
DEMONSTRATIO MATHEMATICA 
Vol. XXXVI No 1 2003 

Alena Vanzurová 

THE NORMALIZATION OF R E C T A N G U L A R ALGEBRAS 

Abstract. Our aim is to investigate the normalization (nilpotent shift) (RAT)* of 
the variety RAr of rectangular algebras of a finite type r . It can be regarded as a com-
mon generalization of various algebras studied by different authors, namely of rectangular 
algebras, [P&R 92, 93], rectangular bands, [Gou], medial grupoids, [J&K], or generalized 
diagonal algebras, [P 64, 66a, b]. 

We will determine all subdirectly irreducible algebras in the normalization of the 
variety of rectangular algebras, give a normal form for terms in the normalization and an 
algorithm for finding a subdirect decomposition of algberas belonging to the normalization. 

1. Introduction, historical remarks 
Our aim is to present here a variety of algebras which can be regarded 

as a common generalization of some classes of algebras studied by various 
authors, namely rectangular bands, [Gou], rectangular algebras, [P&R 92, 
93], diagonal algebras and generalized diagonal algebras, [P 64, 66a, b], or 
medial grupoids, [J&K]. 

Fix a type r : F —> N with a family F of operation symbols of finite 
arities r ( / ) € N. Let Alg(r) be the class of all algebras of type r (shortly, 
r-algebras). The basic operation in an algebra A 6 Alg(r) corresponding to 
the operation symbol / G F will be denoted by fA, and we will keep the 
notation A = (̂ 4; FA). 

Given a set E of identities of type r denote by ModE the variety of 
all models of £ , that is of all r-algebras in which all identities from E are 
satisfied. In the algebras we are interested in, the following identities play 
an important role (here / , g € F with arities r ( / ) = n, r(g) = m): 

( I f ) f(x,..., x) & x (idempotency, idempotent law) 
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, 3-2n), • • • > f(%nl, • • • i 2-nn)) 
~ /(^li) • • • j xnn) (diagonal law) 

/ (^l) • • • j^t- i) /(yi) • • - ,yi-i,Xi,yi+i, • • -,yn),Xi+i, • • -,Xn) 
« /(xi, • • • ,xn), 1 < i < n (i-th absorption, or cancellative law) 

(E/iS) f(g(x u>... 
~ 9(f • • • i ®nl)i • • • > /(^lmi • • • > Znm)) 

(entropic law, or commutability, or generalized metabelian law). 
An algebra .4 is called idempotent if all basic operations are idempotent and 
is called entropic if (Ef>g) is satified in A for all couples of / , g. 

REMARKS. Idempotency means that each singleton subset {a} C A is actu-
ally a subalgebra of A. An algebra A = (A) FA) is entropic if and only if 
each basic operation f A determines a homomorphism of algebras (denoted 
by the same symbol) fA : (At^]Fa) -> (A\FA). The identity (Ef,g) has 
been given various names. If (Efi9) holds in A then fA and gA commute 
which explains "commutability" . If / = g are equal binary operations de-
noted by an infix o then (E0i0) becomes (x o y) o (z o u) & (x o z) o (y o u), 
[Sm 99], p. 15. The notion "entropic" , in use in this context for a long time, 
refers to the "inner turning" of y and z, [Sm 99], p. 15; some authors prefer 
to use "medial" , e.g. [J&K] for grupoids. 

1.1. EXAMPLE. For a single unary operation, diagonality means f ( f ( x ) ) & 
f(x). On any set, constant operations and the identity belong to the family 
of unary operations / satisfying (Df). 

At the end of '50, E.S. Liapin studied the variety of semigroups given by 

L = Mod((/0), (AS) : x o (y o z) & (x o y) o z, (**) : xoyoz^xoz) 
and published the results in [L 60]. The variety L in fact coincides with the 
variety RB of rectangular bands, [Cli-P 64], [Gou 82], [P& R 93], which is 
usually introduced as 

RB = Mod((AS), (*)) where (*) : oc o y o cc x. 
The variety RB is generated by algebras with one binary projection as a 
basic operation. Every rectangular band is a direct product of two projection 
algebras. 

In the '60, J. Plonka introduced algebras (A\ f ) with one n-ary basic op-
eration satisfying the identities ( I f ) , (Df), as a generalization of semigroups 
considered by Liapin. He started to call them n-dimensional (=n-ary) dia-
gonal algebras, [P 64], [P 66a], in a more contemporary notation, 

DA(n)=Mod((If),(Df)). 
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He proved a representation theorem and also theorems on independence in 
the sense of Marczewski. In [P 66b], Plonka studied the variety of generalized 
diagonal algebras 

GDA(n) = Mod ((£>,)). 
In '90, J . Slapal investigated algebras with a single basic operation of 

an arbitrary (even infinite) type satisfying diagonality only, or in combina-
tion with other properties (idempotency, mediality), [SI 92], [SI 94], He also 
presented multiplication tables of 3-element binary generalized diagonal al-
gebras, 4-element binary generalized diagonal algebras and one example of 
a generalized diagonal algebra of order 12. His further interest was moti-
vated by the categorial view-point. He investigated especially powers and 
exponentiation, and not the class of diagonal algebras itself. 

Being inspired by Slapal's examples, J . Klouda constructed a computer 
program which was able to produce multiplication tables of binary generali-
zed diagonal algebras up to order 10. The theoretical background used in 
the program was published later in [K&V]. A more up-to-date computer 
program which yields all binary and ternary generalized diagonal algebras up 
to order 20 was constructed by J . Tichy. The way how to produce examples 
was clear but rather mechanical. 

Why on earth the algebras look like they look? 

The explanation comes from considerations published in a couple of excel-
lently written papers by R. Poschel and M. Reichel. 

2. Projection algebras and rectangular algebras 
Let r be a finite type with F = ( / i , . . . , fk) where r(fi) = n* > 1 for 

i & I = {1,... ,k}. Let us denote here by e ^ : An —> A the j - th projection 
( a l 5 . . . , an) i—> aj on a non-empty set A, j € { 1 , . . . , n}, n > 1. 

Under a projection r-algebra we will understand a r-algebra for which 
each basic operation f ^ is a projections onto the carrier set, 1 < qi < 
rii, i — 1 , . . . , k. 

2.1. LEMMA. ([P&R 93], 2.6. Lemma, p. 186) Every projection r-algebra 
A = (A; i,...,k) is isomorphic to a subalgebra of the direct power BT 

of the two-element projection algebra B = ( {0 ,1} ; ( e ^ o 1j)i=i,...,fc) where r 
is the least natural number such that < 2 r . An isomorphism is induced 
by any injection h : A —> {0, l } r . 

We will use the notation Aq = (̂ 4; where q = (q>i,.. .qk) 
and 1 < ft < nj. Let us denote 

(2.1) n0 = nk • ... • ni = r(/fc) • . . . • r(/i). 
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2.2. Lemma. For a given finite type r with r(fi) = n ,̂ i = 1 , . . . , k, there 
are exactly no projection algebras. 

P r o o f . For the i-th projection, there are ni choices e ^ , . . . , e^'^. • 

The family of all projection r-algebras with the same carrier set A can 
be ordered linearly as follows. On the set of all possible fc-tuples (qi , . . . qk) 
with 1 < qi < ni, let us take the lexicographical order from right to left, i.e. 
(qi,..., qk) < (q[,..., q'k) if and only if there is an index i such that < q[ 
and for j > i, qj = q'y We obtain a sequence q1,..., qn°. The sequence 

defines a linear order on the set of all projection r-algebras 
on the given carrier set A. The following formula will be useful in the sequel. 
If we define a function fi(q), ([P&R 93] p. 190, 187), by 

(2.2) fj,(q) = qi + (q2 - l )m + (q3 - 1 )n2 • nj_ + ... + (qk - 1 )nk_x • ... • nx 

then ¡J.(q]) = j as can be checked. 
Let PT denote the class of all projection algebras of a given finite type r . 

In [P&R 92, 93], the variety RAT = Var(PT) generated by the class Pr was 
investigated. Its elements have been called rectangular r-algebras. Among 
others, the authors proved the following. An algebra is rectangular if and 
only if it is isomorphic to a direct product of projection algebras. The variety 
of rectangular algebras is finitely based and can be given as 

RAt = Mod({(//), (£)/), (Ef);f e F}) 

with the generating system of identities S T = {(//), ( D f ) , (Ef i h) ; f,hE F}. 
The authors also proved decomposition theorems for rectangular alge-

bras, derived normal forms for terms in this variety, described an algoritm 
for finding normal forms and used it for a representation of a rectangular 
algebra as a subdirect product, proved solidity and investigated generating 
algebras. 

In many proofs, it might be reasonable to substitute the diagonality 
condition by the family of absorption laws ([P 66 b], p. 19, 3°). Let us give 
an alternative proof. 

2.3. LEMMA. The identity (Df) is equivalent to the system of identities (Alj), 
1 <i<n. 

P r o o f . Let / € F. If the identities (Aif) hold for all i € { 1 , . . . , n} then 

/ ( / ( z 11, • • • J Z l n ) , • • • , f(xn 1, . . . , xnn)) « f(x 11, f(x 21, . . • , X2n), 
(Af) 

f(xnl,...,Xnn)) « ... » f(xU,...,Xnn). 
{A2f) (Af) 

Vice versa, by diagonality (used either "outside", or "inside" the term) 
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f(x\, • • • , — 1 > f ( y i , • • • > Xi, . . . , 2/n)> > • • • ! Xn) ~ 
/(/(®1, • • •, ®„), • • •, / ( z i , • • •, ®n), / ( / ( y i , . . . , X i , . . . , y n ) , . . . , 
f(vu • • •, Xi,.. •, y„)), / ( x i , . . . , x n ) , . . . , / ( r r i , . . . , xn)) 
~ f(f(xi, • • • , • • • , /(zi, • • • , In), 
/(j/1, . . . , Xi, . . . , yn), f(x 1, • • • , • • • , / ( ^ l , • • • , xn)) ^ / (^ l ) • • • ) 3-n) 

for any i € {1 , . . . , n}. • 

If T = (n) we obtain Plonka's diagonal algebras, RA(n) ~ SA(n) • The 
special case with r = (2) is known as the variety of rectangular bands, 
RA(2) = RB. 

2.4. LEMMA. The following varieties coincide: RB = L = DA(2) = RA(2)-

P r o o f . The proof is based on the fact that in the class of all grupoids, the 
following holds: 

Mod((AS), (*)) c Mod((/0), (AS), (**)) C Mod((/0), (D0)) c 
C Mod((/0), (Al) , (A2

0), (E0)) C Mod((AS), (*)). 

In fact, let A — (A] o) be a semigroup satisfying (*). Then (**) also holds 
since xoz « (xoz)o(xoyoz)o(xoz) ¡=s (xozox)oyo(zoxoz) « xoyoz, and A is 

(*) (AS) (*) 
idempotent as well: xox « (xox)oxo(xox) ~ xo(xoxox)ox & xoxox & x. 

(*) (AS) (*) (*) 
Further, (D0) holds in the variety of idempotent semigroups satisfying (**) 
since x o 2 « x o (y o u) o z « (x o y) o (u o z). (D0) is equivalent with a 

(**) (AS) 
couple of identities (vl*), (A2) by 2.3.Lemma. Let us show that (E0) follows 
by (D0). (xoy) o (uoz) « 10 z « (x o u) o (y o 2). Now let A be a binary 

(Do) (Do) 
rectangular algebra. Then A is a semigroup since (Al) together with (A%) 
imply associativity. By (AS) and (J0), the identity (*) also holds in A. Hence 
the corresponding varieties coincide. • 

Now we may ask which (reasonable) varieties include RAr as a subvari-
ety, and which generalizations of rectangular algebras are at the same time 
generalizations of GDA^. 

E.g. we can drop diagonality. Elements of the variety MT = Mod({(//), 
(Ef);f € F}) are known as modes. The theory of modes has been developed 
e. g. by J.D.H. Smith, [Sm 99], and by A. Romanowska who has given 
an encyclopedic survey in [R 92], [R&S]. An interesting characterization of 
modes is due to K. Kearnes: 

A r-algebra A is a mode if and only if each polynomial function of A is 
a homomorphism, [Sm 99], p. 16, [Ke]. 
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Prom this view-point, rectangular algebras are exactly diagonal modes. 
Modes are not oblighed to satisfy diagonality ( D f ) in general as can be 
easily seen. 

2.5. EXAMPLE. A binary algebra ({0,1}; / ) given by / (0 ,0 ) = 0, f(x, y) = 1 
otherwise is a mode since polynomials are homomorphisms, namely, pro-
jections and constant operations, f(0,y) = y = e ^ ^ x , y ) , f(x, 1) = x = 
e i 2 \ x , y ) , f i h y ) = / ( z , l ) = l , b u t is not diagonal s i n c e / ( / ( 0 , 1 ) , / ( 1 , 0 ) ) = 
1 while / (0 ,0) = 0. 

Another possibility is to consider diagonality only, and some investiga-
tions in this direction appear in the papers by J. Slapal. We have seen that 
n-ary algebras from GDA^ are characterized by the identity ( D f ) . But this 
is not the whole truth. It can be checked that generalized diagonal algebras 
satisfy not only (Df), but also ( E f ) , and in fact all normal identities of the 
variety RA(n) • That is, GDA^ is the so-called normalization of RA(n) • 

This motivates the study of normalization of the variety of rectangular 
algebras of type r , which will be our way of generalization. For this purpose, 
we will need some results the proofs of which can be found in the paper 
[P&R 93]. As far as decomposition properties of rectangular algebras are 
concerned, the following is known: 

2.6. LEMMA . ([P&R 93], 2.6.Lemma, 2.7.Th., p. 186) Rectangular algebras 
can be characterized either as isomorphic images of finite products of pro-
jection algebras of type r, or as isomorphic images of subalgebras of direct 
products of 2-element projection algebras of type r: 

(2.3) RAr = HP/in (Pr), EAr = ^(P®). 

Here I means isomorphic images, S subalgebras, and P products, [Ih]. 
Denote by SI (V) all subdirectly irreducible algebras, shortly Si-algebras, 

of a given variety V. Let pj-2' denote the class of all two-element projection 
r-algebras. 

2.7. LEMMA. ( [ P & R 93], 2.8. Corollary, p. 186) All subdirectly irreducible 
algebras in RAr

 a r e precisely the two-element projection r-algebras, 

(2.4) SI (RAr) = pW. 

2.8. EXAMPLE . Let A = { 0 , 1 , 2 , 3 } . Then (A-,e^A) € BA(2) i s isomorphic 

to the direct product of ({0,1}; e^ with itself. 

Since there are no projection T-algebras on a two-element set we obtain 
as an immediate consequence: 
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2.9. LEMMA ( [ P & R 93], 2.9.Corollary, p. 187) Let the type r be finite, F = 

(/i) • • • i fk)- Then there are exactly no isomorphism classes of rectangular 

SI-T-algebras and 2N° subvarieties in RAT. 

Given terms p, q of type r , an identity p ~ <? in a variety V is called 
a hyperidentity for V if it is satisfied no matter which term operations of 
the same arity are substituted for the operation symbols in the identity. A 
variety V is called solid if all identities satisfied in V are hyperidentities. 
Equivalently, a variety is solid iff the identities from the generating system 
are hyperidentities, [Gr 88]. By ( [DLPS 91], 4.13 Prop., p. 110), any non-
trivial solid variety of type r contains all projection r-algebras. 

2.10. LEMMA ( [ P & R 93], 5.1.Th, p. 192) All identities of the generating 

system £T of RAr are hyperidentities. Consequently, all identities valid in 

RAr are hyperidentities, and RAr is a solid variety. 

So in the lattice LT of all varieties of type r , RAr is the least solid variety. 
Especially, for A £ RAT, each term operation is idempotent and diagonal, 
and any couple of term operations commute. This enables us to construct 
new rectangular algebras from already known ones. 

2.11. PROPOSITION. Let A € RAT. Let ( i/)i<j<fc be any finite collection of 

terms of a given type. Then (A\ (ij4,..., t-fc)) is also a rectangular algebra. 

P r o o f . A consequence of the above arguments: all term operations satisfy 
all identities of the generating system S T . • 

3. Normalization of a variety 
Given a class K of algebras of the type r denote by Id(K) the set of 

all identities valid in K and by Id^r(K) the family of all normal identities 
satisfied in K. Note that the identity p K, q is called normal if the terms 
p(xi,..., xn), q(xi,..., xn) are of the same arity and either both are equal 
to the same variable, or both are not variables ( = proper terms), and non-

normal otherwise. We can write Id(K) = Id^(K) U "B(K) where "B(K) is 
the set of all non-normal identities. 

Let V be a variety of type r with r ( / ) > 1 for at least one f & F. 

If £ ( V ) is non-empty and contains some identity p{xi,..., xn) ~ X{ where 
p is not a variable then H(V) contains also the identity v(x) & x where 
v(x) = p(x,..., x) is a unary term. Note that v(x) is determined uniquely 
up to identity. So we can call v(x) an assigned term of V, ([Ch 95a], p. 35), 
( [Ch&G 99], p. 50). 

For a variety V consider the variety V* of all r-algebras given by all 
normal identities of V: 
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(3.1) V* = Mod (IdN(V)) 
= {A | p ~ q holds in A for all p « q from /d/v(V)}. 

V*, denoted also by A/"(V), is the so-called normalization or nilpotent shift 
of V, [M 73], [Ch&G 99], [Ch 95a], and V is a subvariety in the variety V* 
of type r . A variety V will be called normally presentable if V* = V and 
non-normally presentable otherwise. Given a normally presentable variety 
W and a unary term v(x) (both of a given type) there exists a unique 
variety V with an assigned term v(x) such that V* = W, ([M 73], Prop. 1, 
p. 704). We will need the following. 

3 . 1 . LEMMA. Let V be a non-normally presentable variety with an assigned 
term v(x). ThenV = Mod(IdN(V)ll{v(x) ^ x } ) . Moreover, ifV = Mod(E) 
for some system of identities £ then there exists a system of normal iden-
tities Sat C Id^(V) such that V = Mod(S^ U {v(x) & x}) . Especially, if 
V* = Mod(£) then V = Mod(E U {w(x) « x}) . 

P r o o f . Similar arguments as in ([M 73], p. 704) can be used for the proof. 
The following is crucial: any non-normal identity p{xi,..., xm) ~ xt can be 
replaced by a normal identity p(v(xi),..., v{xm)) « v(xl) which, together 
with v(x) x, gives back the original one. • 

3 . 2 . LEMMA. Let V = Mod(E;vU{w(x) « x} ) be a non-normally presentable 
variety and Eat C Id^CV). Then the normalization can be described by 
identities as follows: 

V* = M o d ( E j v U £ „ ) 

where 
Sjj — {^(xi , . . . , Xj, . . . , X n ) ~ f(x\, • • • , X j _ i , V(Xj), i , . . . , xn) , 

v(f(xi,...,xn)) « /(xx , . . . ,x„)|/ € F,j = 1 , . . . , n } . 

P r o o f . The proof follows from ([M 73], Lemma and Theorem 2, p. 705). • 

3 . 3 . PROPOSITION. If V is a solid variety then the normalization V* is also 
solid. 

P r o o f . In a solid variety V, all identities, especially all normal identities, 
are hyperidentities. By definition, Id(V*) = Id^(V), so that all identities in 
V* are hyperidentities as well. • 

On a two-element set {0 ,1} , consider a constant r-algebra C = ( {0 ,1} ; Fc) 
with operations given by fc(ai,..., an) = 0 for all / 6 F and ai,..., an G 
{0 ,1} . All two-element constant r-algebras are isomorphic to C and form an 
isomorphism class denoted by C-i-2'. 

3.4. LEMMA . ([Ch 95a], Theorem 4, p. 42) Let V be a non-normally pre-
sentable variety and V* the corresponding normalization. Then all subdi-



The normalization of rectangular algebras 19 

rectly irreducible algebras ofV* are two-element constant T-algebras together 
with all Sl-algebras of V, 

(3.2) SI(V*) = SI(V)UC[21. 

Let A 6 V* and let v denote an assigned term. The set 

(3.3) Sk A = {d G A | vA(d) = d} 

will be called a skeleton of A and its elements will be called skeletal elements. 
If we introduce a relation $ on A by: (a, b) 6 $ if and only if for each n-
ary f E F and a2„ an € A, fA(b, a2,..., an) = fA(a, a2,..., an), then 
$ € Con A, i.e. $ is a congruence on A, each congruence class [a]<j> contains 
exactly one skeletal element d, and the congruence class [a]$ is formed by 
all elements b G A for which vA(b) = d. Obviously, (a, b) G $ iff a can be 
replaced by b at each place in each term. Hence we conclude 

3.5. LEMMA. The equivalence relation given above can be characterized as 
follows: 

( 3 . 4 ) {a, b) G $ if a n d only if v A ( a ) = v A ( b ) . 

3.6. LEMMA. An element a G A belongs to SkA if and only if a is a result 
of some term operation on A, 

(3.5) SkA= { t - A (a i > . . . , a n )|a i G A, t G WT}. 

P roof . If a G SkA then a is a result ofvA. Vice versa, let a — tA(ai,..., am) 
for some m-ary term t and a i , . . . , a m G A. Since v(x) & x holds in V the 
identity v(t(xi,..., xm)) « t(xi,..., xm) belongs to Id^f(V), that is, must 
be satisfied in V*, and vA(a) = vA(tA(ai,..., a m ) ) = tA(ai,..., a m ) . • 

3.7. LEMMA. ([Ch 95a], 37-38) If A £ V* then the map L : -> SkA, 
[a]$ vA(a) is an isomorphism, A/& ~ SkA, and the skeleton SkA is a 
maximal subalgebra of A belonging to V. 

It can be observed that a map F : A > Sk A induces a functor. Consider 
the category V formed by algebras of the class V together with homomor-
phisms as morphisms, similarly for V*. 

3 . 8 . PROPOSITION. The map F given by F(A) = SkA, F(<p) — <p\skA for 

(p G Mor(V*), ip : A —> B, A, B G Ob(V*) is a covariant functor from the 
category V* to the category V. 

P r o o f . Since SkA < A we obtain i d j \ \ s k A = id-skA• Given a couple of 
homomorphisms <p 6 Hom(A,B), € Hom(B,C), A, B, C G V* then for 
the assigned term v of V, (p(vA(x)) = vB(tp(x)) holds since homomorphisms 
preserve terms. Hence homomorphisms preserve skeletons, ip\sicA SkA —> 
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SkB. For a couple of homomorphisms, (ip o tp)\skA = V'lsfcs 0 <p\skA- We 
conclude F(id= and F(ip o <p) = F(ip) o F(<p). m 

REMARK. In [Ch 95a, b], the so-called choice algebras are used to give 
an explicite construction of the nilpotent shift. If V is a variety of type 
r denote by E(T) the family consisting of all miliary terms of V and all 
miliary operations of type r if there are any. Let A = (A; FA) e V. Let 
9 € Con A be a congruence. Let n : Exp A —> A be a choice function 
compatible with 9, i.e. /c([a]e) € [a]g and if [a]E fl Ea(T) / 0 then «([a]©) G 
[a]i> n Ea(T). For any n-ary operation fA € FA we can create a new n-
ary operation fA* by fA*(ai,.. .,an) := /i([fA(ai,... ,an)]e) such that the 
algebra A* = (A;{fA*-J e F}), called a (9, n)-choice algebra, belongs to 
Af{V), and SkA* = {«;([a]e);a € A}. If we denote by £(V) the class of 
all (6, /i)-choice algebras for all algebras A € V and all cogruences 9 on A 
then the nilpotet shift of V consists exactly from all homomorphic images 
of algebras from the class €(V), 

(3.6) JV(V) = HC(V). 
Up to isomorphism, J\f{V) is unique. 

3.9. EXAMPLE. Let A = {0,1,2,3, }. The algebra A = (A; f ) € RA{?) with / 
given below is isomorphic to the direct product of the algebra ({0,1}; e[2j0 j^) 

with ({0, l } ; 4 2 j 0 1}). Let 9 e Con A be given by 9 = AA U {(0,1), (2,3)}. 
Let us choose a 0-function x by x({0,1}) — 0, x({2, 3}) = 2. Then the 
(9, x)-choice algebra .4* = (A] f*) of ^belongs to (EA(2))% SkA* = {1,2}. 
The corresponding multiplication tables are 

/ 0 1 2 3 

0 0 1 0 1 

1 0 1 0 1 

2 2 3 2 3 

3 2 3 2 3 

f* 0 1 2 3 

0 0 0 0 0 

1 0 0 0 0 

3 2 2 2 2 

3 2 2 2 2 

3.10. EXAMPLE. NOW let us consider B* = (A; f *) e ( R A ( 2 Q * with the 
binary operation given below and A as above. The term v(x) = f*(x,x) 
is an assigned term. Obviously, a maximal idempotent subalgebra of B* is 
SkB* — {0,2}, and the binary relation $ on A given by: (a,b) € $ if and 
only if f*(a, a) = f*(b, b), is a congruence on A with the congruence classes 
{0}, {1,2,3}. Now it is natural to assume a ^-function given by K([0]$) = 0, 
K([2]$) = 2. B* = (A; /*) arises as a /i)-choice algebra from B = (A; / ) 
with / - e g . 
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/ 0 1 2 3 

0 ~~0 0 0~~ 0 

1 1 1 1 1 

2 2 2 2 

3 ~~3 3 3 3 

4. Normalization of rectangular algebras 
Our aim is to pay attention to the normalization of the variety RAr 

which is worth considering since Id(RAT) / Idrv(RAT): 

4.1. LEMMA. Let t be an n-ary term, with n > 1, of type R which is not a 
variable. Then t(x,..., x) « x is the non-normal identity in RAr. Conse-

n-times 
quently, the variety RAT is not normally presentable. 

P r o o f . Due to solidity of RAT (2.10. Lemma) all term operations in rect-
angular algebras are idempotent. • 

4.2. PROPOSITION. The normalization A & (RArY is a solid variety. 

P r o o f . By 3.3.Prop., the normalization of a solid variety is always solid. • 

4.3. LEMMA The skeleton SkA of A E (RAT)* is a maximal idempotent 
subalgebra in A. 

P r o o f . A consequence of 3.7.Lemma. • 

4.4. LEMMA. The congruence classes [a]$, a G A are constant subalgebras 
of A. 

P r o o f . Let fi & F and let a i , . . . ,ani for some d G SkA. Then 

/ ^ ( a i , . . . , a n J = f*(d, ...,d) = vA{d) = d. . 

4.5. PROPOSITION. The map F given by F(A) = SkA, F(<p) — <p\skA for 

tp € Mor((RATY), tp : A —> B, A, B € Ob((RATY) is a covariant functor 
from the category of generalized diagonal algebras and their homomorphisms 
to the category of rectangular algebras and their homomorphisms. 

P r o o f . A consequence of 3.8. Prop. • 

We will be interested in the following problems: 

(i) how to decide whether a given r-algebra belongs to the variety (RAT)* ? 
(ii) what do subdirectly irreducible algebras in (RArY look like? 

r 0 i—'
 

2 3 

0 0 0 0 0 

i 2 2 2 2 

2 2 2 2 2 

3 2 2 2 2 
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(iii) how to find a representation of A € (RAT)* as a subdirect product 
of subdirectly irreducible ones? 

(iv) given an n-ary term t € Wrn\ how to define and find its normal 
form in (RAr)*? 

(v) is there some "especially nice" choice for the assigned term of 
(RAt)*? 

4 . 6 . P R O P O S I T I O N . Let T be a finite type with F = ( / I , • • •, /fe)- Then every 
identity which holds in the nilpotent shift (RAT)* of the variety of rectangu-
lar algebras can be derived from the finite system of identities, namely 

(RAr)* = M o d ( { ( D f i ) , (Efi\i = 1 , . . . , k} U S) 
where 

E = {fi(xi, • • •, xni) « f i ( f j ( x i , . . . , x1),x2,..., x n J , fi(xi,..., xni) 
~ fi(xi,fj(x2, • • •, x2),..., xnJ,..., fi(x i,..., xni) 
^ fi(x 1, X2, . . • , f j (xUi, . . . , XNI), f i ( x \ X N I ) 

~ f j ( f i ( x 1, • • .,xnJ,.. .,fi(xu ... ,xni)) \i ± j, i,j = 1 ,...,k}. 

P r o o f . A consequence of 3.2.Lemma. If i = j the corresponding identities 
follow from absorption laws, or from diagonality respectively. • 

There is an easy answer to question (i): it is sufficient to verify the above 
identities. 

Now it is also obvious that (RA(n))* = GDA{n) = Mod((Df)). 

4 . 7 . E X A M P L E . On a two-element set there are only two isomorphism classes 
of generalized diagonal n-ary algebras, each consisting of n elements, namely 
an idempotent class of projection algebras and a non-idempotent class of 
constant algebras. 

4 . 8 . P R O P O S I T I O N . All subdirectly irreducible algebras in the variety (RAT)* 
of a finite type r are two-element constant algebras and two-element projec-
tion algebras, 

(4.1) SI(CgAr)*) = p l 2 ] u 4 2 l . 

P r o o f . An immediate consequence of 3.4.Lemma and 2.7.Lemma. • 

So we can answer the question (ii): any generalized diagonal algebra 
of finite type is isomorphic to a subdirect product of 2-element projection 
and 2-element constant algebras. Answering of both (iii) and (iv) requires 
some knowledge of normal forms for terms and is postponed to the next 
paragraph. 
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5. Normal forms for terms in RAR and in (RAT)* 
Given a variety V of type r, a normal form for terms in V is a map of the 

word algebra into itself NF : WT —> WT, t >—> NF(i) such that both terms t, 
NF(t) are of the same arity, t is equivalent with NF(i) in V, V |= t « NF(i), 
and the term t is equivalent to another term t' iff they have the same normal 
forms: 

V\=tfat'<=> NF(t) = NF(i'). 
We are going to find normal form for terms in (RAT)*. 

In ([P&R 93], p. 187-9), an no-ary term tT (called the general NF-ierm 
for RAT) is introduced inductively. Also a formation tree diagram for tT 

is presented in which leaves correspond to variables while non-leave nodes 
correspond to operation symbols. Schematically, 

tr fk 
/••A 

fk-1 • • • fk-1 
. . . 

fl f l fl 

I j . . . Xni . . . X2m • • • 2-no—"i+l • • • 2-no 

It is proven that any term t £ WT has a unique normal form NF(t) in the 
variety RAr (called NF-ierm for RAr) which differs from tT at most in 
variables. Obviously, we can answer (v) as follows: 

5.1. LEMMA. Up to equivalence, the assigned term for the normalization 
(RAt)* i-s given by 
(5.1) v(x) = tT(x,..., x). 

Keeping the above notation let us introduce a map nf : WT —> WT by 
nf( i ) : = x for a variable x, 
nf(i) : = NF(t) for a non-trivial term t £ WT. 

5.2. PROPOSITION. nf(i) introduced above is a normal form for terms t G WT 

in the variety (RAr)* of generalized diagonal algebras of a given type r. For a 
non-trivial term t there is a unique set of variables (not necessarily distinct) 
xUl,..., xUo such that nf(t) = tT(xUl,..., xUQ). 

P r o o f . According to the definition, each variable x is equivalent to nf (x), 
and two variables are equal iff they have the same nf-term. Obviously, a 
non-trivial term t is never equivalent with a variable x in (RAr)* since a 
non-normal identity t « x cannot be satisfied in the normalization. Now let t 
be a non-trivial n-ary term from WT. Let A G (RAT)* and let a i , . . . ,an G A. 
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Let v be an assigned term of (RA T ) * , (5.1). Since the results of all term 
operations belong to the skeleton it holds .. . ,an ) G Sk A and also 
NF - 4 ( i ) ( a i , . . . , an) G Sk A which means 

N F A { t ) { a u . . . , O = ^ ( N F ^ i O i a i , . . . , an ) ) , 

« ^ ( ¿^ ( o i , . . . , a n ) ) = ¿^ (a i , . . . , an ) . 

Now we use the fact that RAr \= NF(t ) « t as well as the fact that the map 
x h-> v(x) determines an endomorphism of A into SkA G RAT ([Ch 95a], 
Lemma 1) to verify that the following holds: 

vA(NFA(t)(au ..., an)) = NFA(t)(vA(ai)y..., vA(an)) = 

= tA(vA(ai),vA(an)) = vA(tA(au ..., an)). 

Together, we conclude (RAr)* f= t « NF ( f ) = nf(t). According to ( [P&R 93], 
p. 187-8) there exists a suitable (uniquely determined) family of variables 
(some of which might coincide) xUl,..., xUno such that 

(5.2) nf( f ) = NF( i ) = tT(xUl,... ,xUnQ). 

Now let t, t' be non-trivial terms such that (RAr)* \= t K, t'. This normal 
identity must be satisfied also in the variety of rectangular algebras, RAr f= 
t « i', which implies that the corresponding NF-terms are uniquely deter-
mined and NF(t ) = NF( i ' ) holds. That is, the nf-terms coincide, nf(t) = 
nf(i ' ). Vice versa, if the equality nf(i ) = nf(i ' ) holds for non-trivial terms t 

and t' e WT then we use (R A T ) * |= nf( i ) « t (and similarly for t') to prove 
that (RAr)* \=tmt'. m 

So the problem (iv) is reduced to the same problem for RAr the solution 
of which is given in ( [P&R 93], p. 190): NF( i ) = tT(xa(9i), • • •, ̂ A(q"o)) where 

v j . 

x\{qi) = t 1 (zi, • • -,xn), 1 < j < n0, 

VqJ = ({xu...,xny,(e{^ .iXn})i=i,...,fc). 

To describe an algorithm for finding the decomposition of algebras from 
the normalization (RA T ) * , we can use a similar procedure as in [P&R 93], 
only we must add constant algebras where necessary. 

Let A e (RAr)*. According to 2.6.Lemma and ([P&R 93], p. 190), 
the skeleton SkA €E RAr is isomorphic to a subalgebra of the direct pro-
duct of two-element projection algebras. In more details, let ao € SkA 

be a fixed element and let tT be the general NF-term. Let Aj := {aj := 
(a0 , . . •, o0, d, ao,..., a0 ) | d G Sk >1}, j 6 J := {1 ,2 , . . . , n 0 } . Let r ( j ) de-
note the least integer for which the cardinality \Aj\ < j G J. Let 
hj : Aj —> {0, l } r < J ) be a fixed embedding for j G J. Let qj — (q{,..., qJk) 
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denote the j-th fc-tuple determined by fi(qi) — j (fx from (2.2) corresponds 
to the lexicographic order). Finally let Bj denote the algebra 

^ = ( { 0 , i } ; ( e ^ 0 1 } ) l = i , . . . l f c ) , j e J . 

Then h : SkA -> UjejB?j\ h(d) = (h^d),..., hno(d)), d e SkA is the 

desired isomorphism, and h(SkA) < For any d € SkA, denote 

v(d) = |{a € A | vA(a) = Let p be the minimal integer such that 

max{v(d)\d€ SkA} <2p. 

Let us choose injections 

fed : [ < * ] * - { 0 , 1 } P . 

Denote C = ( { 0 , 1 } ; (c ( 0 n i ) ) i = l i . . . i k ) where 4 n i ) ( ° i , • • • , ani) = 0 for any choice 
a i , . . . , ani from {0 ,1 } . 

Now we can answer the question (iii) as follows: 

5.3. PROPOSITION. An algebra A e (RArY is isomorphic to a subalgebra of 

the direct product xCp. In the above notation, the corresponding 

injective homomorphism (embedding) H : A —> YijeJ^^ x Cp is given by 

H(a) = (h(vA(a)), bvA{a) (a ) ) for a e A. 

P r o o f . The decomposition of the skeleton and the isomorphism h ot SkA 

into a product of two-element projection algebras is described in ( [P&R 93], 
p. 190). The rest follows from the fact that are constant subalgebras of 
A and b<i : —> Cp are injective homomorphisms of constant algebras. • 

Let us give a couple of examples for illustration. 

5.4. EXAMPLE. Let M = {a , b, c } and let a binary operation / on M be 
given by the multiplication table 

/ a b c 

a a c c 

b a c c 

c a c c 

Then ( M ; / ) € (RA ( 2 ) ) * is isomorphic to a subdirect product of the 2-

element projection grupoid ( { 0 ,1 } ; e^2L 1 i ) with the 2-element constant 
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grupoid ( { 0 , 1 } ; 4 c{
0

}(u,v) = 0 for u, v € M. Similarly, the algebra 

( M ; e \ ' M , f ) € EA*(2,2) i s i somorphic t o a subdirect product of the algebra 

( { 0 , l } ; e ^ 0 1 } , 4 2 > 0 1 > ) w i t h ( { 0 , l } ; e g o i } , 4 2 ) ) . 

5.5. EXAMPLE. Let / i , / 2 b e a couple of b inary operat ions o n A = {a , 6, c, 
e, j, k} g iven as follows: 

a b c e j k 

a a a a a a a 

b a a a a a a 

c c c c c c c 

e e e e e e e 

j 3 j j j 3 j 
k j j j j j j 

h a b c e j k 

a a a c a c c 

b a a c a c c 

c a a c a c c 

e e e j e j j 

j e e j e j j 
k e e j e j j 

T h e n the algebra A — (A; / 1 , / 2 ) be longs t o the normal iza t ion (RA^2,2))*-
T h e corresponding ske le ton is SkA = {a , c, e,j} € RA(2 2)1 a n d the as-
s igned term tT = f z ( f i ( x i , ^2), £4 ) ) is in t h e normal form. Let us 
choose ao : = a 6 S T c A T h e n = {a , e } , = {a , c} , ^ 2 = ^ 4 = { a } , 
r ( l ) = r (3 ) = 1, r (2 ) = r (4 ) = 0. D e n o t e Bx = ( { 0 , 1 } ; e ^ , e^2 )), £ 3 = 
( { 0 , 1 } ; 4 2 ) , 4 2 ) ) . T h e n STc.4 ~ Bx x B 3 . T h e bi ject ions 

hi : Ai { 0 , 1 } , a n O , e t-> 1, h3 : A3 —> { 0 , 1 } , a h-> 0, c w l 

are c o m p o n e n t s of the i somorph i sm h : SkA^> ( {0 , l } 2 ; e ^ x e f , e f ' x e ® ) 

a . - > ( 0 , 0 ) , c « ( 0 , l ) , e . - > ( l , 0 ) , j « - > ( l , l ) . 

T h e congruence c lasses are 

[a]* = {a , b}, [j]* = { j , k}, = { c } , [e]* = { e } 

so that m a x { ^ ( d ) | d G SkA} = 2, and p = 1. Let us choose the inject ions 
ba : [a]* { 0 , 1 } , a ^ 0, b 1, bc : [c]* -> { 0 , 1 } , c ^ 0 , b e : [e]* - » { 0 , 1 } , 
e H-> 0, bj : [a]$ —> { 0 , 1 } , j « 0, fc H 1. W e get the induced inject ive 
h o m o m o r p h i s m H : A —> ({0 , l } 3 ; e ^ x e ^ x x e ^ x c ^ ) of . 4 
into Bi x B3 x C g iven b y 

a ( 0 , 0 , 0 ) , 61-» ( 0 , 0 , 1 ) , c h ( 0 , 1 , 0 ) , en-» ( 1 , 0 , 0 ) , 

j H ( 1 , 1 , 0 ) , fc~ ( 1 , 1 , 1 ) . 
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