.

We have (see [4]):
(0.xii) Id(T;) = L(7) and the variety 7} is nontrivial.
(0.xiii) For a variety V of type 7 we have Vi=T;vV, Id(V})=L(7) N 1d(V).

For a variety V of type 7 we denote by L£(V) the lattice of all subvarieties
of V ordered by inclusion understand by formula: V; C V, iff Id(Va) C
Id(Vp).

In this paper we want to find minimal generics and lattices of subvarieties
of the varieties Dy, (Dr);, (Dy); and (Dp); where D is the variety of all
distributive lattices.

We hope that the next results of this paper present a good example,
how different constructions can cooperate with one another in explaining
properties and structures of algebras.

1. Minimal generics

From now on we restrict our considerations to a type 7 : F, — N
where F3 = {+,-} and mo(+) = 72(:) = 2. Let D denote the variety of all
distributive lattices of type 7. We have:
1y Dy=T;vD =T x D.

REMARK 1.1. The property (1.i) was proved in [4] using (0.xiii) and using
(O.i) for f(zo,zl) =xg-x1 + I].

It is known that the 2-element lattice 2 = ({0,1};+,-) with 0 < 1 is a
minimal generic of D.

Consider an algebra £ = ({l1,l2};+,-) where a + b= a - b = a for every
a,b € {li,l2}. We have:

(1.ii) The algebra £ is a minimal generic of 7;.

In fact, the identities 4+ y = = - y = = form an equational base of T;.
THEOREM 1.2. The algebra £ x 2 is a minimal generic of Dy and g(D;) = 4.
Proof. We have Id(£ x 2) = L(me) N 1d(2) = L(re) N Id(D) = 1d(D;) by
(0.xiii). Consequently, £ x 2 is a generic of D;. If B is a generic of D; then by
(11) B = B, X By where By € T} and B, € D. So it must be |B], |Bs| > 1.
Otherwise B € T; or B € D. Consequently B is not a generic of D; since
both T; and D are proper subvarieties of D;. In fact, the identity z+y =~ z -y

belongs to L(79) and does not belong to Id(D). Similarly z-y+y ~ y belongs
to Id(D) and does not belong to L(72). =
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Let us consider the following semilattice ordered system
Az = (({L 2}; S), {211: 2[2}7 {h%, h%v h%})
where 1 <1<2<2,9% = ¢&, % =2, h3(l;) = h3(ls) = 0.

THEOREM 1.3. The algebra S(Ag) is a minimal generic of (D,); and
9((Dr)i) = 4.

Proof. We have Id((D;);) = Id(D)NR(ma)NL(2) = Id(D)NL(12)NR(72) =
1d((Dy)). By (0.ii) we have Id(S(A2)) = 1d(21) N1d(22) N R(72) = 1d(£) N
Id(2)NR(m2) = 1d(2)NId(£)NR(72) = Id(D;)NR(72) = IA((Dy),). So §(A2)
is a generic of (D, ). Since D, satisfies the identity

(1) T-ytr~T,

so by (0.iii) every generic B of (D;), must be a sum of a semilattice ordered
system of algebras B; for j € J for some set J of indices, where B; =
’ZB} X *312-, B; € Dy, %} e T, %Jz € D. Since a 1-element algebra satisfies all
identities of type 72, D; satisfies (1) so it must be at least two indices j; and
J2 with ji # ja such that |%B,,|,|B;,| > 1. Consequently, |B| > 4. =

For T = 75 the algebra 2 from Section 0 is of the form 22 = (Us; +, )
where Uy = {{-},{+},{+,-}} and for A,B € Uy we have A+ B=AUBU
{+}, A-B=AUBU{}.

THEOREM 1.4. The algebra Qlf(z <>< gsﬂ X 2) is a minimal generic of (Dy);
F,(11,0
and g((Dy);) = 6.

Proof. We have (D,); = (D;)y. Now by Theorem 1.2 and by the fact that
(11,0) is an idempotent of £ x 2, the assumptions of (0.vi) are satisfied and
we get the statement. m

THEOREM 1.5. The algebra Qlfz( X SS(.AQ) is a minimal generic of (Dy); and
Fh
9((De)1) = 6.

Proof. We have (Dy); = ((Di)r)u = (Di)s. Now the statement holds by
Theorem 1.3 and (0.vii). w

2. Subdirectly irreducible algebras

In this section we find subdirectly irreducible algebras in left-outermost
extensions of the varieties D, D,, D, and D.
Let us consider the following 10 algebras:

2 = ({a1,b1};+,-) wherez +y =z -y =z for z,y € {a1,01}.
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Ay = ({ag, ba}; +, ) where for z,y € {ag, b2} we have:

by if by € {x,
a:+y={ 2 100 € {2}
as otherwise

I if ag € {z,y}
bo otherwise
23 = ({as,bs}; +, ) where for z,y € {as, b3} we have:
.f = =
rhy= azif T y as
bs otherwise
z-y=bs
Ay = ({aa, ba, ca}; +, ) where for z,y € {a4, bs, ca} we have:

+ z if T,y € {04,64}
x =
Y b4 otherwise

T-y=by
As = ({as,bs};+, ) where for z,y € {as, bs} we have:
T+y=bs

asifr=y=nas
T-y= .
bs otherwise
As = ({as, b6, c6}; +, -) where for z,y € {as, bs, c6} we have:
r+y=be
z if z,y € {as, c6}
z-y= .
bg otherwise
A7 = ({a7,b7};+, ) where for z,y € {a7,b7} we have: z+y=12-y=b7
As = ({as, bg};+,-) where for z,y € {ag, bs} we have:
+ z ifz=y
z =z-y=
y y bg otherwise
Ao = ({ag, cg,bo}; +, ) where for z,y € {ayg, cg,bg} we have:
awifr=y=ag
T+y={ cgifcg €{z,y} and by & {z,y}
by otherwise

43
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cgifzr=y=co
z-y=4 agif ag € {z,y} and by & {z,y}
bg otherwise

210 = ({a10, c10, b10}; +, -) where for z,y € {ai0, c10,b10} We have:

rty= {a: if bio & {z, y}

b1g otherwise

x-y:{x if bio & {z,y}

b1p otherwise

Obviously 2; is isomorphic to £ and 2y is isomorphic to 2.
We have:

(2.1) The algebra 2; is (up to isomorphism) the unique subdirectly irre-
ducible algebra from 7.

This follows from the fact that if 2 = (A4;+, ) belongs to T}, then every
equivalence relation is a congruence of 2. Consequently, if |A| > 2, then for
every a,b € A with a # b there is a nontrivial congruence separating a and
b. Thus 2 is subdirectly reducible.

It is known that:

(2.11) The algebra 23 is (up to isomorphism) the unique subdirectly irre-
ducible algebra of D.

(2.iii) Algebras 205 and Ay are (up to isomorphism) the unique subdirectly
irreducible algebras in ;.

This follows at once from (1.1), (2.1) and (2.ii).

(2.iv) Algebras 21;, g, ™As, Ag and Ajp are (up to isomorphism) the unique
subdirectly irreducible algebras in (D,);.

In fact, we have Id((D,);) = Id((Dy),). But D satisfies (1) so (0.iii) is
satisfied for D; and we can use (0.x) and then (2.iii). Recall that in (0.x) a
1-element algebra is considered to be subdirectly irreducible.

(2.v)

We denote by T(0) the variety satisfyingz +y~z -y~ u-v.

We shall consider the following condition for a variety V of type 7.
(2.vi) If ¢ = % is an identity from Id(V') such that |F(¢) U F(¢)| < 1, then

@ =2 1 is regular.

We have:

(2.vii) If V is the variety satisfying (2.vi), then V&2 = V,,.
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According to the notation from Section 0 the variety (T7)(4y is of type
7'2|{+} and is defined by z 4+ y = x. Analogously the variety (Tz){.} is of type
7ol and is defined by z - y =~ z. Arguing similarly as in (2.i) we get that
(2.viii) If an algebra 2 belongs to (7})(,}, then 2 is subdirectly irreducible

iff || = 2. If an algebra 2 belongs to (T})3, then 2 is subdirectly
irreducible iff || = 2.

(2.ix) An algebra 2 belongs to D;(+) and is subdirectly irreducible iff %
is isomorphic to A3 or 4. An algebra 2 belongs to D;(-) and is
subdirectly irreducible iff 2 is isomorphic to 25 or Us.

We prove the first sentence, the proof of the second one is similar. D;(+)
satisfies (2.vi), so it is defined by the identities:

@ ztz=z,(c+y)+zrzc+(y+2),c+ytzrrc+z+y,
z-y=u-v,z+(u-v)x(u-v)+zxu-v.

By the same identities the variety T;({+}) is defined. Since T} satisfies z+y =~

z, by (0.ix), (2.viii) and (0.xi) we get the statement.

(2.x) The statements (2.ix) are true if we substitute D;(+), D;(-) by
(Dr)i(+), (Dr)i(+), respectively.

This follows from the fact (D;);(+) = Di(+), (Dr)i(:) = Di(-) and we
argue as in (2.ix).

(2.xi) An algebra 2 belongs to (D,); and is subdirectly irreducible iff 2 is
isomorphic to one of algebras 2, ...,%y.

In fact, we have (D,,); = (Dy),. The variety D satisfies (0.v) since we can
put ¢+(z) = z + z and ¢.(z) = z - z. Further, D; satisfies (2.vi) so by (2.vii)
using (0.viii) for V = D; we get (Dy); = (Di)y = D;® Di(+) ® Di(-)  T(0).
Now we get the statement by (2.iii), (2.v), (2.ix). '

(2.xii) An algebra 2 belongs to (Dp); and is subdirectly irreducible iff 2 is
isomorphic to one of algebras 2, ..., 250.

In fact, we have (Dp); = ((Di)r)u = (Di)p. The variety (D)), satisfies
(0.v) and (2.vi). So putting in (0.viii) (D;), for V we get by (2.vil) (Dp); =
((D)r)u = (D1)r @ (D))r(+) @ (D1)r(-) ® T(0). Now we use (2.iv), (2.v) and
(2.x). _ ’ -
For V C (Dy); let us put Ir(V) = VN {%;,...,%0}. Consequently, by
(2.xii), we have:

Ir((Dp)) = {Qll, .o, 20}

Denote M = {911,213,‘214,915,216,2[7}.

LEMMA 2.1. Ir((T,))) = M.
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Proof. It is easy to check that Id((Ty);) = Id(™;) N Id(2A3) N Id(A4) N
Id(2%s) N Id(2Ae) N Id (A7) = IA(HSP(M)) but M C Ir((Ds);) by (2.xii). So
HSP(M) C (Dy); and consequently Ir(HSP(M)) C Ir((Dy)1).

Each of algebras 20,23, 24, As, Ag, A7 satisfies the identity
3) (z+y)-(e+y) = (c+2) (z+72)
So HSP(M) satisfies (3). However none of the algebras 2z, g, g, 210 satis-
fies (3), so none of them belongs to HSP(M ). Consequently, M =Ir(HSP(M))
=Ir((Tu)). m

3. Lattices of subvarieties

Observe that no two algebras from Ir((Dy);) are isomorphic. However,
some subdirectly irreducible algebras can generate others. So first we have
to find some connections between algebras from Ir((Ds);).

LEMMA 3.1. 23 € HSP({24}).

Proof. Put h(aq) = h(cs) = a3, h(bs) = bs. Then h is a homomorphism. =
LEMMA 3.2. %5 € HSP({26}).

Proof. The proof is similar to that of Lemma 3.1. »

LEMMA 3.3. %7 € HSP({23,%s5}).

Proof. Take the direct product of 23 and s and put: ~({as3, as)) = a7 and
h({z,y)) = by otherwise. m

LEMMA 3.4. 24 € HSP({2;1,%3}).

Proof. Take the direct product of 2; and %3 and put: h({(a1,a3)) = aq,
h{(b1,a3) = c4 and h({z,y)) = by otherwise. m

LEMMA 3.5. % € HSP({%1,2s}).
LEMMA 3.6. g € HSP({22, As}).
LEMMA 3.7. %50 € HSP({%;, %s}).
LEMMA 3.8. 2z, € HSP({2}).

Proof. Obviously 2y is isomorphic to the subalgebra ({ag, cg);+, ) of Ao.
Further put h(ag) = h(cg) = ag and h(by) = bs. m
LEMMA 3.9. 2,2 € HSP({Qllo}).
The set S C Ir((Dy);) will be called (Dy);-closed if it satisfies the follow-
ing conditions (c;)—(cg):
(c1) If A4 € S, then A3 € S.
(co) If Y € S, then A5 € S.
(ca) If {™3,%5} C S, then %7 € S.
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((34) If {Qll,ng} C S, then 24 € S.

(05) If {2[1,52(5} C S, then % € S.

(ce) If {QIQ,ng} C S, then 2% € S.

(cp) If {Q[l,ng} C S, then %10 € S.

(Cg) If %9 € S, then {Q12,Q13} cas.

(co) If A10 € S, then {2[1,918} cS.

LEMMA 3.10. Let S be a (Dy);-closed subset of Ir((Dp)1). If Ur € S, then
A, ¢ HSP(S), k=1,...,10.

Proof. Let k = 1. Then by (cg) we get %10 ¢ S and S C {Ao,...,Ag}. Take
an identity
(4) -y + -y =y -2)+(y- )
So (4) is satisfied in every algebra 2s, ..., 2. So it is satisfied in HSP(.S).
However (4) is not satisfied in 2; and 2; ¢ HSP(S).

Let k = 2. Then by (cs) 29 & S. We take the identity

(5) (z+y) - (z+y) = (z-y)+(z-y)
Then we argue as in case k = 1.

Let k = 3. Then 24 ¢ S by (c1). We take the identity
(6) (z+z) (z+z)=z+z.

Let k = 4. Then by (c4) it can not be {%;,23} C S. If A3 € S we take
(6). If Ay ¢ S, then also 1o & S by (cg). We take the identity

r+y~y+zx

Let £ = 5. Then s &€ S by (c2). We take

Let k = 6. Then by (c4) it can not be {;,%s} C S. If A5 & S we take
(7). If A1 ¢ S, then by (co) we have 230 ¢ S. We take the identity

T-YRy-T.

Let k = 7. By (c1), (c2) and (c3) it can not be SN {As,As} # 0 #
SN {As, As}. If SN {A3,2} =0 we take z -z ~ . If SN {As, A6} = 0 we
take z +z = .

Let k¥ = 8. Then 2 ¢ S and ;o & S by (cs) and (cg). We take the
identity
(8) (z-y)+z=~(z-2)+z.

Let k = 9. By (csg) it can not be {2,%} C S. If Ag ¢ S, then Ay ¢ S
by (co). We take (8). If A2 ¢ S we take (5).

Let k = 10. It can not be {2;,As} C S by (cg). If As & S, then 2Ag ¢ S
by (cs). We take (8). If A; ¢ S we take (4). m
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LEMMA 3.11. If a variety V belongs to L((Dy);) and A € V', then A is iso-
morphic to a subdirect product of a family of subdirectly irreducible algebras
belonging to Ir(V).

Proof. By Birkhoft’s Subdirect Representation Theorem (see [2]), if 2 €
V, then it is isomorphic to an algebra 2’ being a subdirect product of a
family {2;};es of subdirectly irreducible algebras from V. By (2.xii) each
2; is isomorphic to an algebra 2} from Ir((Dy);). Thus 2} belongs to V
and belongs to Ir((Ds):), hence 2} belongs to Ir(V)). Consequently, 2’ is
isomorphic to an algebra 2* being a subdirect product of the family {22[; }ies
and 2 is isomorphic to A*. =

We denote by C((Dy);) the set of all (Dy);-closed sets.

LeEMMA 3.12. (i) For every variety V. € L((Dy);) the set Ir(V) is (Dp);-
closed.

(i) For every variety V € L((Dy);) we have V = HSP(Ir(V)).

(iii) If S € C((Dp)1), then S = Ir(HSP(S)).

(iv) If Vi, Va € L((Dp)1), then Vi C Vy iff Ir(V4) C Ir(Va).

Proof. (i) follows from Lemmas 3.1-3.9.

(ii) Since Ir(V') C V, HSP(Ir(V)) C V. The converse inclusion follows at
once from Lemma 3.11.

(iii) If an algebra 2 belongs to S, then & € HSP(S). But & € Ir((Ds);)
since S C Ir((Dp)1), so A € Ir(HSP(S)). If A ¢ S, then A ¢ HSP(S) by
Lemma 3.10, hence 2 ¢ Ir(HSP(S)).

(iv) If V1 C Va, then Ir(V1) C Ir(V2) by the definition of Ir(V). The
converse implication follows at once from Lemma 3.11. =

THEOREM 3.13. The set S C Ir((Dy);) is equal to Ir(V) for some variety
V € L((Dy)1) iff S is (Dyp)i-closed.

Proof. It follows from Lemma 3.12 (i) and (iii). m

THEOREM 3.14. The lattice £((Dy);) as a poset is isomorphic to the po-
set (C{(Dp)1);C), so the lattice L{(Dy);) is isomorphic to the lattice
(C({(De)r); ©)-

Proof. For V. € L((Dp);) put (V) = Ir(V). Then ¢ is well defined by
the definition of Ir(V'). p maps L((Dy);) into C((Ds);) by Lemma 3.12 (i). If
Ir(V1) = Ir(Va), then by Lemma 3.12 (ii) V1 = HSP(Ir(V;)) = HSP(Ir(V3)) =
V,. Thus ¢ is 1-1. By Lemma 3.12 (iii), ¢ is onto. If V) C V5, then Ir(V;) C
Ir(V2) by the definition of Ir(V'). The converse implication follows at once
from Lemma 3.11. m

For Ve L((Dy))) let us put C(V)={SCV :S5eC((Dp)1)}
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COROLLARY 3.15. If V € L((Ds)1), then the lattice L(V) is isomorphic to
the lattice (C(V); C).

Let A be a family of sets and B be a set with B ¢ A. Denote BUyx A =
{BUA:Ae A}, AUy B={AUB:Ac A}.
For a set A C Ir((Dy);) we denote Ind(A) = {i : «A; € A}. We have:

(3.1) To every A C Ir((Dp);) the set Ind(A) is assigned into 1-1 way and
for every A, B C Ir((Dy);) we have Ind(A) C Ind(B) iff A C B.

Put P = {0, {1}, {2}, {1,2}}.
COROLLARY 3.16. The lattice L(Dy) is isomorphic to the lattice (P;C).
Proof. This follows at once from (2.iii), Corollary 3.15 and (3.i)). =

COROLLARY 3.17. The lattice L((D,);) is isomorphic to the lattice (P U
{{8},{1,8,10},{2,8,9},{1,2,8,9,10} }; ©).

Proof. This follows at once from (2.iv), Corollary 3.15 and (3.i). m
COROLLARY 3.18. The lattice L((D,);) is isomorphic to the lattice L(D;) x 2.
Proof. This follows at once from Corollary 3.17. u

REMARK 3.19. Corollary 3.18 follows also from the main result of [5] since
Dy satisfies (1).

Let M be the set from Lemma 2.1. Put M = {Ind(S) : S € M, Sis
(Dp)i-closed}. One can check that M = My U M, where

Mo = {8, {3}, {3,4}, {5}, {5, 61, {7}, (3,7}, (3,4, 7}, {5,7},
{5,6,7},{3,5,7},{3,5,6,7}, {3,4,5,7}, {3,4,5,6, 7}},

M; = {{1},{1,3,4},{1,5,6},{1,7},{1,3,4,7},{1,5,6,7},{1,3,4,5,6,7}}.

COROLLARY 3.20. The lattice L((Dy);) is isomorphic to the lattice (M U

({2} ux M); ©).

Proof. It follows from (2.xi), Corollary 3.15, (3.i) and (c1)—(cs5). =

COROLLARY 3.21. The lattice L((Dy)1) is isomorphic to the lattice 2 x
L{(Tu)1)-

Proof. We have £((73);) is isomorphic to (M; C) by Lemma 2.1, Corollary
3.15 and (3.i). Now we use Corollary 3.20. m

COROLLARY 3.22. The lattice L((Dy);) is isomorphic to the lattice
(MU ({2} Ux M) U (Mp Uy {8}) U (M; Ux {8,10}) U (Mo Ux {8,2,9}) U
(Ml Ux {87 2, 9, 10})) g)

Proof. This follows from (2.xii), Corollary 3.15 and (3.i). m



50 J. Plonka

CoROLLARY 3.23. The lattice L((Dp);) is isomorphic to the lattice
L((Du)1) x 2.

Proof. This follows from Corollary 3.22. w
Note that |L((Dy):)] = 42 and |L((Dp);)| = 84.
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