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TERNARY ¢-DEDUCTIVE SYSTEMS

Abstract. The concept of deductive systems was introduced by A. Diego [6] in Hilbert
algebras. For universal algebras, it was generalized in [3], and the ternary version was
occured in [1] where a basic connection between ternary deductive systems and congruence
classes was established. An approach using Galois connections for binary deductive systems
was developed in [4]. In the present paper, an approach similar to that of [4] is applied
for a modified version of ternary deductive systems.

The concept of deductive system was introduced by A. Diego [6] in the
so called Hilbert algebras which form an algebraic counterpart of the impli-
cation reduct of an arbitrary intuitionistic logic. It is relatively easy to show
that every such a deductive system of a Hilbert algebra H is a congruence
kernel (i.e. 1-class) of some © € ConH and vice versa. It was pointed by
the author in [3] that this property of deductive systems is true also on
every algebra of a weakly reguar variety. Of course, one can generalize the
concept of deductive system for universal algebras what is the proper reason
of the papers [3], [4]. A certain ternary version of this concept is given in
[1] where connections with congruence classes are studied in general and in
particular with respect to the computational complexity, see also [2]. A bit
more different approach was developed in [4] where connections between the
binary term function inducing deductive systems and the properties of their
lattices are studied by means of Galois connections. Our aim is to set up
a definition of deductive system induced by a ternary term function ¢ and
study the correspondence between ¢t and congruence classes.

For an algebra A = (A, F'), we denote by T3(.A) the set of all ternary
term functions on A and by P(A) the set of all subsets of A, i.e. the so
called power set of A. Let V be a variety of algebras and ¢ be an n-ary term
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of V. If A € V, the n-ary term function ¢ induced on A by the term t will
be denoted by the same symbol ¢ for the sake of brevity since there is no
danger of misunderstanding. We are ready to introduce the basic concepts:

DEFINITION 1. Let A = (A, F) be an algebra and t € T3(A). By a t-
translation is meant a unary function 7 : A — A such that either it is a
translation, i.e. .

T(z) = flay,...,8i—1,%,Qix1,--.,Qn) _
for some n-ary f € F, i€ {1,...,n} and a;,...,a, € Aor

7(z) = t(a,z,b) or 7(z)=t(z,a,bd)
for some a,b € A.

DEFINITION 2. Let A = (A, F) be an algebra, z € A and t € T3(A). A
subset D C A is called a t-deductive system of A relative to z whenever
(i)zeD
(ii) a € D and t(a,b,z) € D, t(b,a,z) € D imply b € D
(iii) a € D implies t(z,a, z) € D and t(a, 2,2z) € D

(iv) t(a,b,2) € D and t(b,a,z) € D imply t(7(a),7(b),z) € D for any
t-translation 7.

DEFINITION 3. Let A = (A, F') be an algebra, z € A, t € T3 (A) and D C A.
A binary relation ©p on A defined by the setting

{a,b) € Op if and only if ¢(a,b,2) € D and t(b,a,z) € D (%)
will be caled t-induced by D and z.

At first, we are interested in the relationship between ¢-deductive systems
and congruence classes:

THEOREM 1. Let A = (A, F) be an algebra, z € A,D C A and t €T3 (A).
Consider the relation ©p that is t-induced by D and z. If ©p is a congruence
on A and D = [z]e,, then D is a t-deductive system of A relative to z.

Proof. Suppose ©p € Con A and D = [z2]e,. Then D satisfies (i) of
Definition 2 trivially. Prove (ii): let a € D and t(a,b, 2z) € D, t(b,a,z) € D.
Since D = [z]o,, we have (a,z) € ©p and, by (%), also (b,a) € ©p. Due to
transitivity of © p, we conclude (b, z) € ©p proving b € [z]o, = D.

Prove (iii): let a € D. Then (a,z) € ©p and (iii) follows directly
by (). Prove (iv): let t(a,b,2) € D and t(b,a,z) € D. By (x), we have
(a,b) € ©p and, due to reflexivity and the substitution property of ©p,
also (7(a),7(b)) € ©p for every t-translation 7 if A. Applying (*) once
more, we get t(7(a), 7(b),2) € D. m
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The converse of Theorem 1 is also valid under a certain natural assump-
tion on the term function t:

THEOREM 2. Let A = (A, F) be an algebra, z € A,z € D C A and t €
T3 (A) satisfy the identity t(z,z,2) = z. If D is a t-deductive system of A
relative to z then the relation ©p t-induced by D and z is a congruence on
A and D = [2]e,.

Proof. By using of the identity t(z, z, z) = z we get by (%) that the relation
Op is reflexive. Symmetry of ©p is evident. Prove transitivity: let {(a,b) €
©p and (b,c) € Op. By (x) we have
t(a,b,2) € D, t(b,a,z) € D and t(b,c, z) € D, t(c,b,z) € D.
Consider the t-translation 7(z) = t(c, z, z). Due to (iv) of Definition 2, we
have also
t(r(b),7(a),z) € D and t(r(a),7(b),2) € D,
ie.
t(t(c, b, 2),t(c, a,2),z) € D and t(t(c,a, 2),t(c, b, 2),2) € D.
Since t(b, ¢, z) € D and t(c, b, 2) € D, the foregoing relationship infer by (ii)
of Definition 2 also
t(c,a,2) € D.
Applying the t-translation 7/(z) = t(z, ¢, 2), we obtain analogously also
t(a,c,z) € D.

Hence, by means of (%), we have (a,c) € ©p.

Applying (iv) of Definition 2 for a translation 7(x) (induced by basic
operations of F'), we derive easily the substitution property of ©p with
respect to each f € F. Thus ©p € Con A.

It remains to show that D = [z]g,. If a € D then, by (iii) of Definition
2, also t(z,a,2) € D and t(a,z,2) € D thus (a,2) € Op, i.e. a € [z]o,.
Conversely, if a € [z]e then (a,z) € ©Op and, by (x), t(a,z,2) € D and
t(z,a,2z) € D. By (i), z € D and, due to (ii), alsoa € D. u

REMARK 1. Under the assumption of Theorem 2, ©p is the greatest con-
gruence on A having the class D. Indeed, if & € Con A4 and [z]¢ = D then
for {a,b) € & we have

(t(a,b,2), ) = (t(a,b, ), H(a, 0, 2)) € & and
(t(b,a,z),z) = (t(b,a,z),tla,a,z)) € d
whence t(a, b, z) € D and t(b, a, z) € D giving (a,b) € ©p, ie. » C Op.

Recall that an algebra A = (A, F') is regular if every congruence on A
is determined by every of its class, i.e. if ©,® € Con A and [a]le = [a]s
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for some a € A then © = &. A variety V is regular if each A € V has this
property. Denote by wy4 the identity relation on a set A; of course, w4 is the
least congruence on .A. Hence, if A is regular and © € Con A has a class
which is a singleton then © = wy4.

The following characterization of regular varieties was involved by B.
Csékéany in [5]:

PROPOSITION. A variety V is reqular if and only if there exist n > 1 and
ternary terms ty,...,t, such that
ti(z,y,2) = ... =ty(z,y,2) =z ifand only if z = y.

For groups, rings and Boolean algebras , one can take n = 1 and

tl(x7y’ Z) =T y_l "2 or

ti(z,y,z) =z—~y+2z or
respectively (where for Boolean algebras the symbol @ denotes the so called
symmetrical difference). All of those terms have one property in common
which is a particular case of a bit more general one:
(C) t(z,y,z) =t(y,z,z) = zif and only if z = y.

To remember the original result included in the Proposition, a ternary term
t(z,y, z) satisfying (C) will be called a Csdkany’s term. Hence, every variety
of groups, rings, quasigroups as well as the variety of Boolean algebras has
a Csdkany’s term. Conversely, if a variety V has a Csdkany’s term then, by
the Proposition, V is regular.

The following lemma is easy:

LEMMA. Let t(z,y, 2) be a Csikdny’s term of a variety V, let A € V and
© € Con A. Then

(a,b) € © if and only if t(a,b, 2) € [z]o and t(b, a, z) € [z]o.
Proof. Let A€V, © € Con A and suppose (a,b) € ©. Then
(t(a,b, 2), z) = (t(a,b, z),t(a,a,z)) € O and
(t(b,a,z2),z) = (t(b,a,z),t(a,a,z)) €O
proving t(a, b, z) € [z]e and t(b,a, z) € [z]e.
Conversely, let t(a, b, z) € [2]e and t(b, a, z) € [z]e for some © € Con A.
In the quotient algebra 4/© € V we have
t([ble, [ale, [2]lo) = [t(b, a, 2)]e = [#]o and
t(lale, [ble, [2]o) = [t(a, b, 2)lo = [Z]e-
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Since t is a Csdkdny’s term of V, we conclude [ale = [b]e whence
(a,b) €©. m

For the Csédkany’s term, we can get together our previous results to state
the following

THEOREM 3. Let t be a Csdkdny’s term of a variety V. Let A= (A, F) eV
and D C A. Then D is a congruence class containing z, i.e. D = [z]g for
some © € Con A, if and only if D is a t-deductive system of A relative to z.

Proof. Let t be a Csdkany’s term of V and A = (4, F) € V. Suppose
D = [z]e for some © € Con A. Clearly z € D. Prove (ii) of Definition 2: if
a € D and t(a,b,z) € D, t(b,a,z) € D then (a,z) € © and (b,a) € © thus
also (b,z) € ©,i.e. b€ [z]o =D.

Prove (iii): let @ € D. Then (a,z) € © and, due to the Lemma, we
conclude (iii) immediately.

For (iv), let t(a,b,z) € D and t(b,a,z) € D, let 7 be a t-translation of
A. Then (a,b) € © and hence also (7(a), 7(b)) € © . Applying the Lemma,
we are done. Thus D is a t-deductive system of A relative to z.

The converse follows directly by Theorem 2. m

Let A = (A, F) be an algebra and z € A. Define a binary relation
R, C T3 (A) x P(A) as follows:

(t,D) € R, iff D is a t-deductive system of 4 relative to z.

This relation defines a pair of mappings (p, o) which clearly forms a Galois
connection:

for S C T3 (A), p(S) = {D C A4; D is a t-deductive system of A relative
to z for each t € S},

for L C P(A), o(L) = {t € T3(A); each D € L is a t-deductive system
of A relative to z}.

For the sake of brevity, we will write p(t) instead of p({t}) whenever
S = {t} is a singleton. The proof of the following assertion is almost evident
and hence omitted:

THEOREM 4. Let A = (A, F) be an algebra, z € A, L C P(A) and t €
T3 (A). Then

(a) p(t) is the complete lattice of all t-deductive systems of A relative to
z (with respect to set inclusion); denote it by Ded 4(t, z).

(b) p(o(£)) = {Deda(t, 2);t € o(L)}

Theorems 3 and 4 yield the following

COROLLARY. Let t be a Csdkdny’s term of a variety V and A= (A, F) € V,
z € A. Then p(t) = Ded 4(t, z) ~ Con A.
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Proof. If t is a Csdkdny’s term of V, V is regular and hence the map-
ping [2]e — © is an isomorphism of the lattice of all congruence classes
containing z onto Con.A. By Theorem 3, the lattice of congruence classes
containing z coincides with Ded 4(t, z). Together with Theorem 4, we obtain
the assertion. m

Of course, the operation meet in the lattice Ded 4(t,z) coincides with
set intersection and A is the greatest element of it. On the other hand, one
can ask about the least element of Ded 4(t, z). In general, it need not be a
singleton {z}. We can prove the following:

THEOREM 5. Let t be a ternary term of a variety V satisfying t(z,z,z) = z.
The following conditions are equivalent:

(a) for each A= (A, F) € V and each z € A, {z} is a t-deductive system
of A relative to z;

(b) for each A = (A,F) € V, each z € A and © € Con A, [z]o is a
t-deductive system of A relative to z;

(c) for each A= (A, F) €V and each z € A, the relation O,y t-induced
by {z} and z is a congruence on A having the class {z}.

Proof. (b)=-(a) is trivial and (a)=>(c) by Theorem 2. It remains to prove
(c)=(b). Suppose A = (A,F) € V and z € A. Since {z} is a class of
O} € Con A, we have

(x%) t(z,c,2) = 2 = t(c, 2,2) iff {c,2) € Oy,

immediately by (%) of Definition 3.

Suppose now © € Con A and D = [z]e. Then z € D and we need to
verify (ii), (iii) and (iv) of Definition 2. For (ii), let a € D and t(a,b, 2) €
D, t(b,a,z) € D. Then [a]e = [z]e and hence

t([zle, [blo, [z]e) = t([a]e, [ble, [2]e) = [t(a, b, 2)]e = D = [2]e,
analogously
t([ble, [z]e, [2]o) = [z]e-
Applying (+*) on the quotient algebra . A/© € V, we get ([ble, [z]o) € O((]0}
whence [ble = [#]e, i.e. b€ [z]le = D.
Prove (iii): if a € D = [z]e then [a]e = [z]o and, by means of the identity

t(z,z,z) = z, we have

t(lale, [z]e, [2lo) = t([2]e, [2]e, [z]0) = [z]e

t([zle, lale, [2le) = t([z]e, [2le, [2]0) = Iz]o
thus t(a, z,z) € D and t(z,qa,z2) € D.



Ternary t-deductive systems 35

For (iv), let t(a,b,2) € D and t(b, a, z) € D. By the assumption, O(,)¢}
€ Con A/© and hence
t([a]e, [ble, [2]e) = [t(a,b,2)]e = D = [z]e and
t([ble, [a]e, [2]e) = [t(a,b,2)]e = D = [2]e
thus ([a]e, [b]e) € ©(z)c}- Hence also

(r([a]e), 7([ble)) € O((z16)

for every t-translation 7 on .A/©. One can derive easily

[t(7(a), 7(b), 2)]e = t([T(a)]e, [T(b)le, [2]6) = [2le
whence t(7(a), 7(b),z) € [zle=D. =
For regular varieties, we can state stronger result concerning the term t:

THEOREM 6. Let V be a regular variety and t be a ternary term of V satisfy-
ing t(z,z,2) = z. If for each A= (A, F) € V and every z € A the singleton
{z} is a t-deductive system of A relative to z then t is a Csdkdny’s term

of V.

Proof. Suppose t(z,z,z) = z holds in V, A = (A, F) € V and z € A. Let
{z} be a t-deductive system of A relative to z. Let a,b € A and t(a,b,z) =
t(b,a,z) = z. Then t(a,b,2z) € {2z} and t(b,a,z) € {z} which yield (a,b) €
©/.}. By Theorem 2, O(,) € Con A and [z]e,,, = {2}. Since V (and hence
also A) is regular, we have Oy} = w4. Thus a = b. Altogether,

t(z,y,2) = t(y,z,2) =z ifand only if z = y
holds in V, i.e. t is a Csdkdny’s term of V. m

THEOREM 7. Let t be a Csdkdny’s term of a variety V. Let to be a ternary
term of V such that to(z,xz,2) = z holds in V. Then tg € o(p(t)) for each
A €V if and only if tg is also a Csdkdny’s term of V.

Proof. Let t be a Csékdny’s term of V. Then V is regular. Consider A =
(A,F) eV and z € A. By Theorem 3, {z} € Ded 4(t, z) since it is a class of
wa. Thus {z} € p(t). Since ty € o(p(t)), {2} is also a to-deductive system of
A relative to z.

Suppose to(a,b,z) = z = to(b,a,2) for a,b € A. Then ty(a,b,2) € {2}
and to(a, b, 2) € {z} and, due to Theorem 2, (a,b) € Oy,). Since V is regular,
we have ©(,} = w4 whence a = b. Thus tg is a Csdkany’s term of V. w
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