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L E F T - O U T E R M O S T E X T E N S I O N S OF SOME V A R I E T I E S 

Abstract. Let r : F —» N be a type of algebras F is a nonempty set of fundamental 
operation symbols and N is the set of all positive integers. An identity ip ~ ip of type 
T we call left-outermost if the left-outermost variables in <p and ip a r e the same. For a 
variety V of type r we denote by V/ the variety of type r defined by all left-outermost 
identities from Id(V). Vj is called the left-outermost extension of V. In this paper we 
study minimal generics, subdirectly irreducible algebras and lattices of subvarieties in left-
outermost extensions of some generalizations of the variety D of all distributive lattices. 

0. Preliminaries 
We shall consider algebras of type r : F —> N where F is a nonempty set 

of fundamental operation symbols and N is the set of all positive integers. It 
means that we do not admit miliary operation symbols. Let <p be a term of 
type r . We denote by Var(</>) the set of all variables occurring in (p and we 
denote by F(tp) the set of all fundamental operation symbols occurring in <p. 
Writing y>(xix , . . . , Xjn) instead of ip we mean that Var(</>) = { x ^ , . . . , Xin }. 
For a variety V of type r we denote by Id(V) the set of all identities satisfied 
in every algebra from V. 

An identity (p ip is called regular (see [13]) if Var(y>) = Var(^). We 
denote by R(T) the set of all regular identities of type r . An identity IP « tp 
of type r is called uniform (see [16]) if it satisfies one of the following two 
conditions: 

(0.1) F(<p) - = F, 
(0.2) F(<p) - F(ip) # F and Var(^) = Var(ip). 

We denote by U (r) the set of all uniform identities of type r . An identity <p> « 
ip of type r is called biregular (see [16]) if Var(y?) =Var(ip) and F(ip) = F(ip). 
We denote by B(T) the set of all biregular identities of type T. Obviously each 

1991 Mathematics Subject Classification: Primary: 08B15. 
Key words and phrases: minimal generic, subdirectly irreducible algebra, lattice of 

subvarieties, left-outermost identity, distributive lattice. 



38 J. Plonka 

of the sets R(T), U(T) and B{T) is an equational theory. For a variety V of 
type r we denote by Vr, Vu, V(, the variety of type r defined by all regular, 
all uniform, all biregular identities from Id(V), respectively. So Id(Vr) = 
Id(V) n R(T), Id(Vu) = Id(V) n U(r) and Id(V6) = Id(V) n B(T). 

Let V\ and V2 be two varieties of type r. We denote by V\ V V2 the join 
of V\ and V2 and we denote by V\ x V2 the class of all algebras 21 isomorphic 
to the direct product of some algebras 2li and 2I2 where 2li runs over V\ and 
2I2 runs over V2. 

Two varieties Vo and V\ of type r are called independent (see [9]) if there 
is a term f(x0,11) of type r such that x\ G Var(/(xo, x i ) ) and the identity 
f(x0, x i ) & Xk belongs to Id(Vfc) for k — 0,1. 

The following statement was proved in [9, Theorem 1]: 

(O.i) If Vo and Vi are independent, then Vo V Vi = Vo x V\. 

In [13] the construction <S(_4) was defined (quoted also in [8]) called the sum 

of a semilattice ordered system A of algebras 21 i € /. 
It was shown in [13] that: 

(O.ii) If |/| > 1 then Id (5 (^ ) ) = ( f| Id(2ti)) D R(T). 
iel 

It was shown in [14]: 

(O.iii) If V is a variety of type r and there is a term xoy of type r such that 
Var(x o y) — {x, y} and the identity xoy ^̂  x belongs to Id(V), then 
VT consists exactly of all possible sums of semilattice ordered systems 
of algebras from V. 

For / G F we put /' = F \ { / } . In [22] an algebra 2 w a s defined as 
follows: 21̂  = ( {/' }/gF U {F}] where for f e F and Au .. .,AT{f) G 

( { / ' } f e F U {F}) we have f < (Au ..., Ar(f)) = A1U...U Ar{f) U { / } . 
It was proved in [22]: 

(O.iv) Id(a£) = U(r). 

An algebra 21 from a variety V is called a generic of V (see [27]) if 
HSP(2l) = V, i.e. Id(2l) = Id(V). 21 is called a minimal generic of V if it is a 
generic of a minimal possible cardinality. We denote by g (V ) the cardinality 
of a minimal generic of V. 

We shall consider the following condition: 

(O.v) For every feF there exists a term qf(x) with F(qf(x)) = { / } such 
that the identity qf(x) « x belongs to Id(V). 

If 21 = (A ; F a ) is an algebra of type r, then an element a G A is called 
an idempotent of 21 if for every f e F we have / a ( a , . . . , a) = a. An element 
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a £ A is called an absorbing element of 21 if for every / € F, a i , . . . , aT(/) € A 
we have: if a 6 { a i , . . . , aT(/)}> then / a ( a i , . . . , aT(/)) = a-

Let 2li = (A^F*1), 2l2 = {A2\F*2) be algebras of type r , ai be an 
absorbing element of 2li, a2 be an idempotent of 2l2. Take the direct product 
2li x 2I2 = (-^l x M', Fx). Let us consider a subdirect product of 2li and 2l2, 
namely the algebra ((¿1 x {a2}) U({a!} x A2); Fx |(Aix{o2})u({ai}x>ia))- T h i s 

algebra will be denoted by 211 x 2l2 and will be called the (ai, a2)-joining of 
(11,02) 

2li and &2 (see [22]). Note that |2ii x 2l2| = + \A2\ - 1. Obviously, we 
<ai,a2) 

have in 211 x 2l2 subalgebras isomorphic with 2lj and 2l2, respectively. We 
(01,02) 

have: 
Id(2li x 2l2) = Id(Qli) nld(2l2). 

(ai,a2) 
Let us observe that the element F is an absorbing element of the algebra 

It was proved in [22, Theorem 5.12]: 

(O.vi) Let V be a variety of type r satisfying (O.v), F be finite, 
be a minimal generic of V with an idempotent a. Then 2l„ x 21 is a 

(F,a) 

minimal generic of Vu and g(Vu) = |F | + g(V). 
It was proved in [22, Corollary 5.9]: 

(O.vii) If V = Vr, V satisfies (O.v), F is finite, 21 = (A; F*) is a minimal 
generic of V having an idempotent z, then 21^ x 21 is a minimal 
generic of Vb and g{Vh) = \F\ + g(V). {F,i) 

For |F | > 1 we denote by Vc'2 the variety of type r defined by all 
identities ip m if) from Id(l /) satisfying one of the following two conditions: 

(0.3) % ) = F W , |F(^) | = 1; 
(0.4) | F ( ^ ) | , | F ( V ) | > 2 . 

In the sequel Vie/ ^ denotes the join of the family {Vi} l€j of varieties. 
Further, ® iG/ Vi is the class of all algebras isomorphic to a subdirect product 
of the family {21 ¿}ig/ of algebras where 2lj runs over Vl for every i € I. 

For a variety V of type r and for f € F we denote by V ( f ) the variety 
of type r defined by all identities ip fa ip of type r satisfying one of the 
following two conditions: 

(0.5) 
(0.6) Id(V) and F{(p) U F{$) C {/}. 

We denote by V(0) the variety of 0-algebras of type r , i.e. the variety 
defined by all identities <p « ip of type r with F((p) ^ 0 / F(ip). 
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It was proved in [20, Theorem 1.10]: 

(O.viii) If |F | > 1 and the variety V satisfies (O.v), then 

V V \ / V { f ) V F(0) = T/c'2 = V ® (g) V ( f ) ® F(0). 
feF feF 

Let Fi and F2 be two sets such that Fi U F2 = F and Fi n F2 = 0. 
We denote by VP1 the variety of type T\ = T\F1 defined by all identities of 
type ti from Id(y) . An identity (p « tp of type r is called Fi-regular (see 
[28]) iff it is regular and of type T\. An identity <p ¡=s t[> of type r is called 
F2-symmetrical (see [28]) iff F(ip) n F2 # 0 ̂  F ( ^ ) n F2. For a variety V of 
type r we denote by V(Fi) the variety of type r defined by all Fi-regular 
identities from Id(V) and all /^-symmetrical identities of type r . 

Let 21 = (A\ F f ) be an algebra of type T\ . Let c £ A and put A* = Au{c}. 
Then the algebra 21* = (A*\F%*) of type r will be called an F2-supalgebra 
of the algebra 21 if for every / 6 F and a i , . . . , aT(f) £ w e have 

/ a * ( a i a ) = ( • ^ l ( a i ' - - - ' a T ( / ) ) i f f E F^AaU---,aT{f)} C A, 
[ c otherwise . 

If F2 = 0, then an i^-supalgebra coincides with a supalgebra in the sense 
of [12]. 

Consider the following condition: 

(O.ix) There exists a term ip(x, y) such that F(tp(x, y)) C F\ and (<p(x, y) 
x) eld(V). 

The following two facts were proved in [26, Corollary 2.3, Corollary 2.11, 
respectively]: 

(0.x) Let V be a variety of type r , V be trivial or V satisfy (O.ix). Then 21 = 
(A;F*) belongs to Vr and is subdirectly irreducible iff 21 belongs to 
V and is subdirectly irreducible , or 21 is a supalgebra of a subdirectly 
irreducible algebra from the variety V. 

(O.xi) Let F\ ^ 0 ^ F2, let V be a variety of type r and let V satisfy (O.ix). 
Then an algebra 21 = ( A \ F a ) belongs to V{F\) and is subdirectly 
irreducible iff 21 is trivial or 21 is an ^-supalgebra of a subdirectly 
irreducible algebra from the variety Vp1. 

In (0.x) and (O.xi) a 1-element algebra is considered to be subdirectly 
irreducible. However in the sequel we do not do that. 

We shall denote by T the trivial variety of type r , i.e. defined by x « y. 
An identity <p ~ ip of type r is called left-outermost if the left-most 

variables in tp and ^ are the same. For example x + x & x is left-outermost 
but x • y « y • x is not. This notion was considered in [6] and [4] where 
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the terminology "first-regular" was used. We denote by L(r) the set of all 
left-outermost identities of type r . For a variety V of type r we denote by 
Vi the variety of type r defined by all left-outermost identities from Id(V). 
The variety V/ will be called the left-outermost extension of V. 

We have (see [4]): 
(O.xii) Id(T/) = L{T) and the variety 7} is nontrivial. 
(O.xiii) For a variety V of type r we have V J = T / V F , ID(VI) = L(R) n Id(F). 

For a variety V of type r we denote by C(V) the lattice of all subvarieties 
of V ordered by inclusion understand by formula: V\ C V2 iff Id(V^) C 
Id(Vi). 

In this paper we want to find minimal generics and lattices of subvarieties 
of the varieties Di, ( D r ) i , ( D u ) i and ( D b ) i where D is the variety of all 
distributive lattices. 

We hope that the next results of this paper present a good example, 
how different constructions can cooperate with one another in explaining 
properties and structures of algebras. 

1. Minimal generics 
From now on we restrict our considerations to a type r2 : F2 —> N 

where F2 — {+, •} and 7"2(+) = r2(-) = 2. Let D denote the variety of all 
distributive lattices of type T2. We have: 
( l . i ) Di = TtVD = T i x D . 

REMARK 1.1 . The property (l.i) was proved in [4] using (O.xiii) and using 
(O.i) f o r f(x0,x{) — x0 • xi + xi. 

It is known that the 2-element lattice 2 = ({0,1}; +, •) with 0 < 1 is a 
minimal generic of D. 

Consider an algebra £ = ({¿1, ¿2}; +1 •) where a + 6 = a- 6 = a fo r every 
a, b 6 {h,l2}- We have: 
(l.ii) The algebra £ is a minimal generic of T/. 

In fact, the identities x + y ^ x - y ^ x form an equational base of T/. 
THEOREM 1.2 . The algebra £ x 2 is a minimal generic of Di and g(D{) = 4 . 

P r o o f . We have Id(£ x 2) = L(T2) n Id(2) = L(T2) D Id (D) = Id(DT) by 
(O.xiii). Consequently, £ x 2 is a generic of D/. If © is a generic of Di then by 
(l.i) 03 = S i x <82 where 931 e 7} and € D. So it must be |Q3i|, |Q32| > 1. 
Otherwise 03 e T; or 03 G D. Consequently is not a generic of Di since 
both T/ and D are proper subvarieties of D[. In fact, the identity x + y ~ x-y 
belongs to L(T2) and does not belong to Id(£>). Similarly X-y+y « y belongs 
to Id(D) and does not belong to L(T2). • 
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Let us consider the following semilattice ordered system 

A2 = ( ( {1, 2}; < ) , {2li, 2l2}, {hi, hi hi)) 

where 1 < 1 < 2 < 2, 2li = £, 2l2 = 2, h\(h) = /i?(/2) = 0. 

THEOREM 1.3. The algebra S{A2) is a minimal generic of (Dr)i and 

g((Dr)l) = 4. 

P r o o f . We have Id((£>r)z) = Id(£>)ni?(r2 )nL(T2 ) = U(D)nL(T2)nR(T2) = 

Id ( (A ) r ) . By (O.ii) we have Id(<S(^2)) = Id(2li) n Id(2l2) n R(T2) = Id(£) n 
Id(2)C\R(T2) = Id (2 )n ld (£ )nR(T 2 ) = I d ( D i ) n R ( T 2 ) = I d ( ( A ) r ) . So S(A2) 

is a generic of (D t ) I . Since Di satisfies the identity 

(1) x • y + x « x, 

so by (O.iii) every generic 03 of (Di)r must be a sum of a semilattice ordered 
system of algebras Q3j for j € J for some set J of indices, where 03j = 
© ] x <23?, 03j e Dh 03] € Tu 03̂  € D. Since a 1-element algebra satisfies all 
identities of type r2, Di satisfies (1) so it must be at least two indices j\ and 
j2 with j\ ^ j2 such that lOSjJ, |iBJ21 > 1. Consequently, |03| > 4. • 

For T — T2 the algebra from Section 0 is of the form 2l£2 = (U2\ +, •) 

where U2 = { { • } , { + } , { + , • } } and for A,B eU2 we have A + B = AU B U 
{+},A-B = AUBU{-}. 

THEOREM 1.4. The algebra 2lf2 x (£ x 2) is a minimal generic of (Du)i 
(F2,(hfi)) 

and g((Du)i) = 6. 

P r o o f . We have (Du ) i = (D{ )u . Now by Theorem 1.2 and by the fact that 
(¿1,0) is an idempotent of £ x 2, the assumptions of (O.vi) are satisfied and 
we get the statement. • 

THEOREM 1.5. The algebra2l£2 x <S(A) is a minimal generic of (Db)i and 
(F2,h) 

g((Db)i) = 6. 

P r o o f . We have (-D&)j = ( ( A ) r ) u = Now the statement holds by 
Theorem 1.3 and (O.vii). • 

2. Subdirectly irreducible algebras 
In this section we find subdirectly irreducible algebras in left-outermost 

extensions of the varieties D, Dr, Du and D^. 

Let us consider the following 10 algebras: 

2li = ( {a i , 6i } ; + , •) where x + y — x • y — x ioi x, ye {a i , fci}. 
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212 = ( { « 2 , ¿ 2 } ; + , •) w h e r e for x , y € { 0 2 , b2} we have: 

x _ (b2 if b2e { x , y} 
[ a2 o therwise 

i a 2 if a 2 6 { x , y } 
x • y = < 

[ 62 o therwise 

213 = ( { 0 3 , £>3}; + , •) w h e r e for x , y € { 0 3 , £>3} we have: 

( a 3 if x = y = a 3 
x + y — < 

[ 63 o t h e r w i s e 

x-y = b3 

214 = ( { 0 4 , 64, C4}; + , •) w h e r e for x , y € { 0 4 , 64, C4} we have: 

f x if x,y € { a 4 , c 4 } 
x + y = < 

[ 64 o therwise 

x • y = 64 

Sis = ( { 0 5 , ^5 } ; + , •) w h e r e for x, y € { a s , M we have: 

z + V = bs 

f a5 if x = y = a 5 
x y = < 

[ 65 o therwise 

216 = ( { a 6 , i>6, C6}; + , •) w h e r e for x , y G { a 6 , £>6, M we have: 

x + y = &6 

f x if x , y G { a 6 , c 6 } 
x • y = < 

[ ¿6 o therwise 

217 = ( { 0 7 , 6 7 } ; + , •) w h e r e for x , y G { 0 7 , 6 7 } we have: x + y = x - y = &7 

Sis — ( { a 8 , bs}\ + , •) w h e r e for x , y G {as» we have: 

{x if x = y 
bg o therwise 

2lg = ( { a g , Cg, 6 g } ; + , •) w h e r e for x , y G { a g , eg, 6g } we have: 

ag if x = y = ag 

z + y = Cg if Cg G { x , y} a n d bg g {x, y} 
bg o t h e r w i s e 
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x + y = 

x-y = x • y = < 
I 610 otherwise 

iX if 610 £ {x, y} 
\ 610 otherwise 

f x if 610 £ {x, y} 

Obviously 211 is isomorphic to £ and 212 is isomorphic to 2. 
We have: 

(2.i) The algebra 211 is (up to isomorphism) the unique subdirectly irre-
ducible algebra from T/. 

This follows from the fact that if 21 = [A] +, •) belongs to 7], then every 
equivalence relation is a congruence of 21. Consequently, if > 2, then for 
every a,b G A with a ^ b there is a nontrivial congruence separating a and 
b. Thus 21 is subdirectly reducible. 

It is known that: 

(2.ii) The algebra 2I2 is (up to isomorphism) the unique subdirectly irre-
ducible algebra of D. 

(2.iii) Algebras 2li and 2I2 are (up to isomorphism) the unique subdirectly 
irreducible algebras in Di-

This follows at once from (l.i), (2.i) and (2.ii). 

(2.iv) Algebras 2li, SZI2, 2ls, 2lg and 2lio are (up to isomorphism) the unique 
subdirectly irreducible algebras in (D r)i. 

In fact, we have Id((JDr);) = Id((Z)/)r). But Di satisfies (1) so (O.iii) is 
satisfied for Di and we can use (0.x) and then (2.iii). Recall that in (0.x) a 
1-element algebra is considered to be subdirectly irreducible. 

We denote by T(0) the variety satisfying x + y ^ x - y ^ u - v . 

We shall consider the following condition for a variety V of type 

(2.vi) If <p « ip is an identity from Id(V) such that \F(tp) UF(ip)\ < 1, then 
ip w ip is regular. 

We have: 

(2.vii) If V is the variety satisfying (2.vi), then Vc>2 = Vu. 

(2.v) 
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According to the notation from Section 0 the variety (?]) {+} is of type 
72|{+} and is defined by x + y & x. Analogously the variety (?)){.} is of type 
T2|{.} and is defined by x • y & x. Arguing similarly as in (2.i) we get that 

(2.viii) If an algebra 21 belongs to (7 } ) { + } , then 21 is subdirectly irreducible 
iff |£211 = 2. If an algebra 21 belongs to ( ! } ) { . } , then 21 is subdirectly 
irreducible iff |2l| = 2. 

(2.ix) An algebra 21 belongs to A ( + ) and is subdirectly irreducible iff 21 
is isomorphic to 2I3 or 2I4. An algebra 21 belongs to A ( ' ) and is 
subdirectly irreducible iff 21 is isomorphic to 2I5 or 216-

We prove the first sentence, the proof of the second one is similar. A ( + ) 
satisfies (2.vi), so it is defined by the identities: 

x + xmx,(x + y) + zxix + (y + z),x + y + zttx + z + y, 

(2) 
x • y ~ u • v, x + (u • v) « (u • v) + x ~ u • v. 

By the same identities the variety ! ) ( { + } ) is defined. Since I ) satisfies x+y K, 
x, by (O.ix), (2.viii) and (O.xi) we get the statement. 

(2.x) The statements (2.ix) are true if we substitute £);(+), A ( ' ) by 
(Dr)i(+), (Dr)i(-), respectively. 

This follows from the fact ( A M + ) = A ( + ) , ( A -M0 = A ( - ) and we 
argue as in (2.ix). 

(2.xi) An algebra 21 belongs to (Du)i and is subdirectly irreducible iff 21 is 
isomorphic to one of algebras 2ti,..., 2I7. 

In fact, we have (Du)i = (Di)u. The variety D/ satisfies (O.v) since we can 
put q+(x) = x + x and q.(x) = x • x. Further, Di satisfies (2.vi) so by (2.vii) 
using (O.viii) for V = Dt we get (Du ) , = (D,)u = A ® A ( + ) ® A ( - ) ® T(0). 

Now we get the statement by (2.iii), (2.v), (2.ix). 

(2.xii) An algebra 21 belongs to ( A ) ; and is subdirectly irreducible iff 21 is 
isomorphic to one of algebras 2ti,..., 2lio-

In fact, we have ( A ) z = ( (A ) r )u = (A)b- The variety ( A ) r satisfies 
(O.v) and (2.vi). So putting in (O.viii) ( A ) r for V we get by (2.vii) ( A ) / = 
( (A ) r )u = ( A ) r ® ( A ) r ( + ) ® (A ) r (O ® T(0). Now we use (2.iv), (2.v) and 
(2.x). 

For V C (Db)i let us put I r (F ) = V n {2l i , . . . ,2li0}. Consequently, by 
(2.xii), we have: 

I r ( (A )/ ) = {2ll,--.,2lio}. 

Denote M = {2ti,2t3,2t4,2l5,2l6,2l7}. 

LEMMA 2.1. I r ( ( T U ) ; ) = M. 
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P r o o f . It is easy to check that I d ( ( T u ) j ) = Id(2li) n Id(2l3) n Id(2l4) n 

Id(2l5) n I d ( a e ) n I d ( a 7 ) = Id(HSP(M)) but M C lv((Db)i) by (2.xii). So 
HSP(M) C (Db)i and consequently Ir(HSP(M)) C Ir((D6),). 

Each of algebras 2li, 2l3, QI4,2I5,216,2I7 satisfies the identity 

(3) (x + y) • (x + y) « (x + x) • (x + x). 
So HSP(M) satisfies (3). However none of the algebras 2I2,2ls? 2t9> 2lio satis-
fies (3), so none of them belongs to HSP(M). Consequently, M=Ir(HSP(M)) 
= Ir((T„)i)--

3. Lattices of subvarieties 
Observe that no two algebras from Ir((.Db);) are isomorphic. However, 

some subdirectly irreducible algebras can generate others. So first we have 
to find some connections between algebras from Ir((£)(,);). 

LEMMA 3.1. 2l3 G HSP({214}). 

P r o o f . Put h(a4) = h{c^) = a3, ^(64) = 63. Then h is a homomorphism. • 
LEMMA 3.2. 215 G HSP({216}). 

P r o o f . The proof is similar to that of Lemma 3.1. • 
LEMMA 3.3. A7 G HSP({2l3 ,2l5}). 

P r o o f . Take the direct product of 2l3 and 2I5 and put: /i((a3, as)) = a7 and 
h((x,y)) = 67 otherwise. • 
LEMMA 3.4. 2l4 G HSP({2li ,2l3}). 

P r o o f . Take the direct product of 2li and 2l3 and put: h({ai,a3)) = 04, 
h(bi,as) = C4 and h({x,y)) = 64 otherwise. • 

LEMMA 3.5. 2l6 € HSP({2ti ,2l5}). 

LEMMA 3.6. 2l9 € HSP({2l2 ,2l8}). 

LEMMA 3.7. 2LI0 G HSP({2li,2l8}). 

LEMMA 3.8. 2l2,2l8 € HSP({219}). 
P r o o f . Obviously 2l2 is isomorphic to the subalgebra ({ag, eg); +, •) of 2lg. 
Further put h(ag) = h(cg) = a8 and h(bg) = b8. • 
LEMMA 3.9. 2li,2l8 € HSP({2ti0}). 

The set S C Ir((D;,)/) will be called (A>)/-closed if it satisfies the follow-
ing conditions (ci)-(cg): 
(ci) If 2l4 € S, then B3 G S. 
(c2) If 2le G S, then 2l5 G S. 
(c3) If {2l3,2l5} C S, then 2l7 G S. 
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( c 4 ) If { » 1 , 2 1 3 } C 5 , t h e n 2l4 € S. 

( c 5 ) If { H i , B 5 } C S, t h e n 2l6 € S. 

( c 6 ) If { 2 t 2 , 2 l 8 } C 5 , t h e n 2l9 € S. 

( c 7 ) If { 2 l i , 2 l 8 } C S , t h e n 2t 1 0 € S. 

( c 8 ) If 2ta € S, t h e n { 2 l 2 , 2 t 8 } C S. 

(eg) If 2lio £ 5 , t h e n { 2 l i , 2 t 8 } C 5 . 

LEMMA 3 . 1 0 . Let S be a (Db)i-closed subset of I r ( ( D t ) / ) . If Sljt ^ ¿/¿en 
2lfc £ H S P ( S ) , Jfc = 1 , . . . , 10 . 

P r o o f . L e t k = l. T h e n b y ( c 9 ) w e g e t 2lio £ S a n d S C { 2 l 2 , . . . , 2 lg } . T a k e 
a n i d e n t i t y 
(4) (x-y) + (x-y)fa(y-x) + (y-x). 

S o (4) is s a t i s f i e d in e v e r y a l g e b r a 2 l 2 , . . . , 2l9 . S o it is s a t i s f i e d in H S P ( S ' ) . 
H o w e v e r (4) i s n o t s a t i s f i e d in 2li a n d 2li £ H S P ( S ' ) . 

Let k = 2. T h e n b y ( c 8 ) 2l9 £ S. W e t a k e t h e i d e n t i t y 

(5) (x + y)-(x + y)ni(x-y) + (x-y). 

T h e n w e a r g u e a s in c a s e k = 1. 
L e t k = 3 . T h e n 2l4 0 S b y ( c i ) . W e t a k e t h e i d e n t i t y 

(6) (x + x) • (x + x) S3 X + x. 

L e t fc = 4 . T h e n b y ( c 4 ) it c a n n o t b e { 2 l i , 2 l 3 } C S. If 2l3 £ 5 w e t a k e 

(6) . If 2li £ 5 , t h e n a l s o 2tio ^ 5 b y ( c 9 ) . W e t a k e t h e i d e n t i t y 

x + y ~ y + x. 

L e t k = 5. T h e n 2l6 0 S b y ( c 2 ) . W e t a k e 

(7) (x • x) + (x • x) & x • x. 

L e t k = 6. T h e n b y ( c 4 ) i t c a n n o t b e { 2 t i , 2 t 5 } C S. If 2t5 £ S w e t a k e 
(7) . If 2li 0 5 , t h e n b y ( c 9 ) w e h a v e 2tio £ 5 . W e t a k e t h e i d e n t i t y 

x • y s=s y • x. 

L e t fc = 7. B y ( c i ) , ( c 2 ) a n d ( c 3 ) i t c a n n o t b e S n { 2 l 3 , 2 t 4 } ^ 0 ^ 
5 n { a 5 , 2 l 6 } . If 5 n { 2 l 3 , 2 l 4 } = 0 w e t a k e x • x m x. If S f l { 2 l 5 , 2 l 6 } = 0 w e 
t a k e x + x ~ x . 

L e t k = 8. T h e n 2l 9 £ 5 a n d 2 l i 0 0 5 b y ( c 8 ) a n d ( c 9 ) . W e t a k e t h e 
i d e n t i t y 

(8) (x • y) + x « (x • z) + x. 

L e t k = 9 . B y ( c 8 ) i t c a n n o t b e { 2 t 2 , 2 l 8 } C S. If 2l8 & S, t h e n 2 l i 0 & S 

b y (C9). W e t a k e (8 ) . If 212 £ S w e t a k e (5 ) . 
L e t k = 10. I t c a n n o t b e { 2 l i , 2 l 8 } C 5 b y ( c 9 ) . If 2l8 0 S, t h e n 2t9 0 S 

b y ( c 8 ) . W e t a k e (8 ) . If 2li ft S w e t a k e (4 ) . • 
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LEMMA 3.11. If a variety V belongs to C((Db)i) and 21 G V, then 21 is iso-
morphic to a subdirect product of a family of subdirectly irreducible algebras 
belonging to Ir (F). 

Proo f . By Birkhoff's Subdirect Representation Theorem (see [2]), if 21 € 
V, then it is isomorphic to an algebra 21' being a subdirect product of a 
family {21j}jeJ °f subdirectly irreducible algebras from V. By (2.xii) each 
21j is isomorphic to an algebra 21* from Ir((Db)/). Thus 21* belongs to V 
and belongs to Ir((Z){,)/), hence 21* belongs to Ir(V). Consequently, 21' is 
isomorphic to an algebra 21* being a subdirect product of the family { 2 l * } j e j 
and 21 is isomorphic to 21*. • 

We denote by C((Db)i) the set of all (D;,)/-closed sets. 

LEMMA 3.12. (i) For every variety V € C((Db)i) the set Ir(V) is (Db)i-
closed. 

(ii) For every variety V € C((Db)i) we have V = HSP(Ir(V)). 
(iii) IfSe C((Db)i), then S = Ir(HSP(S)). 
(iv) IfVuV2 € then Vi C iff Ir(Vi) C Ir(F2). 

Proo f , (i) follows from Lemmas 3.1-3.9. 
(ii) Since Ir(V) C V, HSP(Ir(V)) C V. The converse inclusion follows at 

once from Lemma 3.11. 
(iii) If an algebra 21 belongs to S, then 21 <5 HSP(S'). But 21 <E Ir((Z>6)z) 

since S C lr((Db)i), so 21 e Ir(HSP(5)). If 21 ̂  5, then 21 ̂  HSP(5) by 
Lemma 3.10, hence 21 0 Ir(HSP(S)). 

(iv) If Vi C V2, then Ir(Fi) C lv(V2) by the definition of Ir(V). The 
converse implication follows at once from Lemma 3.11. • 

THEOREM 3.13. The set S C Ir((Db)i) is equal to Ir(V) for some variety 

V e C{(Db)i) iffS is (.Db)i-closed. 

Proo f . It follows from Lemma 3.12 (i) and (iii). • 

THEOREM 3.14. The lattice C((Db)i) as a poset is isomorphic to the po-
set (C((Db)i)', C); so the lattice C((Db)i) is isomorphic to the lattice 

(c((Db)iy,c). 

Proo f . For V e C((Db)i) put y>(V) = Ir(V). Then tp is well defined by 
the definition of Ir(V). <p maps C((Db)i) into C{{Db)i) by Lemma 3.12 (i). If 
Ir(Vi) = Ir(F2), then by Lemma 3.12 (ii) Vx = HSP(Ir(F!)) = HSP(Ir(F2)) = 
V2. Thus ip is 1-1. By Lemma 3.12 (iii), <p is onto. If Vy C V2, then Ir(Vi) C 
Ir(V2) by the definition of Ir(F). The converse implication follows at once 
from Lemma 3.11. • 

For V e C{(Dh)i) let us put C{V) = {S CV : S e C{{Db)i)}. 
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COROLLARY 3.15. IfV e C((Db)i), then the lattice C(V) is isomorphic to 
the lattice (C(V);C). 

Let A be a family of sets and B be a set with B ^ A. Denote B Ux A = 
{B U A : A € A } , A Ux B = {A U B : A 6 A } . 

For a set A C Ir{(Db)i) we denote Ind(yl) = {z : % e A}. We have: 

(3.i) To every A C Ir((Db)i) the set Ind(^4) is assigned into 1-1 way and 
for every A, B C Ir((Db)i) we have Ind(^) C Ind(5) iff A C B. 

Put P = {0, {1}, {2} , { 1 ,2 } } . 

COROLLARY 3.16. The lattice C(Di) is isomorphic to the lattice (P; C). 

Proof . This follows at once from (2.iii), Corollary 3.15 and (3.i). • 

COROLLARY 3.17. The lattice C{(Dr)i) is isomorphic to the lattice ( P U 
{ {8 } , {1 ,8 ,10} , {2 ,8 ,9 } , {1 ,2 ,8 ,9 ,10 } } ; C). 

P r o o f . This follows at once from (2.iv), Corollary 3.15 and (3.i). • 

COROLLARY 3.18. The lattice C((Dt)I) is isomorphic to the lattice C(DI) x 2. 

P r o o f . This follows at once from Corollary 3.17. • 

REMARK 3.19. Corollary 3.18 follows also from the main result of [5] since 
Di satisfies (1). 

Let M be the set from Lemma 2.1. Put M = {Ind(S) : S C M, S is 
(Dfe)/-closed}. One can check that M = Mo U M i where 

Mo = {0, {3} , {3 ,4} , {5} , {5, 6}, {7} , {3, 7}, {3,4, 7}, {5, 7}, 
{ 5 , 6 , 7 } , { 3 , 5 , 7 } , { 3 , 5 , 6 , 7 } , { 3 , 4 , 5 , 7 } , { 3 , 4 , 5 , 6 , 7 } } , 

M i - { { 1 } , { 1 , 3 , 4 } , { 1 , 5, 6 } , { 1 , 7 } , { 1 , 3 , 4 , 7 } , { 1 , 5, 6, 7 } , { 1 , 3 , 4 , 5, 6, 7 } } . 

COROLLARY 3.20. The lattice C((Du)i) is isomorphic to the lattice (M U 
({2} Ux M ) ; C ) . 

P r o o f . It follows from (2.xi), Corollary 3.15, (3.i) and (ci)-(c5). • 

COROLLARY 3.21. The lattice C((Du)i) is isomorphic to the lattice 2 x 

P r o o f . We have C{{TU){) is isomorphic to (M; C) by Lemma 2.1, Corollary 
3.15 and (3.i). Now we use Corollary 3.20. • 

COROLLARY 3.22. The lattice C((Db)i) is isomorphic to the lattice 
( M U ( { 2 } U x M ) U ( M 0 U x { 8 } ) U ( M x U x { 8 , 1 0 } ) U ( M 0 U x { 8 , 2 , 9 } ) U 
(MiUx {8 ,2 ,9 ,10}) ; C). 

P r o o f . This follows from (2.xii), Corollary 3.15 and (3.i). • 
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COROLLARY 3.23. The lattice C((Di){) is isomorphic to the lattice 
£{{Du)i) x 2. 

P r o o f . This follows from Corollary 3.22. • 

Note that |£( (D u ) i ) | = 42 and \C((Db)i)\ = 84. 
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