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I v a n C h a j d a 

TERNARY i-DEDUCTIVE SYSTEMS 

A b s t r a c t . The concept of deductive systems was introduced by A. Diego [6] in Hilbert 
algebras. For universal algebras, it was generalized in [3], and the ternary version was 
occured in [1] where a basic connection between ternary deductive systems and congruence 
classes was established. An approach using Galois connections for binary deductive systems 
was developed in [4]. In the present paper, an approach similar to that of [4] is applied 
for a modified version of ternary deductive systems. 

The concept of deductive system was introduced by A. Diego [6] in the 
so called Hilbert algebras which form an algebraic counterpart of the impli-
cation reduct of an arbitrary intuitionistic logic. It is relatively easy to show 
that every such a deductive system of a Hilbert algebra Ti is a congruence 
kernel (i.e. 1-class) of some 0 € Con H and vice versa. It was pointed by 
the author in [3] that this property of deductive systems is true also on 
every algebra of a weakly reguar variety. Of course, one can generalize the 
concept of deductive system for universal algebras what is the proper reason 
of the papers [3], [4]. A certain ternary version of this concept is given in 
[1] where connections with congruence classes are studied in general and in 
particular with respect to the computational complexity, see also [2]. A bit 
more different approach was developed in [4] where connections between the 
binary term function inducing deductive systems and the properties of their 
lattices are studied by means of Galois connections. Our aim is to set up 
a definition of deductive system induced by a ternary term function t and 
study the correspondence between t and congruence classes. 

For an algebra A = (A, F), we denote by T3 (A) the set of all ternary 
term functions on A and by V(A) the set of all subsets of A, i.e. the so 
called power set of A. Let V be a variety of algebras and t be an n-ary term 
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of V . I f A e V, the n-ary term function tA induced on A by the term t will 
be denoted by the same symbol t for the sake of brevity since there is no 
danger of misunderstanding. We are ready to introduce the basic concepts: 

DEFINITION 1. Let A = (A, F) be an algebra and t G T 3 ( . 4 ) . By a t-
translation is meant a unary function r : A —> A such that either it is a 
translation, i.e. 

T ( x ) — f ( a 1? • • • ) ai-1> X> a i + l ) • • • )<!«) 

for some n-ary / G F, i G {1 , . . . , n} and a i , . . . , an G A or 

r(x) = f(a, x,b) or r(x) = t(x,a,b) 

for some a,b G A. 

DEFINITION 2 . Let A = ( A , F ) be an algebra, z e A and t G T 3 (A). A 
subset D C A is called a t-deductive system of A relative to z whenever 

(i) zeD 
(ii) a e D and t(a, b, z) e D, t(b, a,z) £ D imply be D 

(iii) a G D implies t(z, a, z) E D and t(a, z,z) G D 
(iv) t(a,b,z) G D and t(b,a,z) G D imply i(r(a), T(£>), Z) G D for any 

i-translation r . 

DEFINITION 3 . Let A = {A, F) be an algebra, z e A, t e T 3 ( .4) and D C A. 
A binary relation @£> on A defined by the setting 

(a, 6) G ©£> if and only if t(a, b,z)eD and t(b, a,z)eD (*) 

will be caled t-induced by D and z. 

At first, we are interested in the relationship between i-deductive systems 
and congruence classes: 

THEOREM 1. Let A = (A, F) be an algebra, z G A, D C A and t GXT3 (A). 
Consider the relation ©£> that is t-induced by D and z. If@D is a congruence 
on A and D = [2]©^ then D is a t-deductive system of A relative to z. 

P r o o f . Suppose ©£> G Con A and D — [-z]eD- Then D satisfies (i) of 
Definition 2 trivially. Prove (ii): let a G D and t(a, b, z) G D, t(b, a, z) G D. 
Since D = [Z]QD, we have (a, z) G @D and, by (*), also (6, a) G @D• Due to 
transitivity of Op, we conclude (b,Z) G ®D proving b G [Z]Qd = D. 

Prove (iii): let a G D. Then (a,z ) G @d and (iii) follows directly 
by (*). Prove (iv): let t(a,b,z) G D and t(b,a,z) G D. By (*), we have 
(a, b) G ®D and, due to reflexivity and the substitution property of ©D, 
also (r(a),r(i))) G ®D for every i-translation r if A. Applying (*) once 
more, we get t(r(a),T(b),z) G D. • 
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The converse of Theorem 1 is also valid under a certain natural assump-
tion on the term function t: 

THEOREM 2. Let A = (A, F) be an algebra, z £ A, z £ D C. A and t £ 

T3 (.4) satisfy the identity t(x,x,z) = z. If D is a t-deductive system of A 
relative to z then the relation ©£> t-induced by D and z is a congruence on 
A and D = [z]eD-

P r o o f. By using of the identity t(x, x,z) = z we get by (*) that the relation 
Go is reflexive. Symmetry of ©£> is evident. Prove transitivity: let (a, b) £ 

Qd and (b, c) £ ©£>. By (*) we have 

t(a, b, z) £ D, t(b, a,z) £ D and t(b, c, z) £ D, t(c, b, z) £ D. 

Consider the i-translation r (x ) = t(c,x,z). Due to (iv) of Definition 2, we 
have also 

t(T(b),T(a),z) £ D and t(r{a), r(6), z) £ D, 

1.e. 

t(t(c, b, z),t(c, a, z), z) £ D and t(t(c, a, z),t(c, b, z), z) £ D. 

Since t(b, c, z) £ D and t(c, b, z) £ D, the foregoing relationship infer by (ii) 
of Definition 2 also 

i(c, a, z) £ D. 

Applying the i-translation t'(x) = t(x, c, z), we obtain analogously also 

t(a, c, z) £ D. 

Hence, by means of (*), we have (a,c) £ Qp. 
Applying (iv) of Definition 2 for a translation r(x) (induced by basic 

operations of F), we derive easily the substitution property of Qp with 
respect to each f £ F. Thus ©£> £ Con A. 

It remains to show that D = [z\qd. If a £ D then, by (iii) of Definition 
2, also t(z,a,z) £ D and t(a,z,z) £ D thus (a,z ) £ Qp, i.e. a £ [z]©D. 
Conversely, if a £ [z]q then (a, z) £ @o and, by (*), t(a,z,z) £ D and 
t(z, a, z) £ D. By (i), z £ D and, due to (ii), also a £ D. • 

REMARK 1. Under the assumption of Theorem 2, ©£> is the greatest con-
gruence on A having the class D. Indeed, if $ € Con A and [z]<j, = D then 
for (a, b) £ $ we have 

(i(a, b, z), z) = (i(a, b, z),t(a, a, z)) 6 $ and 

(t(b,a,z),z) = (t(b,a,z),t(a,a,z)) £ $ 

whence t(a,b,z) £ D and i(6, a, z) £ D giving (a,b) £ ©£>, i.e. $ C QD. 

Recall that an algebra A — (A, F) is regular if every congruence on A 

is determined by every of its class, i.e. if © , $ £ Con A and [a]© = 
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for some a G A then © = i>. A variety V is regular if each A G V has this 
property. Denote by UJA the identity relation on a set A\ of course, U>A is the 
least congruence on A. Hence, if A is regular and © € Con A has a class 
which is a singleton then 0 = U>A-

The following characterization of regular varieties was involved by B. 
Csakany in [5]: 

PROPOSITION. A variety V is regular if and only if there exist n > 1 and 
ternary terms ..., tn such that 

t\(x, y, z) = ... = tn(x, y,z) = z if and only if x = y. 

For groups, rings and Boolean algebras , one can take n = 1 and 

ti(x,y, z) = x-y~1 • z or 

h(x,y,z) = x - y + z or 

h (x,y,z) = x®y®z, 

respectively (where for Boolean algebras the symbol © denotes the so called 
symmetrical difference). All of those terms have one property in common 
which is a particular case of a bit more general one: 

(C) t(x, y, z) = t(y, x,z) — z if and only if x = y. 

To remember the original result included in the Proposition, a ternary term 
t(x, y, z) satisfying (C) will be called a Csakany's term. Hence, every variety 
of groups, rings, quasigroups as well as the variety of Boolean algebras has 
a Csakany's term. Conversely, if a variety V has a Csakany's term then, by 
the Proposition, V is regular. 

The following lemma is easy: 

LEMMA. Let t(x,y,z) be a Csakany's term of a variety V, let A & V and 
© € Con A. Then 

(a, b) G © if and only if t(a, b, z) £ [z]e and t(b, a, z) G [z]q. 

P r o o f . Let A G V, © G Con A and suppose (a,b) G ©. Then 

(t(a, b, z), z) = (t(a, b, z), t(a, a, z)) G © and 

(t(b, a, z), z) = (t(b, a, z ) , t(a, a, z)) G © 

proving t(a,b,z) G [z]& and t(b,a,z) G [z]e. 
Conversely, let t(a,b,z) G [Z\Q and t(b,a,z) G [Z]Q for some © G Con A. 

In the quotient algebra A/Q G V we have 

£([&]©, [a]©, [z]©) = [t(b,A,Z)]E = [Z]Q and 
t([a]e, [6]©, [z]e) = [i(a, b, z)]& = [z]e. 
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Since i is a Csakany's term of V, we conclude [a]© = [6]© whence 
(a, b) G ©. • 

For the Csakany's term, we can get together our previous results to state 
the following 

THEOREM 3. Let t be a Csakany's term of a variety V. Let A = (A, F) e V 
and D C A. Then D is a congruence class containing z, i.e. D = [z]© for 
some 0 G Con A, if and only if D is a t-deductive system of A relative to z. 

P r o o f . Let t be a Csakany's term of V and A = ( A , F ) G V. Suppose 
D = [z]@ for some © G Con A. Clearly z G D. Prove (ii) of Definition 2: if 
a & D and t(a, b, z) G Z), t(b, a, z) G D then (a, z) G © and (6, a) G © thus 
also (6, z) G 0 , i.e. b G [z]© = D. 

Prove (iii): let a G D. Then (a, z) G © and, due to the Lemma, we 
conclude (iii) immediately. 

For (iv), let t(a,b,z) G D and t(b,a,z) G D, let r be a ¿-translation of 
A. Then (a,b) G 0 and hence also (r(a) ,r(6)) G © . Applying the Lemma, 
we are done. Thus D is a t-deductive system of A relative to z. 

The converse follows directly by Theorem 2. • 
Let A = (A, F) be an algebra and z G A. Define a binary relation 

Rz C T 3 (A) x V(A) as follows: 

(t, D) G Rz iff D is a t-deductive system of A relative to z. 

This relation defines a pair of mappings (p, a) which clearly forms a Galois 
connection: 

for S C T3 (A), p(S) — {D C A\ D is a i-deductive system of A relative 
to z for each t G <S}, 

for C C V(A), cr(C) = { i G T 3 (.4); each D G £ is a i-deductive system 
of A relative to z}. 

For the sake of brevity, we will write p(t) instead of p({t}) whenever 
S = {¿} is a singleton. The proof of the following assertion is almost evident 
and hence omitted: 

THEOREM 4. Let A = (A, F) be an algebra, z G A, C C V(A) and t G 
T3(„4). Then 

(a) p(t) is the complete lattice of all t-deductive systems of A relative to 
z (with respect to set inclusion); denote it by Dedj_(t, z). 

(b) p(a(L)) = D { D e d A ( t , z ) - , t e *{£)}. 
Theorems 3 and 4 yield the following 

COROLLARY. Let t be a Csakany's term of a variety V and A = (A, F) G V, 
z G A. Then p{t) = Ded^(t, z) ~ Con A. 
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P r o o f . If t is a Csakany's term of V, V is regular and hence the map-
ping M e —> 0 is an isomorphism of the lattice of all congruence classes 
containing 2 onto Con A. By Theorem 3, the lattice of congruence classes 
containing 2 coincides with Dedj.(t, z). Together with Theorem 4, we obtain 
the assertion. • 

Of course, the operation meet in the lattice D e d ^ t , z) coincides with 
set intersection and A is the greatest element of it. On the other hand, one 
can ask about the least element of Ded^(t, z). In general, it need not be a 
singleton {z}. We can prove the following: 

THEOREM 5. Let t be a ternary term of a variety V satisfying t(x, x, z) = z. 
The following conditions are equivalent: 

(a) for each A = (A, F) £ V and each z £ A, { z } is a t-deductive system 
of A relative to z; 

(b) for each A = ( A , F ) € V, each z € A and © £ Con A, [2:]© is a 
t-deductive system of A relative to z; 

(c) for each A = (A, F ) € V and each z £ A, the relation ©{2} t-induced 
by {z} and z is a congruence on A having the class {z}. 

P r o o f . (b)=>(a) is trivial and (a)=>(c) by Theorem 2. It remains to prove 
(c)=>(b). Suppose A = ( A , F ) £ V and z 6 A. Since {z} is a class of 
0 { 2 } € Con A, we have 

(**) c,z) = z = t(c, z, z) iff (c, z) 6 ©{2} 

immediately by (*) of Definition 3. 
Suppose now © 6 Con A and D = [z]©. Then z G D and we need to 

verify (ii), (iii) and (iv) of Definition 2. For (ii), let a € I? and t(a,b,z) G 
D, t(b,a,z) € D. Then [a]© = [z]& and hence 

t([z}@, [&]©, [z]e) = i ( [a]0 ) [6]©, [z]e) = [t(a,b,z)]e = D = [z]e, 

analogously 

K f i h , We, M e ) = Me-
Applying (**) on the quotient algebra A/Q € V, we get ([6]©, [z]©) £ @{[z]e} 
whence [6]© = [2;]©, i.e. b £ [z]© = D. 

Prove (iii): if a £ D = [z]© then [a]© = [z]© and, by means of the identity 
t(x, x, z) = z, we have 

t([a]e, [z]©, [z]©) = t([z]e, [z]©, [z]©) = [z]© 

[o]e, M e ) = ¿(Me, M©> M©) = M e 

thus i(a, z, z) £ D and t(z, a, z) £ D. 
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For (iv), let t(a, b,z)eD and t(b, a, z) € D. By the assumption, @ { [ z ] e } 

€ Con A/ © and hence 

t([a]e, [b]e, [-z]©) = [i(a, b, z)]@ = D = [2]© and 
t([b]e, [a]©, [z]e) = [i(a, b, z))e = D = [z]e 

thus ([a]©, [6]©) € 0{[^]e}- Hence also 

< r ( [ o ] e ) , r ( [ 6 ] e ) ) e © { H e } 

for every i-translation T on A/@. One can derive easily 

[i(r(a), r(6), z)] e = t([r(a)]e, [r(6)]e, [z]e) = [z]B 

whence £(r(a), r(6), z) € [Z]Q = D. m 

For regular varieties, we can state stronger result concerning the term t: 
THEOREM 6. Let V be a regular variety and t be a ternary term, of V satisfy-
ing t(x, x,z) = z. If for each A = (A, F) € V and every z € A the singleton 
{z} is a t-deductive system of A relative to z then t is a Csakany's term 
of V. 

P r o o f . Suppose t(x,x,z) = z holds in V, A = ( A , F ) e V and z e A. Let 
{z} be a i-deductive system of A relative to z. Let a,b 6 A and t(a, b, z) = 
t(b, a, z) = 2. Then t(a, b, z) 6 {z} and t(b, a, z) 6 {z} which yield (a, b) 6 
0{z}. By Theorem 2, ©{z} £ Con A and [z]©{2} = {z}. Since V (and hence 
also A) is regular, we have ©{2} = Thus a = b. Altogether, 

t(x, y, z) = t(y, x,z) = z if and only if x = y 
holds in V, i.e. t is a Csakany's term of V. • 

THEOREM 7. Let t be a Csakany's term of a variety V. Let to be a ternary 
term ofV such that to(x,x,z) = z holds in V. Then to € <r(p(i)) for each 
A € V if and only if to is also a Csakany's term ofV. 

P r o o f . Let i be a Csakany's term of V. Then V is regular. Consider A = 
{A, F) € V and z € A. By Theorem 3, {z} 6 Ded^(t, z) since it is a class of 
UJA- Thus {z} 6 p(t). Since io € cr(p(t)), {z} is also a io-deductive system of 
A relative to z. 

Suppose to(a,b,z) = z = to(b,a,z) for a,b € A. Then to(a,b,z) € {z} 
and to(a, 6, z) € {z} and, due to Theorem 2, (a, b) e ©{z}- Since V is regular, 
we have ©{2} = U>A whence a = b. Thus to is a Csakany's term of V. • 
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