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THE NORMALIZATION OF RECTANGULAR ALGEBRAS

Abstract. Our aim is to investigate the normalization (nilpotent shift) (RA.)* of
the variety RA, of rectangular algebras of a finite type 7. It can be regarded as a com-
mon generalization of various algebras studied by different authors, namely of rectangular
algebras, [P&R 92, 93], rectangular bands, [Gou], medial grupoids, [J&K], or generalized
diagonal algebras, [P 64, 66a, b].

We will determine all subdirectly irreducible algebras in the normalization of the
variety of rectangular algebras, give a normal form for terms in the normalization and an
algorithm for finding a subdirect decomposition of algberas belonging to the normalization.

1. Introduction, historical remarks

Our aim is to present here a variety of algebras which can be regarded
as a common generalization of some classes of algebras studied by various
authors, namely rectangular bands, [Gou], rectangular algebras, [P&R 92,
93], diagonal algebras and generalized diagonal algebras, [P 64, 66a, b], or
medial grupoids, [J&K].

Fix a type 7 : F — N with a family F of operation symbols of finite
arities 7(f) € N. Let Alg(7) be the class of all algebras of type 7 (shortly,
T-algebras). The basic operation in an algebra A € Alg(7) corresponding to
the operation symbol f € F will be denoted by f4, and we will keep the
notation A = (A4; F4).

Given a set X of identities of type 7 denote by Mod ¥ the variety of
all models of %, that is of all r-algebras in which all identities from ¥ are
satisfied. In the algebras we are interested in, the following identities play
an important role (here f, g € F' with arities 7(f) = n, 7(g) = m):

(1) f(z,...,z) =z (idempotency, idempotent law)
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(Dy) F(f(z11,- - x1a), f(@21, -+ T2n)s -, f(@n1y - Tan))

~ f(z11,..-,Znn) (diagonal law)
(A;) f(l‘la <oy Ti—1, f(yla o Yie1, iy Yig 1y 0 - 7yn)>xi+17 s )xn)
~ f(z1,...,z,), 1<i<n (i-th absorption, or cancellative law)
(Et,g) flg(z, - 2im)s - 9(Zn, - - Tum)

~g(f(z11,-- 5 Zn1), - f(Z1ms -, Tom)
entropic law, or commutability, or generalized metabelian law).
g

An algebra A is called idempotent if all basic operations are idempotent and
is called entropic if (Ey 4) is satified in A for all couples of f, g.

REMARKS. Idempotency means that each singleton subset {a} C A is actu-
ally a subalgebra of A. An algebra A = (A; F4) is entropic if and only if
each basic operation f# determines a homomorphism of algebras (denoted
by the same symbol) f4 : (A7(/); FA) — (A; F4). The identity (E;,) has
been given various names. If (E;,) holds in A then f# and g* commute
which explains “commutability” . If f = g are equal binary operations de-
noted by an infix o then (E, ) becomes (zoy)o (zou) = (zoz)o(you),
[Sm 99], p. 15. The notion “entropic” , in use in this context for a long time,
refers to the “inner turning” of y and z, [Sm 99], p. 15; some authors prefer
to use “medial” , e.g. [J&K] for grupoids.

1.1. EXAMPLE. For a single unary operation, diagonality means f(f(z)) ~
f(z). On any set, constant operations and the identity belong to the family
of unary operations f satisfying (Dy).

At the end of ’50, E.S. Liapin studied the variety of semigroups given by
L=Mod((l,),(AS): zo(yoz)=(zoy)oz, (¥x): zoyozmRzoz)

and published the results in [L 60]. The variety L in fact coincides with the
variety RB of rectangular bands, [Cli-P 64], [Gou 82], [P& R 93], which is
usually introduced as

RB = Mod((AS),(¥)) where (x): zoyoz=xuz.

The variety RB is generated by algebras with one binary projection as a
basic operation. Every rectangular band is a direct product of two projection
algebras.

In the '60, J. Plonka introduced algebras (A4; f) with one n-ary basic op-
eration satisfying the identities (If), (Dy), as a generalization of semigroups
considered by Liapin. He started to call them n-dimensional (=n-ary) dia-
gonal algebras, [P 64], [P 66al, in a more contemporary notation,

DAy = Mod((If), (Dy))-
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He proved a representation theorem and also theorems on independence in
the sense of Marczewski. In [P 66b], Plonka studied the variety of generalized
diagonal algebras

GDA,y = Mod((Dy)).

In ‘90, J. Slapal investigated algebras with a single basic operation of
an arbitrary (even infinite) type satisfying diagonality only, or in combina-
tion with other properties (idempotency, mediality), {S1 92], [S1 94]. He also
presented multiplication tables of 3-element binary generalized diagonal al-
gebras, 4-element binary generalized diagonal algebras and one example of
a generalized diagonal algebra of order 12. His further interest was moti-
vated by the categorial view-point. He investigated especially powers and
exponentiation, and not the class of diagonal algebras itself.

Being inspired by Slapal’s examples, J. Klouda constructed a computer
program which was able to produce multiplication tables of binary generali-
zed diagonal algebras up to order 10. The theoretical background used in
the program was published later in [K&V]. A more up-to-date computer
program which yields all binary and ternary generalized diagonal algebras up
to order 20 was constructed by J. Tichy. The way how to produce examples
was clear but rather mechanical.

Why on earth the algebras look like they look?

The explanation comes from considerations published in a couple of excel-
lently written papers by R. Poschel and M. Reichel.

2. Projection algebras and rectangular algebras

Let 7 be a finite type with F = (f1,..., fx) where 7(f;) = n; > 1 for
ieI={1,...,k}. Let us denote here by e( 21 A™ — A the j-th projection
(a1, .. an) + a; on a non-empty set A, j e {1,...,n},n>1.

Under a projection T-algebra we will understand a T-algebra for which
each basic operation f;* is a projections e("‘)
n,t=1,...,k.

2.1. LEMMA. ([P&R 93], 2.6. Lemma, p. 186) FEvery projection T-algebra
A = (4; (eg:i%)izl,‘,,,k) is isomorphic to a subalgebm of the direct power B”

onto the carrier set, 1 < ¢; <

of the two-element projection algebra B = ({0, 1}; (e q {0 1})1_ ....k) wherer
is the least natural number such that |A| < 27. An isomorphism is induced
by any injection h: A — {0,1}".

We will use the notation Aq = (4; ( ,«)1) ,...k) where ¢ = (q1,...qx)
and 1 < ¢; < n;. Let us denote

(2.1) no=ng-...-ny =7fk) ... -7(f1).
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2.2. LEMMA. For a given finite type T with 7(f;) = n;, 1 = 1,...,k, there
are exactly ng projection algebras.

Proof. For the i-th projection, there are n; choices e(l?jl), . eflnl)‘1

The family of all projection 7-algebras with the same carrier set A can
be ordered linearly as follows. On the set of all possible k-tuples (qy, .. . gx)
with 1 < ¢; < n;, let us take the lexicographical order from right to left, i.e.
(q1,---,9%) < (q},...,q) if and only if there is an index ¢ such that ¢; < ¢;
and for j > 4, q¢; = q;. We obtain a sequence gl,...,g_"". The sequence
Agt,. .., Agno defines a linear order on the set of all projection 7-algebras
on the given carrier set A. The following formula will be useful in the sequel.
If we define a function u(q), ([P&R 93] p. 190, 187), by

22) pe)=a+(2-Dnri+{g—Dnz-ni+...4+ (g — Dng—1-...-ny
then u(¢?) = j as can be checked.

Let P, denote the class of all projection algebras of a given finite type 7.
In [P&R 92, 93], the variety RA, = Var(P;) generated by the class P, was
investigated. Its elements have been called rectangular 7-algebras. Among
others, the authors proved the following. An algebra is rectangular if and
only if it is isomorphic to a direct product of projection algebras. The variety
of rectangular algebras is finitely based and can be given as

RA, = Mod({(;),(Dy), (Ey); f € F})

with the generating system of identities =, = {(I¢), (Dy), (Esn); f,h € F}.

The authors also proved decomposition theorems for rectangular alge-
bras, derived normal forms for terms in this variety, described an algoritm
for finding normal forms and used it for a representation of a rectangular
algebra as a subdirect product, proved solidity and investigated generating
algebras.

In many proofs, it might be reasonable to substitute the diagonality
condition by the family of absorption laws ([P 66 b], p. 19, 3°). Let us give
an alternative proof.

2.3. LEMMA. The identity (Dy) is equivalent to the system of identities (A}),
1< <n.

Proof. Let f € F. If the identities (A’f) hold for all s € {1,...,n} then
f(f(mH)--'amln),-'-,f(-'l:nla---7znn))(§)f(xllaf(x21a-'-ax2n)a--'7

5
f(mnl,...,:cnn))(%) (;it)f(z“""’x"")'

Vice versa, by diagonality (used either “outside”, or “inside” the term)
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f(IL‘]_,...,III,;_l,f(yl,...,.’11,;,...,yn),$i+1,...,2:n) ~

f(f(xli---,xn)r--af(mla-"amn)vf(f(yl’"-,xi,"wy‘n)""7

Fyr, iy n), f(Z1, o o Zn), oo, fZ1, o0, T0))

~ f(f(z1y . Zn)y ..., flZ1, .., Th),

f(y1,~--7:1:1',---1yn)>f(ml)--~;mn)a-~-af(zl;---,In)) %f(.’l)l,...,ilin)
for any i € {1,...,n}. =

If 7 = (n) we obtain Plonka’s diagonal algebras, RA,) = DA,. The
special case with 7 = (2) is known as the variety of rectangular bands,
ié(z) =RB.

2.4. LEMMA. The following varieties coincide: RB = L = QA_(Q) = MQ)-

Proof. The proof is based on the fact that in the class of all grupoids, the
following holds:

Mod((AS), (*)) € Mod((L), (AS), (x+)) C Mod((Lo), (D)) C
C Mod((Lo), (42), (42), (Es)) € Mod((AS), (¥))-

In fact, let A = (A4;0) be a semigroup satisfying (x). Then (**) also holds
since zoz (’*f:') (zoz)o(zoyoz)o(zroz) (z) (zozoz)oyo(zozroz) ("~"*) zoyoz, and Ais
idempotent as well: zoz &~ (zor)ozo(zoz) ~ zo(zozor)oxr ~ zoror ~ z.
(%) (AS) (%) (*)
Further, (D,) holds in the variety of idempotent semigroups satisfying ()
since z 0 z (i) zo(you)oz (:9) (zoy)o(uoz). (D) is equivalent with a

couple of identities (Al), (A2) by 2.3.Lemma. Let us show that (E,) follows

by (Ds). (zoy)o(uoz) (D%)a:oz(l’)rb‘)(xou)o(yoz). Now let A be a binary

rectangular algebra. Then A is a semigroup since (Al) together with (A2)
imply associativity. By (AS) and (I, ), the identity (*) also holds in .A. Hence
the corresponding varieties coincide. m

Now we may ask which (reasonable) varieties include RA, as a subvari-
ety, and which generalizations of rectangular algebras are at the same time
generalizations of GDA,,,).

E.g. we can drop diagonality. Elements of the variety M, = Mod({({y),
(Ef); f € F}) are known as modes. The theory of modes has been developed
e. g. by J.D.H. Smith, [Sm 99], and by A. Romanowska who has given
an encyclopedic survey in [R 92], [R&S]. An interesting characterization of
modes is due to K. Kearnes:

A T-algebra A is a mode if and only if each polynomial function of A is
a homomorphism, [Sm 99], p. 16, [Ke].
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From this view-point, rectangular algebras are exactly diagonal modes.
Modes are not oblighed to satisfy diagonality (Dy) in general as can be
easily seen.

2.5. EXAMPLE. A binary algebra ({0, 1}; f) given by f(0,0) =0, f(z,y) =1
otherwise is a mode since polynomials are homomorphisms, namely, pro-
jections and constant operations, f(0,y) = y = egz)(x,y), flz,1) =z =
e&”(m,y), f(1,y) = f(z,1) = 1, but is not diagonal since f(f(0,1), f(1,0)) =
1 while £(0,0) = 0.

Another possibility is to consider diagonality only, and some investiga-
tions in this direction appear in the papers by J. Slapal. We have seen that
n-ary algebras from GDA,,, are characterized by the identity (Dy). But this
is not the whole truth. It can be checked that generalized diagonal algebras
satisfy not only (Dy), but also (Ef), and in fact all normal identities of the
variety RA,y. That is, GDA,, is the so-called normalization of RA,).

This motivates the study of normalization of the variety of rectangular
algebras of type 7, which will be our way of generalization. For this purpose,
we will need some results the proofs of which can be found in the paper
[P&R 93]. As far as decomposition properties of rectangular algebras are
concerned, the following is known:

2.6. LEMMA. ([P&R 93], 2.6.Lemma, 2.7.Th., p. 186) Rectangular algebras
can be characterized either as isomorphic images of finite products of pro-
jection algebras of type T, or as isomorphic images of subalgebras of direct
products of 2-element projection algebras of type T:

(2.3) RA, = 1P (Py), RA, =ISP(P2.

Here I means isomorphic images, S subalgebras, and P products, [Ih].
Denote by SI (V) all subdirectly irreducible algebras, shortly SI-algebras,

of a given variety V. Let PT[2] denote the class of all two-element projection
T-algebras.

2.7. LEMMA. ([P&R 93], 2.8. Corollary, p. 186) All subdirectly irreducible
algebras in RA, are precisely the two-element projection T-algebras,

(24) SI(RA,) = PP

2.8. EXAMPLE. Let A = {0,1,2,3}. Then (4;¢{’}) € RA,y) is isomorphic

to the direct product of ({0,1}; ef%o’l}) with itself.

Since there are ng projection 7-algebras on a two-element set we obtain
as an immediate consequence:
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2.9. LEMMA ([P&R 93], 2.9.Corollary, p. 187) Let the type T be finite, F =
(f1,---, fx). Then there are exactly ng isomorphism classes of rectangular
SI-t-algebras and 2™ subvarieties in RA,.

Given terms p, ¢q of type 7, an identity p ~ ¢ in a variety V is called
a hyperidentity for V if it is satisfied no matter which term operations of
the same arity are substituted for the operation symbols in the identity. A
variety V is called solid if all identities satisfied in V are hyperidentities.
Equivalently, a variety is solid iff the identities from the generating system
are hyperidentities, [Gr 88]. By ([DLPS 91], 4.13 Prop., p. 110), any non-
trivial solid variety of type 7 contains all projection 7-algebras.

2.10. LemMMA ([P&R 93], 5.1.Th, p. 192) All identities of the generating
system X, of RA,_ are hyperidentities. Consequently, all identities valid in
RA_ are hyperidentities, and RA, is a solid variety.

So in the lattice L, of all varieties of type 7, RA. is the least solid variety.
Especially, for 4 € RA,, each term operation is idempotent and diagonal,
and any couple of term operations commute. This enables us to construct
new rectangular algebras from already known ones.

2.11. PROPOSITION. Let A € RA.. Let (tj)1<j<k be any finite collection of
terms of a given type. Then (A; (t{,...,t{)) is also a rectangular algebra.

Proof. A consequence of the above arguments: all term operations satisfy
all identities of the generating system X,. =

3. Normalization of a variety

Given a class K of algebras of the type 7 denote by Id(K) the set of
all identities valid in K and by Idx(K) the family of all normal identities
satisfied in K. Note that the identity p = g is called normal if the terms
p(z1,..-,2Zn), ¢(z1,...,2n) are of the same arity and either both are equal
to the same variable, or both are not variables (= proper terms), and non-
normal otherwise. We can write Id(K) = Idy(K) U Z(K) where Z(K) is
the set of all non-normal identities.

Let V be a variety of type 7 with 7(f) > 1 for at least one f € F.
If Z(V) is non-empty and contains some identity p(zi,...,z,) & z; where
p is not a variable then =(V) contains also the identity v(z) ~ x where
v(z) = p(z,...,z) is a unary term. Note that v(z) is determined uniquely
up to identity. So we can call v(z) an assigned term of V, ([Ch 95a], p. 35),
([Ch&G 99], p. 50). .

For a variety V consider the variety V* of all 7-algebras given by all
normal identities of V:
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(31)  V*=Mod(Idy(V))
={A|p=~qholdsin A for all p = g from Idy(V)}.

V*, denoted also by N (V), is the so-called normalization or nilpotent shift
of V, [M 73], [Ch&G 99], [Ch 95a], and V is a subvariety in the variety V*
of type 7. A variety V will be called normally presentable if V* = V and
non-normally presentable otherwise. Given a normally presentable variety
W and a unary term v(z) (both of a given type) there exists a unique
variety V with an assigned term v(z) such that V* =W, ([M 73], Prop. 1,
p. 704). We will need the following.

3.1. LEMMA. Let V be a non-normally presentable variety with an assigned
term v(z). Then V = Mod(Idn(V)U{v(z) ~ z}). Moreover, if ¥V = Mod(X)
for some system of identities % then there exists a system of normal iden-
tities Ty C Idn(V) such that V = Mod(Xn U {v(z) = z}). Especially, if
V* = Mod(X) then ¥V = Mod(Z U {v(z) = z}).

Proof. Similar arguments as in ([M 73], p. 704) can be used for the proof.
The following is crucial: any non-normal identity p(zy,...,zm) = z; can be
replaced by a normal identity p(v(z1),...,v(zm)) = v(z;) which, together
with v(z) = z, gives back the original one. =

3.2. LEMMA. Let V = Mod(En U{v(z) = z}) be a non-normally presentable
variety and Xy C Idn(V). Then the normalization can be described by
identities as follows:

V* = Mod(Eny UL,)
where
o ={f(z1,..,zj, -, zn) = f(z1, ..., 2j—1,9(Z5), Tjt1, - - -, Tn),
v(f(zy,...,zn)) = flz1,...,z0) | fEF,j=1,...,n}.
Proof. The proof follows from ([M 73], Lemma and Theorem 2, p. 705). =

3.3. PROPOSITION. IfV is a solid variety then the normalization V* is also
solid.

Proof. In a solid variety V, all identities, especially all normal identities,
are hyperidentities. By definition, Id(V*) = Idy(V), so that all identities in
V* are hyperidentities as well. »

On a two-element set {0, 1}, consider a constant T-algebra C= ({0, 1}; F€)
with operations given by f¢(ai,...,a,) =0 for all f € F and a;,..., a, €
{0,1}. All two-element constant 7-algebras are isomorphic to C and form an

isomorphism class denoted by CP].

3.4. LEMMA. ([Ch 95a], Theorem 4, p. 42) Let V be a non-normally pre-
sentable variety and V* the corresponding normalization. Then all subdi-
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rectly irreducible algebras of V* are two-element constant T-algebras together
with all SI-algebras of V,

(3.2) SI(V*) = S[(V)u cH,
Let A € V* and let v denote an assigned term. The set
(3.3) SkA={de A|v*(d) = d}

will be called a skeleton of A and its elements will be called skeletal elements.
If we introduce a relation ® on A by: (a,b) € ® if and only if for each n-
ary f € F and aa,..., a, € A, fA(b,as,...,a,) = fA(a,az,...,a,), then
® € ConA, i.e. d is a congruence on A, each congruence class [a]s contains
exactly one skeletal element d, and the congruence class [a]s is formed by
all elements b € A for which v4(b) = d. Obviously, (a,b) € ® iff a can be
replaced by b at each place in each term. Hence we conclude

3.5. LEMMA. The equivalence relation given above can be characterized as
follows:

(3.4) (a,b) € ® if and only if v*(a) = vA(b).

3.6. LEMMA. An element a € A belongs to Sk A if and only if a is a result
of some term operation on A,

(3.5) SkA={t*ay,...,an)|a; € 4, t € W, }.

Proof.Ifa € Sk A then a is a result of vA. Vice versa, let a = t*(ay, . .., am)
for some m-ary term t and ay,..., a,, € A. Since v(z) = z holds in V the
identity v(t(z1,...,2m)) = t(z1,...,Zn) belongs to Idy(V), that is, must
be satisfied in V*, and vA(a) = v4(t4(ay,...,an)) = tA(a1,...,amn). =

3.7. LEMMA. ([Ch 95a], 37-38) If A € V* then the map ¢ : A/® — Sk A,
[a]e +— vA(a) is an isomorphism, A/® ~ Sk A, and the skeleton Sk A is a
mazimal subalgebra of A belonging to V.

It can be observed that a map F' : A — Sk A induces a functor. Consider
the category V formed by algebras of the class V together with homomor-
phisms as morphisms, similarly for V*.

3.8. PROPOSITION. The map F given by F(A) = Sk A, F(p) = ¢|sk 4 for
p € Mor(Y*), ¢ : A— B, A, B € Ob(Y") is a covariant functor from the
category E* to the category V.

Proof. Since Sk A < A we obtain id4|sk 4 = idsk 4. Given a couple of
homomorphisms ¢ € Hom(A,B), v € Hom(B,C), A, B, C € V* then for
the assigned term v of V, p(v*(z)) = v®(¢(x)) holds since homomorphisms
preserve terms. Hence homomorphisms preserve skeletons, ¢|sx 4 : Sk A —
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Sk B. For a couple of homomorphisms, (¢ o ¢)|sk.4 = ¥|sks © ©lska. We
conclude F(id4) = idp(4) and F(y o ) = F(¢) o F(p). m

REMARK. In [Ch 95a, b], the so-called choice algebras are used to give
an explicite construction of the nilpotent shift. If V is a variety of type
7 denote by E(7) the family consisting of all nullary terms of ¥V and all
nullary operations of type 7 if there are any. Let A = (4; FA) € V. Let
8 € Con A be a congruence. Let k : EzpA — A be a choice function
compatible with 6, i.e. k([a]g) € [a]s and if [a]p N EA(T) # 0 then x([a]e) €
[alo N EA(7). For any n-ary operation f4 € F4 we can create a new n-
ary operation fA" by fA™(ai,...,a,) := k([fA(a1,...,a.)]s) such that the
algebra A* = (A;{fA"; f € F}), called a (8, k)-choice algebra, belongs to
N(V), and Sk A* = {k([als);a € A}. If we denote by €(V) the class of
all (6, k)-choice algebras for all algebras A € V and all cogruences 6 on A
then the nilpotet shift of V consists exactly from all homomorphic images
of algebras from the class €(V),

(3.6) N((V) =He().

Up to isomorphism, A/ (V) is unique.

3.9. EXAMPLE. Let 4 = {0,1,2,3, }. The algebra A = (4; f) € RA ;) with f
given below is isomorphic to the direct product of the algebra ({0, 1}; e(12%0 1})
with ({0, 1};eg2%0 1}). Let 8 € Con A be given by 6 = A4 U {(0,1),(2,3)}.
Let us choose a #-function sz by sx({0,1}) = 0, »#({2,3}) = 2. Then the
(8, »)-choice algebra A* = (A; f*) of A belongs to (RA))*, Sk A* = {1,2}.
The corresponding multiplication tables are

flol1l2]3s f~lol1]2]3
oj{o|1]o]1 ojlojolofo
1{ofl1]o]1 1lolo]o]o
21 2(3]2]3 3l22|2]2
3{2(3[2]3 3f22]2]2

3.10. EXAMPLE. Now let us consider B* = (A; f*) € (RA(y))* with the
binary operation given below and A as above. The term v(wg = f*(z,x)
is an assigned term. Obviously, a maximal idempotent subalgebra of B* is
Sk B* = {0,2}, and the binary relation & on A given by: (a,b) € & if and
only if f*(a,a) = f*(b,b), is a congruence on A with the congruence classes
{0}, {1, 2,3}. Now it is natural to assume a ®-function given by «([0]s) = 0,
k([2)e) = 2. B* = (A; f*) arises as a (P, k)-choice algebra from B = (4; f)
with f = e{).
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ffl1o0f1}21]3 fl1o011|21}3
00|00 0 000|070
172 (2 (2|2 11111 ]1]1
2121222 212 12]2])2
31 212]2;2 313|333

4. Normalization of rectangular algebras

Our aim is to pay attention to the normalization of the variety RA.
which is worth considering since Id(RA.) # Idn(RA,):

4.1. LEMMA. Let t be an n-ary term, with n > 1, of type T which is not a
variable. Then t(z,...,z) = z is the non-normal identity in RA.. Conse-
N’

n-times
quently, the variety RA, is not normally presentable.

Proof. Due to solidity of RA. (2.10. Lemma) all term operations in rect-
angular algebras are idempotent. =

4.2. PROPOSITION. The normalization A € (RA,)* is a solid variety.
Proof. By 3.3.Prop., the normalization of a solid variety is always solid. =

4.3. LEMMA The skeleton Sk A of A € (RA,)* is a mazimal idempotent
subalgebra in A.

Proof. A consequence of 3.7.Lemma. m

4.4. LEMMA. The congruence classes [a]e, a € A are constant subalgebras

of A.
Proof. Let f; € F' and let ay,...,a,, for some d € Sk A. Then
fMag,. .. a0) = fAd,...,d) =v*d) =d. =

4.5. PROPOSITION. The map F given by F(A) = Sk A, F(p) = ¢|sk .4 for
p € Mor((RA,)*), ¢ : A— B, A, B Ob((RA,)*) is a covariant functor
from the category of generalized diagonal algebras and their homomorphisms
to the category of rectangular algebras and their homomorphisms.

Proof. A consequence of 3.8. Prop. m

We will be interested in the following problems:

(i) how to decide whether a given T-algebra belongs to the variety (RA,)* ?
(ii) what do subdirectly irreducible algebras in (RA,)* look like?
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(iii) how to find a representation of A € (RA,)* as a subdirect product
of subdirectly irreducible ones?

(iv) given an n-ary term t € W-ﬁ"), how to define and find its normal
form in (RA,)*?

(v) is there some especially nice” choice for the assigned term of

(RA,)"?

4.6. PROPOSITION. Let T be a finite type with F' = (fi,..., fr). Then every
identity which holds in the nilpotent shift (RA,)* of the variety of rectangu-
lar algebras can be derived from the finite system of identities, namely

(BA,)* = Mod({(Dy,), ()i = 1,..., k} U)
where
L= {filxe, .. zn,) = filfi(z1,...,21), 22y . .., Tn,), fil @1, - oo, Zny)
=~ fi(zy, fi(z2, ..., 22), .., Zny), - - -, filZ1, -y Tny)
~ fi(z,ze, .., fi(@ng, -y Tny), filZ1, oo Z0y)
~ fi(filzr, o Zny), s filzn, o ze)) |6 # 4, 4,5 =1,...,k}.

Proof. A consequence of 3.2.Lemma. If i = j the corresponding identities
follow from absorption laws, or from diagonality respectively. m

There is an easy answer to question (i): it is sufficient to verify the above
identities.

Now it is also obvious that (RA,))* = GDA,) = Mod((Dy)).

4.7. EXAMPLE. On a two-element set there are only two isomorphism classes
of generalized diagonal n-ary algebras, each consisting of n elements, namely
an idempotent class of projection algebras and a non-idempotent class of
constant algebras.

4.8. PROPOSITION. All subdirectly irreducible algebras in the variety (RA,)*
of a finite type T are two-element constant algebras and two-element projec-
tion algebras,

(4.1) SI((R4,)") = PPluchl.
Proof. An immediate consequence of 3.4.Lemma and 2.7.Lemma. =

So we can answer the question (ii): any generalized diagonal algebra
of finite type is isomorphic to a subdirect product of 2-element projection
and 2-element constant algebras. Answering of both (iii) and (iv) requires
some knowledge of normal forms for terms and is postponed to the next
paragraph.
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5. Normal forms for terms in RA_ and in (R4,)*

Given a variety V of type 7, a normal form for terms in V is a map of the
word algebra into itself NF : W, — W, ¢t — NF(t) such that both terms ¢,
NF(t) are of the same arity, ¢ is equivalent with NF(¢) in V, V |= t = NF(¢),
and the term ¢ is equivalent to another term t’ iff they have the same normal
forms:

VEtat < NF(t) = NF(t').
We are going to find normal form for terms in (RA,)*.

In ([P&R 93], p. 187-9), an ng-ary term t. (called the general NF-term
for RA,) is introduced inductively. Also a formation tree diagram for ¢,
is presented in which leaves correspond to variables while non-leave nodes
correspond to operation symbols. Schematically,

tr: fk
)

fe—1 fe—1

Jo\ N

N . .
/.. \ /. \ [\

I R Tni+1 .- Tong AN Tng—ni+1 -+ Tng

It is proven that any term t € W, has a unique normal form NF(¢) in the
variety RA_ (called NF-term for RA,) which differs from ¢, at most in
variables. Obviously, we can answer (v) as follows:

5.1. LEMMA. Up to equivalence, the assigned term for the normalization
(RA,)* is given by
(5.1) v(z) =t (z,...,2).
Keeping the above notation let us introduce a map nf : W, — W, by
nf(z): =« for a variable z,
nf(t) : = NF(¢t) for a non-trivial term t € W.
5.2. PROPOSITION. nf(t) introduced above is a normal form for termst € W,
in the variety (RA,)* of generalized diagonal algebras of a given type 7. For a
non-trivial term t there is a unique set of variables (not necessarily distinct)
Loy ye - -y Tug Such that nf(t) =t (Tu,,. .., Tug)-
Proof. According to the definition, each variable z is equivalent to nf(z),
and two variables are equal iff they have the same nf-term. Obviously, a
non-trivial term ¢ is never equivalent with a variable z in (RA,)* since a

non-normal identity ¢ = x cannot be satisfied in the normalization. Now let ¢
be a non-trivial n-ary term from W,. Let A € (RA,)* and let a4,...,a, € A.
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Let v be an assigned term of (RA,)*, (5.1). Since the results of all term
operations belong to the skeleton it holds t“(a1,...,a,) € Sk.A and also
NFA(t)(ay,...,an) € Sk.A which means

NFA(t)(ay,. .., an) = vA(NFAt) (a1, ..., an)),
vA(tA (a1, ..., an)) = t4ay,. .., an).

Now we use the fact that RA_ = NF(¢t) ~ t as well as the fact that the map
z +— v(z) determines an endomorphism of A into Sk A € RA_ ([Ch 95a],
Lemma 1) to verify that the following holds:

vANFA(t)(ay,. .., an)) = NFA() (vA(ay), . .., v (a,)) =
= tA(v(a1), ..., v4(an)) = vt (ay, . . ., an)).

Together, we conclude (RA,)* k= t = NF(t) = nf(t). According to ([P&R 93],
p. 187-8) there exists a suitable (uniquely determined) family of variables

(some of which might coincide) z,,, ..., Z4,, such that

(5.2) nf(t) = NF(£) = tr(Tuys -+ Tuny )

Now let ¢, ¢’ be non-trivial terms such that (RA,)* |=t ~ t’. This normal
identity must be satisfied also in the variety of rectangular algebras, RA, =
t = t’, which implies that the corresponding NF-terms are uniquely deter-
mined and NF(¢) = NF(¢') holds. That is, the nf-terms coincide, nf(t) =
nf(t'). Vice versa, if the equality nf(¢) = nf(¢’) holds for non-trivial terms ¢
and t’' € W, then we use (RA,)* = nf(t) ~ t (and similarly for ') to prove
that (RA,)*Et~t. =

So the problem (iv) is reduced to the same problem for RA_ the solution
of which is given in ([P&R 93], p. 190): NF(t) = t.(zx(qt), - - -, Ta(qno)) Where

D_; .
.’B,\(gj)zt P(zy,...,Tn), 1<j < mng,

Dy = ({z1,...,2n}; (€] i1, k).

- 2':,{11,...,.’211}

To describe an algorithm for finding the decomposition of algebras from
the normalization (RA,)*, we can use a similar procedure as in [P&R 93],
only we must add constant algebras where necessary.

Let A € (RA,)*. According to 2.6.Lemma and ([P&R 93], p. 190),
the skeleton Sk A € RA, is isomorphic to a subalgebra of the direct pro-
duct of two-element projection algebras. In more details, let ag € Sk.A
be a fixed element and let t, be the general NF-term. Let A; := {a; :=
(ao,...,ao,d,ao,...,ao) |d S Sk‘.A}, jedJ:= {1,2,...,710}. Let ’r‘(]) de-
note the least integer for which the cardinality |A;| < 2rG) j € J. Let
h; : A; — {0,1}79) be a fixed embedding for j € J. Let ¢/ = (q],...,q})
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denote the j-th k-tuple determined by u(q’) = j (u from (2.2) corresponds
to the lexicographic order). Finally let B; denote the algebra

{0 1} (nl{)o 1} 1_1, ,k)a .7 € J.

Then h : Sk A — HjGJB;<j), h(d) = (h1(d), ..., hny(d)), d € SkA is the
desired isomorphism, and h(SkA) <[], JBT(J ) For any d € Sk A, denote
v(d) = |{a € A|vA(a) = v*(d)}|. Let p be the minimal integer such that

max{v(d)|d € Sk A} < 2P.
Let us choose injections
ba : [d)o — {0,137
Denote C = ({0, 1}; (c§"?)i=1...x) where c{*(ay, . .., an,) = 0 for any choice

ai,. .., Gn, from {0,1}.
Now we can answer the question (iii) as follows:

5.3. PROPOSITION. An algebra A € (RA,)* is isomorphic to a subalgebra of

the direct product HjEJB;(j) x CP. In the above notation, the corresponding

BT(J)

injective homomorphism (embedding) H : A — [, ;B;"" x CP is given by

H(a) = (h(v*(a)), byaay(a)) forae A
Proof. The decomposition of the skeleton and the isomorphism k of Sk A
into a product of two-element projection algebras is described in ([P&R 93],

p. 190). The rest follows from the fact that [d]s are constant subalgebras of
A and bg : [d]e — CP are injective homomorphisms of constant algebras. m

Let us give a couple of examples for illustration.

5.4. EXAMPLE. Let M = {a,b,c} and let a binary operation f on M be
given by the multiplication table

flalbdbl]lec

a a C C

b a c c

C a C C

Then (M;f) € (RA))" is isomorphic to a subdirect product of the 2-

element projection grupoid ({0,1}; e1 {0 1}) with the 2-element constant
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grupoid ({0,1};(:(()2)), c(()z)(u, v) = 0 for u, v € M. Similarly, the algebra
(M; egzj)w, f) € RA™ 5 5) is isomorphic to a subdirect product of the algebra

2 :
({0,1}; eg %0 1},652%0 1}) with ({0,1}; egzzo 1},082)).

5.5. EXAMPLE. Let f;, fo be a couple of binary operations on A = {a,b,¢,
e, j,k} given as follows:

fi abcejk fa abcejk
a a aaaaa a a acacec

a aaaaa a6 acacec
c ccccce c aacacec
e eeeceee e eejejy
J V333337 J | eejejy
k33333737 k| eejejy

Then the algebra A = (4; fi, f2) belongs to the normalization (RA, 2))"-
The corresponding skeleton is Sk A = {a,c,e,j} € RAq ), and the as-
signed term t. = fo(fi1(z1,22), f1(z3,24)) is in the normal form. Let us
choose a9 := a € Sk A. Then A; = {a,e}, A3 = {a,c}, A2 = Ay = {a},
r(1) = r(3) = 1, r(2) = r(4) = 0. Denote B; = ({0,1};e{? (), B; =
({0,1}; 652)’ 622)) Then Sk A ~ By x Bs. The bijections

hi:A; —{0,1}, a—0, e—1, hg:A3—{0,1},a—0, c—1

are components of the isomorphism h : Sk A — ({0, 1}2 e§2) ><e§2), (2 eg2))

—(0,0), ¢—(0,1), e—(1,0), j—(1,1).
The congruence classes are

[a]<l> = {a7 b}a [.7]<I> = {.7) k}) [c]<1> = {C}, [6]4;, = {6}
so that max{v(d) |d € Sk A} = 2, and p = 1. Let us choose the injections
:lale — {0,1},a— 0,b— 1, b : [c]e — {0,1}, c— O, b, : [e]e — {0, 1},
e— 0,b; : [a]le — {0,1}, j— 0, k — 1. We get the induced injective
homomorphism H : A — ({0, 1}3;652) X 652) X 082),e§2) X eg2) X 082)) of A
into By x By x C given by
| s (0,0,0), b+ (0,0,1), ¢+ (0,1,0), e (1,0,0),
ji—(1,1,0), k— (1,1,1).
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