

Ivan Chajda

TERNARY t -DEDUCTIVE SYSTEMS

Abstract. The concept of deductive systems was introduced by A. Diego [6] in Hilbert algebras. For universal algebras, it was generalized in [3], and the ternary version was occurred in [1] where a basic connection between ternary deductive systems and congruence classes was established. An approach using Galois connections for binary deductive systems was developed in [4]. In the present paper, an approach similar to that of [4] is applied for a modified version of ternary deductive systems.

The concept of deductive system was introduced by A. Diego [6] in the so called Hilbert algebras which form an algebraic counterpart of the implication reduct of an arbitrary intuitionistic logic. It is relatively easy to show that every such a deductive system of a Hilbert algebra \mathcal{H} is a congruence kernel (i.e. 1-class) of some $\Theta \in \text{Con } \mathcal{H}$ and vice versa. It was pointed by the author in [3] that this property of deductive systems is true also on every algebra of a weakly regular variety. Of course, one can generalize the concept of deductive system for universal algebras what is the proper reason of the papers [3], [4]. A certain ternary version of this concept is given in [1] where connections with congruence classes are studied in general and in particular with respect to the computational complexity, see also [2]. A bit more different approach was developed in [4] where connections between the binary term function inducing deductive systems and the properties of their lattices are studied by means of Galois connections. Our aim is to set up a definition of deductive system induced by a ternary term function t and study the correspondence between t and congruence classes.

For an algebra $\mathcal{A} = (A, F)$, we denote by $\mathbf{T}_3(\mathcal{A})$ the set of all ternary term functions on \mathcal{A} and by $\mathcal{P}(\mathcal{A})$ the set of all subsets of A , i.e. the so called power set of A . Let \mathcal{V} be a variety of algebras and t be an n -ary term

Key words and phrases: ternary t -deductive system, congruence class, regular algebra, Csákány's term.

1991 *Mathematics Subject Classification:* 08A30, 08B05.

of \mathcal{V} . If $\mathcal{A} \in \mathcal{V}$, the n -ary term function t^A induced on \mathcal{A} by the term t will be denoted by the same symbol t for the sake of brevity since there is no danger of misunderstanding. We are ready to introduce the basic concepts:

DEFINITION 1. Let $\mathcal{A} = (A, F)$ be an algebra and $t \in \mathbf{T}_3(\mathcal{A})$. By a *t-translation* is meant a unary function $\tau : A \rightarrow A$ such that either it is a translation, i.e.

$$\tau(x) = f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n)$$

for some n -ary $f \in F$, $i \in \{1, \dots, n\}$ and $a_1, \dots, a_n \in A$ or

$$\tau(x) = t(a, x, b) \text{ or } \tau(x) = t(x, a, b)$$

for some $a, b \in A$.

DEFINITION 2. Let $\mathcal{A} = (A, F)$ be an algebra, $z \in A$ and $t \in \mathbf{T}_3(\mathcal{A})$. A subset $D \subseteq A$ is called a *t-deductive system of \mathcal{A} relative to z* whenever

- (i) $z \in D$
- (ii) $a \in D$ and $t(a, b, z) \in D$, $t(b, a, z) \in D$ imply $b \in D$
- (iii) $a \in D$ implies $t(z, a, z) \in D$ and $t(a, z, z) \in D$
- (iv) $t(a, b, z) \in D$ and $t(b, a, z) \in D$ imply $t(\tau(a), \tau(b), z) \in D$ for any *t-translation* τ .

DEFINITION 3. Let $\mathcal{A} = (A, F)$ be an algebra, $z \in A$, $t \in \mathbf{T}_3(\mathcal{A})$ and $D \subseteq A$. A binary relation Θ_D on A defined by the setting

$$\langle a, b \rangle \in \Theta_D \text{ if and only if } t(a, b, z) \in D \text{ and } t(b, a, z) \in D \quad (*)$$

will be called *t-induced by D and z* .

At first, we are interested in the relationship between *t-deductive systems* and *congruence classes*:

THEOREM 1. Let $\mathcal{A} = (A, F)$ be an algebra, $z \in A$, $D \subseteq A$ and $t \in \mathbf{T}_3(\mathcal{A})$. Consider the relation Θ_D that is *t-induced by D and z* . If Θ_D is a congruence on \mathcal{A} and $D = [z]_{\Theta_D}$ then D is a *t-deductive system of \mathcal{A} relative to z* .

P r o o f. Suppose $\Theta_D \in \text{Con } \mathcal{A}$ and $D = [z]_{\Theta_D}$. Then D satisfies (i) of Definition 2 trivially. Prove (ii): let $a \in D$ and $t(a, b, z) \in D$, $t(b, a, z) \in D$. Since $D = [z]_{\Theta_D}$, we have $\langle a, z \rangle \in \Theta_D$ and, by (*), also $\langle b, z \rangle \in \Theta_D$. Due to transitivity of Θ_D , we conclude $\langle b, z \rangle \in \Theta_D$ proving $b \in [z]_{\Theta_D} = D$.

Prove (iii): let $a \in D$. Then $\langle a, z \rangle \in \Theta_D$ and (iii) follows directly by (*). Prove (iv): let $t(a, b, z) \in D$ and $t(b, a, z) \in D$. By (*), we have $\langle a, b \rangle \in \Theta_D$ and, due to reflexivity and the substitution property of Θ_D , also $\langle \tau(a), \tau(b) \rangle \in \Theta_D$ for every *t-translation* τ if \mathcal{A} . Applying (*) once more, we get $t(\tau(a), \tau(b), z) \in D$. ■

The converse of Theorem 1 is also valid under a certain natural assumption on the term function t :

THEOREM 2. *Let $\mathcal{A} = (A, F)$ be an algebra, $z \in A$, $z \in D \subseteq A$ and $t \in \mathbf{T}_3(\mathcal{A})$ satisfy the identity $t(x, x, z) = z$. If D is a t -deductive system of \mathcal{A} relative to z then the relation Θ_D t -induced by D and z is a congruence on \mathcal{A} and $D = [z]_{\Theta_D}$.*

P r o o f. By using of the identity $t(x, x, z) = z$ we get by $(*)$ that the relation Θ_D is reflexive. Symmetry of Θ_D is evident. Prove transitivity: let $\langle a, b \rangle \in \Theta_D$ and $\langle b, c \rangle \in \Theta_D$. By $(*)$ we have

$$t(a, b, z) \in D, t(b, a, z) \in D \text{ and } t(b, c, z) \in D, t(c, b, z) \in D.$$

Consider the t -translation $\tau(x) = t(c, x, z)$. Due to (iv) of Definition 2, we have also

$$t(\tau(b), \tau(a), z) \in D \text{ and } t(\tau(a), \tau(b), z) \in D,$$

i.e.

$$t(t(c, b, z), t(c, a, z), z) \in D \text{ and } t(t(c, a, z), t(c, b, z), z) \in D.$$

Since $t(b, c, z) \in D$ and $t(c, b, z) \in D$, the foregoing relationship infer by (ii) of Definition 2 also

$$t(c, a, z) \in D.$$

Applying the t -translation $\tau'(x) = t(x, c, z)$, we obtain analogously also

$$t(a, c, z) \in D.$$

Hence, by means of $(*)$, we have $\langle a, c \rangle \in \Theta_D$.

Applying (iv) of Definition 2 for a translation $\tau(x)$ (induced by basic operations of F), we derive easily the substitution property of Θ_D with respect to each $f \in F$. Thus $\Theta_D \in \text{Con } \mathcal{A}$.

It remains to show that $D = [z]_{\Theta_D}$. If $a \in D$ then, by (iii) of Definition 2, also $t(z, a, z) \in D$ and $t(a, z, z) \in D$ thus $\langle a, z \rangle \in \Theta_D$, i.e. $a \in [z]_{\Theta_D}$. Conversely, if $a \in [z]_{\Theta_D}$ then $\langle a, z \rangle \in \Theta_D$ and, by $(*)$, $t(a, z, z) \in D$ and $t(z, a, z) \in D$. By (i), $z \in D$ and, due to (ii), also $a \in D$. ■

REMARK 1. Under the assumption of Theorem 2, Θ_D is the greatest congruence on \mathcal{A} having the class D . Indeed, if $\Phi \in \text{Con } \mathcal{A}$ and $[z]_{\Phi} = D$ then for $\langle a, b \rangle \in \Phi$ we have

$$\langle t(a, b, z), z \rangle = \langle t(a, b, z), t(a, a, z) \rangle \in \Phi \text{ and}$$

$$\langle t(b, a, z), z \rangle = \langle t(b, a, z), t(a, a, z) \rangle \in \Phi$$

whence $t(a, b, z) \in D$ and $t(b, a, z) \in D$ giving $\langle a, b \rangle \in \Theta_D$, i.e. $\Phi \subseteq \Theta_D$.

Recall that an algebra $\mathcal{A} = (A, F)$ is *regular* if every congruence on \mathcal{A} is determined by every of its class, i.e. if $\Theta, \Phi \in \text{Con } \mathcal{A}$ and $[a]_{\Theta} = [a]_{\Phi}$

for some $a \in A$ then $\Theta = \Phi$. A variety \mathcal{V} is *regular* if each $\mathcal{A} \in \mathcal{V}$ has this property. Denote by ω_A the identity relation on a set A ; of course, ω_A is the least congruence on \mathcal{A} . Hence, if \mathcal{A} is regular and $\Theta \in \text{Con } \mathcal{A}$ has a class which is a singleton then $\Theta = \omega_A$.

The following characterization of regular varieties was involved by B. Csákány in [5]:

PROPOSITION. *A variety \mathcal{V} is regular if and only if there exist $n \geq 1$ and ternary terms t_1, \dots, t_n such that*

$$t_1(x, y, z) = \dots = t_n(x, y, z) = z \text{ if and only if } x = y.$$

For groups, rings and Boolean algebras, one can take $n = 1$ and

$$t_1(x, y, z) = x \cdot y^{-1} \cdot z \text{ or}$$

$$t_1(x, y, z) = x - y + z \text{ or}$$

$$t_1(x, y, z) = x \oplus y \oplus z,$$

respectively (where for Boolean algebras the symbol \oplus denotes the so called *symmetrical difference*). All of those terms have one property in common which is a particular case of a bit more general one:

$$(C) \quad t(x, y, z) = t(y, x, z) = z \text{ if and only if } x = y.$$

To remember the original result included in the Proposition, a ternary term $t(x, y, z)$ satisfying (C) will be called a *Csákány's term*. Hence, every variety of groups, rings, quasigroups as well as the variety of Boolean algebras has a Csákány's term. Conversely, if a variety \mathcal{V} has a Csákány's term then, by the Proposition, \mathcal{V} is regular.

The following lemma is easy:

LEMMA. *Let $t(x, y, z)$ be a Csákány's term of a variety \mathcal{V} , let $\mathcal{A} \in \mathcal{V}$ and $\Theta \in \text{Con } \mathcal{A}$. Then*

$$\langle a, b \rangle \in \Theta \text{ if and only if } t(a, b, z) \in [z]_\Theta \text{ and } t(b, a, z) \in [z]_\Theta.$$

P r o o f. Let $\mathcal{A} \in \mathcal{V}$, $\Theta \in \text{Con } \mathcal{A}$ and suppose $\langle a, b \rangle \in \Theta$. Then

$$\langle t(a, b, z), z \rangle = \langle t(a, b, z), t(a, a, z) \rangle \in \Theta \text{ and}$$

$$\langle t(b, a, z), z \rangle = \langle t(b, a, z), t(a, a, z) \rangle \in \Theta$$

proving $t(a, b, z) \in [z]_\Theta$ and $t(b, a, z) \in [z]_\Theta$.

Conversely, let $t(a, b, z) \in [z]_\Theta$ and $t(b, a, z) \in [z]_\Theta$ for some $\Theta \in \text{Con } \mathcal{A}$. In the quotient algebra $\mathcal{A}/\Theta \in \mathcal{V}$ we have

$$t([b]_\Theta, [a]_\Theta, [z]_\Theta) = [t(b, a, z)]_\Theta = [z]_\Theta \text{ and}$$

$$t([a]_\Theta, [b]_\Theta, [z]_\Theta) = [t(a, b, z)]_\Theta = [z]_\Theta.$$

Since t is a Csákány's term of \mathcal{V} , we conclude $[a]_\Theta = [b]_\Theta$ whence $\langle a, b \rangle \in \Theta$. ■

For the Csákány's term, we can get together our previous results to state the following

THEOREM 3. *Let t be a Csákány's term of a variety \mathcal{V} . Let $\mathcal{A} = (A, F) \in \mathcal{V}$ and $D \subseteq A$. Then D is a congruence class containing z , i.e. $D = [z]_\Theta$ for some $\Theta \in \text{Con } \mathcal{A}$, if and only if D is a t -deductive system of \mathcal{A} relative to z .*

P r o o f. Let t be a Csákány's term of \mathcal{V} and $\mathcal{A} = (A, F) \in \mathcal{V}$. Suppose $D = [z]_\Theta$ for some $\Theta \in \text{Con } \mathcal{A}$. Clearly $z \in D$. Prove (ii) of Definition 2: if $a \in D$ and $t(a, b, z) \in D$, $t(b, a, z) \in D$ then $\langle a, z \rangle \in \Theta$ and $\langle b, a \rangle \in \Theta$ thus also $\langle b, z \rangle \in \Theta$, i.e. $b \in [z]_\Theta = D$.

Prove (iii): let $a \in D$. Then $\langle a, z \rangle \in \Theta$ and, due to the Lemma, we conclude (iii) immediately.

For (iv), let $t(a, b, z) \in D$ and $t(b, a, z) \in D$, let τ be a t -translation of \mathcal{A} . Then $\langle a, b \rangle \in \Theta$ and hence also $\langle \tau(a), \tau(b) \rangle \in \Theta$. Applying the Lemma, we are done. Thus D is a t -deductive system of \mathcal{A} relative to z .

The converse follows directly by Theorem 2. ■

Let $\mathcal{A} = (A, F)$ be an algebra and $z \in A$. Define a binary relation $R_z \subseteq \mathbf{T}_3(\mathcal{A}) \times \mathcal{P}(A)$ as follows:

$\langle t, D \rangle \in R_z$ iff D is a t -deductive system of \mathcal{A} relative to z .

This relation defines a pair of mappings (ρ, σ) which clearly forms a Galois connection:

for $\mathcal{S} \subseteq \mathbf{T}_3(\mathcal{A})$, $\rho(\mathcal{S}) = \{D \subseteq A; D$ is a t -deductive system of \mathcal{A} relative to z for each $t \in \mathcal{S}\}$,

for $\mathcal{L} \subseteq \mathcal{P}(A)$, $\sigma(\mathcal{L}) = \{t \in \mathbf{T}_3(\mathcal{A});$ each $D \in \mathcal{L}$ is a t -deductive system of \mathcal{A} relative to $z\}$.

For the sake of brevity, we will write $\rho(t)$ instead of $\rho(\{t\})$ whenever $\mathcal{S} = \{t\}$ is a singleton. The proof of the following assertion is almost evident and hence omitted:

THEOREM 4. *Let $\mathcal{A} = (A, F)$ be an algebra, $z \in A$, $\mathcal{L} \subseteq \mathcal{P}(A)$ and $t \in \mathbf{T}_3(\mathcal{A})$. Then*

(a) $\rho(t)$ is the complete lattice of all t -deductive systems of \mathcal{A} relative to z (with respect to set inclusion); denote it by $\text{Ded}_{\mathcal{A}}(t, z)$.

(b) $\rho(\sigma(\mathcal{L})) = \bigcap \{\text{Ded}_{\mathcal{A}}(t, z); t \in \sigma(\mathcal{L})\}$.

Theorems 3 and 4 yield the following

COROLLARY. *Let t be a Csákány's term of a variety \mathcal{V} and $\mathcal{A} = (A, F) \in \mathcal{V}$, $z \in A$. Then $\rho(t) = \text{Ded}_{\mathcal{A}}(t, z) \simeq \text{Con } \mathcal{A}$.*

Proof. If t is a Csákány's term of \mathcal{V} , \mathcal{V} is regular and hence the mapping $[z]_\Theta \rightarrow \Theta$ is an isomorphism of the lattice of all congruence classes containing z onto $Con \mathcal{A}$. By Theorem 3, the lattice of congruence classes containing z coincides with $Ded_{\mathcal{A}}(t, z)$. Together with Theorem 4, we obtain the assertion. ■

Of course, the operation meet in the lattice $Ded_{\mathcal{A}}(t, z)$ coincides with set intersection and A is the greatest element of it. On the other hand, one can ask about the least element of $Ded_{\mathcal{A}}(t, z)$. In general, it need not be a singleton $\{z\}$. We can prove the following:

THEOREM 5. *Let t be a ternary term of a variety \mathcal{V} satisfying $t(x, x, z) = z$. The following conditions are equivalent:*

- (a) *for each $\mathcal{A} = (A, F) \in \mathcal{V}$ and each $z \in A$, $\{z\}$ is a t -deductive system of \mathcal{A} relative to z ;*
- (b) *for each $\mathcal{A} = (A, F) \in \mathcal{V}$, each $z \in A$ and $\Theta \in Con \mathcal{A}$, $[z]_\Theta$ is a t -deductive system of \mathcal{A} relative to z ;*
- (c) *for each $\mathcal{A} = (A, F) \in \mathcal{V}$ and each $z \in A$, the relation $\Theta_{\{z\}}$ t -induced by $\{z\}$ and z is a congruence on \mathcal{A} having the class $\{z\}$.*

Proof. (b) \Rightarrow (a) is trivial and (a) \Rightarrow (c) by Theorem 2. It remains to prove (c) \Rightarrow (b). Suppose $\mathcal{A} = (A, F) \in \mathcal{V}$ and $z \in A$. Since $\{z\}$ is a class of $\Theta_{\{z\}} \in Con \mathcal{A}$, we have

$$(**) \quad t(z, c, z) = z = t(c, z, z) \text{ iff } \langle c, z \rangle \in \Theta_{\{z\}}$$

immediately by (*) of Definition 3.

Suppose now $\Theta \in Con \mathcal{A}$ and $D = [z]_\Theta$. Then $z \in D$ and we need to verify (ii), (iii) and (iv) of Definition 2. For (ii), let $a \in D$ and $t(a, b, z) \in D$, $t(b, a, z) \in D$. Then $[a]_\Theta = [z]_\Theta$ and hence

$$t([z]_\Theta, [b]_\Theta, [z]_\Theta) = t([a]_\Theta, [b]_\Theta, [z]_\Theta) = [t(a, b, z)]_\Theta = D = [z]_\Theta,$$

analogously

$$t([b]_\Theta, [z]_\Theta, [z]_\Theta) = [z]_\Theta.$$

Applying (**) on the quotient algebra $\mathcal{A}/\Theta \in \mathcal{V}$, we get $\langle [b]_\Theta, [z]_\Theta \rangle \in \Theta_{\{[z]_\Theta\}}$ whence $[b]_\Theta = [z]_\Theta$, i.e. $b \in [z]_\Theta = D$.

Prove (iii): if $a \in D = [z]_\Theta$ then $[a]_\Theta = [z]_\Theta$ and, by means of the identity $t(x, x, z) = z$, we have

$$\begin{aligned} t([a]_\Theta, [z]_\Theta, [z]_\Theta) &= t([z]_\Theta, [z]_\Theta, [z]_\Theta) = [z]_\Theta \\ t([z]_\Theta, [a]_\Theta, [z]_\Theta) &= t([z]_\Theta, [z]_\Theta, [z]_\Theta) = [z]_\Theta \end{aligned}$$

thus $t(a, z, z) \in D$ and $t(z, a, z) \in D$.

For (iv), let $t(a, b, z) \in D$ and $t(b, a, z) \in D$. By the assumption, $\Theta_{\{[z]_\Theta\}} \in \text{Con } \mathcal{A}/\Theta$ and hence

$$\begin{aligned} t([a]_\Theta, [b]_\Theta, [z]_\Theta) &= [t(a, b, z)]_\Theta = D = [z]_\Theta \text{ and} \\ t([b]_\Theta, [a]_\Theta, [z]_\Theta) &= [t(b, a, z)]_\Theta = D = [z]_\Theta \end{aligned}$$

thus $\langle [a]_\Theta, [b]_\Theta \rangle \in \Theta_{\{[z]_\Theta\}}$. Hence also

$$\langle \tau([a]_\Theta), \tau([b]_\Theta) \rangle \in \Theta_{\{[z]_\Theta\}}$$

for every t -translation τ on \mathcal{A}/Θ . One can derive easily

$$[t(\tau(a), \tau(b), z)]_\Theta = t([\tau(a)]_\Theta, [\tau(b)]_\Theta, [z]_\Theta) = [z]_\Theta$$

whence $t(\tau(a), \tau(b), z) \in [z]_\Theta = D$. ■

For regular varieties, we can state stronger result concerning the term t :

THEOREM 6. *Let \mathcal{V} be a regular variety and t be a ternary term of \mathcal{V} satisfying $t(x, x, z) = z$. If for each $\mathcal{A} = (A, F) \in \mathcal{V}$ and every $z \in A$ the singleton $\{z\}$ is a t -deductive system of \mathcal{A} relative to z then t is a Csákány's term of \mathcal{V} .*

P r o o f. Suppose $t(x, x, z) = z$ holds in \mathcal{V} , $\mathcal{A} = (A, F) \in \mathcal{V}$ and $z \in A$. Let $\{z\}$ be a t -deductive system of \mathcal{A} relative to z . Let $a, b \in A$ and $t(a, b, z) = t(b, a, z) = z$. Then $t(a, b, z) \in \{z\}$ and $t(b, a, z) \in \{z\}$ which yield $\langle a, b \rangle \in \Theta_{\{z\}}$. By Theorem 2, $\Theta_{\{z\}} \in \text{Con } \mathcal{A}$ and $[z]_{\Theta_{\{z\}}} = \{z\}$. Since \mathcal{V} (and hence also \mathcal{A}) is regular, we have $\Theta_{\{z\}} = \omega_A$. Thus $a = b$. Altogether,

$$t(x, y, z) = t(y, x, z) = z \text{ if and only if } x = y$$

holds in \mathcal{V} , i.e. t is a Csákány's term of \mathcal{V} . ■

THEOREM 7. *Let t be a Csákány's term of a variety \mathcal{V} . Let t_0 be a ternary term of \mathcal{V} such that $t_0(x, x, z) = z$ holds in \mathcal{V} . Then $t_0 \in \sigma(\rho(t))$ for each $\mathcal{A} \in \mathcal{V}$ if and only if t_0 is also a Csákány's term of \mathcal{V} .*

P r o o f. Let t be a Csákány's term of \mathcal{V} . Then \mathcal{V} is regular. Consider $\mathcal{A} = (A, F) \in \mathcal{V}$ and $z \in A$. By Theorem 3, $\{z\} \in \text{Ded}_\mathcal{A}(t, z)$ since it is a class of ω_A . Thus $\{z\} \in \rho(t)$. Since $t_0 \in \sigma(\rho(t))$, $\{z\}$ is also a t_0 -deductive system of \mathcal{A} relative to z .

Suppose $t_0(a, b, z) = z = t_0(b, a, z)$ for $a, b \in A$. Then $t_0(a, b, z) \in \{z\}$ and $t_0(a, b, z) \in \{z\}$ and, due to Theorem 2, $\langle a, b \rangle \in \Theta_{\{z\}}$. Since \mathcal{V} is regular, we have $\Theta_{\{z\}} = \omega_A$ whence $a = b$. Thus t_0 is a Csákány's term of \mathcal{V} . ■

References

[1] R. Bělohlávek and I. Chajda, *Relative deductive systems and congruence classes*, Multiple Val. Logic 5 (2000), 259–266.

- [2] R. Bělohlávek and I. Chajda, *A polynomial characterization of congruence classes*, Algebra Universalis 37 (1997), 235–242.
- [3] I. Chajda, *Congruence kernels in weakly regular varieties*, Southeast Asian Bull. Math. 24 (2001), 15–18.
- [4] I. Chajda and R. Halaš, *Deductive systems and Galois connections*, Algebra and Discrete Math., to appear.
- [5] B. Csákány, *Characterization of regular varieties*, Acta Sci.Math (Szeged) 31 (1971), 187–189.
- [6] A. Diego, *Sur les algébres de Hilbert*, Collection de Logique Math., Ser. A (Ed. Hermann, Paris), 21 (1967), 177–189.

DEPARTMENT OF ALGEBRA AND GEOMETRY
PALACKÝ UNIVERSITY OLOMOUC
Tomkova 40
779 00 OLOMOUC
CZECH REPUBLIC
E-mail: chajda@risc.upol.cz

Received January 28, 2002.