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STANDARD QBCC-ALGEBRAS

Abstract. The class of QBBC-algebras was introduced and studied by the authors
in [5]. These algebras model properties of the logical connective implication ”=" in which
the validity of formulas z = y and y = z does not imply the equivalence of z and y. In
the paper the properties of standard QBCC-algebras derived from qosets are studied.

1. Introduction

The notion of a BCC-algebra was introduced and studied by Y. Komori
[7] when solving the problem whether the class of all BCK-algebras forms a
variety. These algebras were then studied by many authors, see e.g. A.Wron-
ski [9] and W. A. Dudek [2].

BCC-algebras serve as an algebraic model describing properties of impli-
cation reducts of certain logics containing the constant 1 meaning the logical
value “true”. More precisely, we use the formal definition from [2]:

DEFINITION 1. An algebra (A,e,1) is a BCC-algebra if it satisfies the
identities:

(BCC1) (zey)e[(zex)e(z0y)] =1

(BCC2)zezx =1

(BCC3) zel=1

(BCC4) lez ==z

(BCCh) (zey=1& yex=1)= z=uy.

The class of BCC-algebras satisfying the commutation axiom

(C) ze(yez)=ye(rez)
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is known to be the class of all BCK-algebras. The class of all Hilbert
algebras, an algebraic counterpart of the logical connective implication
in intuitionistic logic, is just the class of BCK-algebras satisfying the left-
distributivity axiom:

(D) ce(yez)=(zey)e(ze2)

It is well-known that every BCC-algebra A = (A, e,1) can be viewed as a
poset w.r.t. natural ordering defined on A by

(1) <y iffzey=1.

A new construction of BCC-algebras derived from posets was given by
the first author in [4]. In a recent paper I.Chajda and R.Halas 3] started
to study Hilbert algebras in which the axiom (BCC5) is not valid, the so-
called pre-logics. This motivated us to introduce the class containing both
the pre-logics and BCC-algebras as follows:

DEFINITION 2. A QBCC-algebra is an algebra A = (A, e, 1) satisfying the
axioms (BCC1)-(BCC4).

As it was shown in [5], the relation defined by (1) on any QBCC-algebra
A = (A,e,1) is a quasiordering, the so-called natural quasiordering on
A. For any quasiordered set (Q, <) (qoset) we adopt the following notation:
we write a ~ b whenever a < b and b < a and call the pair a,b indistin-
guishable; the set C(a) = {z € Q;z ~ a} is called the cell of a; we shall
write a < bif a < band a # b, and a || b whenever a £ b and b £ a. A pair
(a,b), where a > b is called a bridge if for each ¢ € Q the following (dual)
conditions hold:

(bl) ¢ > b implies ¢ > a,
(b2) ¢ < a implies ¢ < b.

2. Standard QBCC-algebras
Following the paper [5], a QBCC-algebra A = (A,e,1) is called stan-
dard if every subset of A containing the element 1 is a subalgebra of A.
A pair (z,y) of elements z,y € A,z > y, is called normal if z ey = y.
Recall the main result of [5] describing all standard QBCC-algebras:

ProprosITION 1. Let (Q,<,1) be a qoset with a greatest element 1 and
C(1) = {1}. Let us define the operation e on Q as follows:

(ql) zey=1ifz <y,
(@2) lez ==z,

(@) zey=yifziy,
(¢d) zey =1y ifz >y and (z,y) is not a bridge,
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(a5) tf (z,y) is a bridge in Q and x # 1 one can set rey =y or z ey = x;
in the latter case for each z > x we have either z ~ x and zey = z
orz>zxandzex =1z, zey =y; for each z < y we have either z ~ y
andrez=xorz<yandrez=yez =2

Then (Q, ,1) is a standard QBCC-algebra and each standard QBCC-algebra
is of this form.

Hence, Proposition 1 allows to construct all standard QBCC-algebras
starting from a given qoset.

EXAMPLE 1. Let us consider a qoset @) with the diagram in Fig.1.

1

b

=N
>

Fig. 1

By setting d e c = d we get by (q5) eec=¢e,cea=a,dea =a,ceb=0b.
The rest of cases is given by (q1), (q2) and (q4), hence the operation e is
completely determined.

In the following we will describe algebraic properties of standard QBCC-
algebras.

3. Congruences, ideals and annihilators in standard QBCC-alge-
bras

DEFINITION 3. A subset ) # I C Q of a standard QBCC-algebra Q =
(@, <, 1) satisfying the conditions

Myzel,ye Q,z <yimplyy € I,

(I12) (z,y) being a bridge and zey =z € I imply y € I,

is called an ideal of Q.
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The set of all ideals of Q will be denoted by Id(Q). For a congruence 6
on Q (6 € Con(Q)) denote by [1]e its congruence class containg the element
1, the so-called kernel of 6. The following lemma shows that the set of
congruence kernels of standard QBCC-algebras coincide with their ideals.

LEMMA 1. Let Q = (@, <,1) be a standard QBCC-algebra, § € Con(Q),
I€1d(Q). Then

(a) Ig :=[1]p is an ideal of Q,
(b) the relation 8; on Q defined by

(z,y)€briff c~yorz,yel
is the greatest congruence 6 on Q with [1]p = I.

Proof. (a) Suppose (z,1) € 6,y > z. By compatibility we obtain
(rey,ley) = (1,y) € 0. If (z,y) is a bridge and z ey = = € Iy, then
again by compatibility (z e y,1ey) = (z,y) € 6. Hence [z]p = [y]o = [1]s
and y € Ip.

(b) We will show that 8; is a congruence on Q.

Reflexivity and symmetry of 8y are clear. To prove transitivity, let (z, y),
(y,2) € 1. f z ~ y ~ z or z,y,z € I occur, we have (z,z) € 8;. In the
remaining case z ~ y, ¥, z € I we obtain by (I1) z € I, hence also (z, z) € 0;.

Now we prove compatibility of 8;. Suppose (z,y) € 6; and u € @ be an
arbitrary element. It is enough to prove (uez,uey), (zou,yeu) € 6.

First let =,y € I. Applying (I1) one gets u e z,u ey € I, and so
(uez,uey) €0;.

Ifzeu =1, then zeu € I and z < uso by (I1) u € I. This yields yeu € 1.
Suppose further z eu = u. The case you = u gives us (zou,you) = (u,u) €
Or. Foryeu=y # u,1 dueto (I2) uel and (zeu,yeu) = (u,y) € 0;. If
zeu =2z # u,1 then u € I according to (I2) and hence y e u € I yielding
(ouyou) = (z,you) € by,

Secondly let us suppose that z ~ y. We will show that uexz ~ uey
and zeu ~ yeu hold. Let u | z. By (q3) uez =z ~ y = uey,
reu=u~u=yeu Thecaseu ~zleadstouezr =1~1=uey,
zeu=1~1=yeu. Suppose further u > z. The following two subcases
can occur. If both pairs (u, z), (u,y) are normal we get uez =z ~y =uey,
zoeu=1~1=yewu If they are non-normal, then uez =u ~u=uey,
zeu =1~ 1=yeu. The last possibility is u < z. In this case we have also
two subcases. The both pairs (z,u), (y,u) are either normal, then ue z =
l~1=uey,zeu=u~u=yeu,or non-normal and uez=1~1=uey,
Teu=T~y=yeu.

The equality [1]g, = I follows directly from the definition of 6;.

Let us show that 6 is the greatest congruence on Q with kerne] 1.
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Suppose 8 € Con(Q),[l]e = I, and let (z,y) € 6. This by using of
substitution property of  leads to (zey,1), (yez,1) € 0,ie. zoy,yoz € I.
Assume further that « « y. If z,y are incomparable, we get xroy =y € I
and y e z = z € I. In the case of comparability let e.g. ¢ < y. Then y £ z
(otherwise z ~ y), hence y e z € {z,y}. Having y e z = = € I we obtain
with respect to z < y and (I1) also y € I. For y e z = y € I the pair (y,z)
is a bridge, and so by (I2) also z € I. In the summary, we have proved that
z o y implies z,y € I. Finally, we have got 6 C 0;.

EXAMPLE 2. In contrast to BCC-algebras, standard QBBC-algebras need
not be congruence distributive:

Consider a qoset (Q, <) given in Fig. 2 and the corresponding standard
QBCC-algebra Q = (Q, <, 1).

1
a
0
b
Fig. 2
Then Con(Q) is visualized in Fig. 3,
t
&
61« B9 03
w
Fig.3

O1... {{O’ b}7 {a}7 {1}}’
b ... {{0’ a}’ {b}’ {1}}7
O3... {{a, b}a {O}’ {1}}7
Oq... {{Oa a, b}v {1}}
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This example also shows that ideals of QBCC-algebras can be kernels of
more than one congruence.

We will show that congruence kernels in arbitrary QBCC-algebras (i.e.
not necessarily standard ones) correspond to deductive systems:

DEFINITION 4. A subset D C A of a QBCC-algebra A = (A, e,1) is called
a deductive system if

(D1)1e D
(D2) ze(yez)e Dandy€ D imply zez€ D.

Denote by Ck(A) or Ded(A) the set of all congruence kernels of A or the
set of all deductive systems of A, respectively.

LEMMA 2. For an arbitrary QBCC-algebra A it holds Ck(A)=Ded(A).

Proof. It is easy to prove that Ck(A) C D}[(A).
Conversely, let D € Ded(.A). Define the relation 6p on A by

(z,y)ebp iff rey,yez e D.

We show that 8p € Con(A) with [1}g, = D.

Reflexivity and symmetry of 8p are clear. To prove transitivity of 8p,
assume that (z,v),(y,2) € 0p, i.e. zoy,yor,yez zey € D. Then by
(D1) and (BCC1) we have 1 = (yez) e [(zoy) e (ze2)] € D, and since
zey € D, (D2) yields (y @ 2) @ (x ® z) € D. Applying (D2) once more to
le((yez)e(zez))e Dwithyeze D, weobtainzez=1e(zez)ec D.
The validity of zexz € D can be proved analogously, and so 8p is transitive.

Further, let (z,y) € 6p and v € A be an arbitrary element. Then z o y,
yez € D and, by (BCC1),

(uez)e(uey) >zeyec D.

This leads by (D2) to (uez)e(uey) € D (observethata € D,b€ Aanda <b
imply 1e(aeb) =aeb=1¢€ D and hence b =1eb € D according to (D2)).
Analogously we prove (uey)e(uez) € D and (uez,uey) € 6p. Applying
(D2) again for 1 = (zeu)e{(yez)e (yeu)] € D and yez € D one gets
(zeu)e(yeu) € D. Interchanging = and y we have also (yeu)e(zeu) € D and
(z e u,y e u) € 8p. Finally, using transitivity of 6p this gives §p € Con(A)
with [1]0D =D. =

COROLLARY 1. For an arbitrary standard QBCC-algebra Q = (Q,e,1) it
holds I1d(Q) = Ck(Q) = Ded(Q).

In what follows it is shown that congruences on standard QBCC-algebras
are of a very special type:

LEMMA 3. Let Q = (Q,e,1) be a standard QBCC-algebra, § € Con(Q). If
(z,y) € 0 and z,y & I = [1]g, then x ~ y.
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Proof. It results from Lemma 1. m

DEFINITION 5. Let @ = (@, <, 1) be a standard QBCC-algebra and B,C
be non-void subsets of ). The set

(Cy={z € Q;zec=cfor each c € C}
is called the annihilator of C. The set
(C,B) ={z € Q;(xec)ece B for each c€ C}
is called the relative annihilator of C with respect to B.

If C = {c} is a singleton then (C) will be briefly denoted by (c). For a
qoset (Q,<)and 0 # M C Q put U(M) = {z € Q;m < z for each m € M }.
In case M = {ay,...,a,} we also write U(ay,...,a,) instead of U(M).

THEOREM 1. Let Q = (Q,<,1) be a standard QBCC-algebra and I be an
ideal of Q. Then (I) is also an ideal and a pseudocomplement of I in the
lattice 1d(Q). Moreover,

(I ={ze @Q;z | iforallie I\{1}}U{1l}.

Proof. At first we prove that (I) = {z € Q;z || ¢ for all ¢ € I\{1}} U {1}.
Suppose a € (I), i.e. aei =1 for all 7 € I. Evidently, for every ¢ € I'\{1}
either a || 7 or @ > i. If there exists ¢ € I\{1} with a > ¢ then we have by
(Il a e I andso 1 = aea = a, proving that a € {z € Q;z || 7 for all
i € I\{1}} U{1}. The converse inclusion is clear.

Further let us prove that (I) € Id(Q). Suppose z € (I) and z < y # 1.
Then y < ¢ for some ¢ € I\{1} leads to ¢ < i, contadicting € (I). The
case y > ¢ for some 7 € I\{1} means y € I which is also impossible due
to z < y. This shows y € (I). We have to show that (I2) holds. For this
let zey = & € (I) for some bridge (z,y). Let us note that z = 1 would
imply y = 1 ey = 1, hence it holds z # 1. Since (z,y) forms a bridge, the
property z || ¢ for each ¢ € I\{1} yields also y || ¢ for each ¢ € I\{1}, and so
y € (I).

It is evident that I N (I} = {1}. Suppose that J is any ideal of Q with
the property INJ = {1}. If j € J\{1},4 € I\{1} then ¢ || j otherwise either
1<jelInJorj<ielInd, acontradiction. This means that J C (I) and
hence (I) is a pseudocomplement of I in Id(Q). m

THEOREM 2. Let B, C be ideals of a standard QBCC-algebra Q = (Q, <, 1).
Then (C, B) is a relative pseudocomplement of C with respect to B in the
lattice 1d(Q). Moreover,

(C,B) ={z € Q;z | c for each c€ C\B}U B.
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Proof. At first we show that (C, B) = {z € Q;z || ¢ for each ¢ € C\B}U B.
It is easily seen that B C (C, B). Suppose z || ¢ for each ¢ € C\B. Then
(zxec)ec=cec=1¢€ B for all c € C\B. In the remaining case we have
also (z e d) e d € B whenever d € C' N B, and altogether z € (C, B).

Conversely, suppose y € (C, B)\B and assume y |{ ¢ for some ¢ € C\B.
If y < cthen (yec)ec=1ec=ce B, acontradiction. In the case y > ¢
we conclude y € C and, moreover, y =1ey = (yey) ey € B, which is also
a contradiction. This proves y || ¢ for each ¢ € C\B.

Now we show that (C, B) is an ideal of Q. Let z € (C,B) and z < y.
We have y € B whenever x € B. Suppose further z || ¢ for each ¢ € C\B.
It is clear that y £ c for any ¢ € C\B, otherwise z < ¢. So let y > ¢ for
some ¢ € C\B. Then by (I1) also y € C. Moreover, y € B C (C, B) since in
the opposite case we would have z || y. In the remaining case y || ¢ for each
¢ € C\B, hence also y € (C, B).

We prove that (C, B) satisfies (12). Let zey = z € (C, B) for some bridge
(z,y). Then y € B whenever z € B. Suppose further that z || ¢ for each
c€ C\B and assume y |fc forsomec€ C\B.Ify<cwegetz >corz<c
(since (z,y) is a bridge), a contradiction. Similarly, ¢ < y < z contradicts
¢ || = and, finally, (C, B) is an ideal of Q.

It is clear that CN(C, B) C B. Let J be an ideal of Q with the property
CNJ C B and assume j € J\B. Suppose further j |/ ¢ for some ¢ € C\B.
If c < 4, then j € CNJ C B, a contradiction. The case j < ¢ leads to the
contradiction ¢ € JNC C B. This means that J C (C, B) and (C, B) is the
relative pseudocomplement of C' with respect to B in Id(Q). =

There is a natural question to find conditions under which the annihilator
of every non-void subset M of @ is equal to the annihilator of the ideal
generated by M. We will show that the answer is closely connected with the
following example:

ExAMPLE 3. Consider a qoset @ with a greatest element 1 where Q\{1}
is composed by pairwise incomparable blocks B;, ¢ € , being either a cell
or B,; = C(ai) U C(bl) for a; < bi, with bi ®a; = bi. Such a standard
QBCC-algebra will be called a quasiimplication algebra.

THEOREM 3. For a standard QBCC-algebra Q = (Q,<,1) the following
conditions are equivalent:

(a) for each O # M C Q it holds (M) = (I(M)),

(b) @Q is a quasiimplication algebra.

Proof. (a)=>(b): Take M = {c} for ¢ € Q\{1}. We know that I(c), the

principal ideal generated by {c}, is equal to U(c) if there is no non-normal
pair (¢,d) with ¢ > din Q or I(c) = U(c)U{d} if such a pair exists (see [5]).
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We will show that in both cases
(*) (I(c)) ={z € Q;U(z,c) = {1}}.

Suppose z € (I(c)) and let y € U(z,c) be an arbitrary element. Then
y € I(c), hence 1 = z e y = y proving that U(z,c) = {1}.

Suppose conversely that U(z, c) = {1} for some z € Q and let y € U(c).
If £ <y, theny € U(z,c) = {1} and hence z ey =z 01 =1 = y. Otherwise
we have either z || y and zey = yor y < z and z € U(z,c) = {1} and
zey = 1ley =y. Altogether we proved that z € (U(c)). Finally, let (¢, d) be
a non-normal pair of Q with ¢ > d, so ced # d. Let us prove that = € (d).
We have either x = 1 and zed = 1ed = d or z || c. In the latter case
since (c,d) is a bridge, also z || d and z e d = d, hence the equality (x) is
proved.

Consider now b > ¢ for some b € Q. If the pair (b,c) is normal, then
bec = ¢, hence b € (¢} = (I(c)) which, by (x), gives U(b,c) = U(b) = {1} and
b = 1. By Proposition 1 this means that ) contains at most three-element
chains otherwise it would contain a normal pair (z,y) with z,y # 1. If
1 > b > cis a three-element chain of @, the pair (b,¢) cannot be normal,
hence bec = b, i.e. b & (c) verifying that Q is a quasiimplication alge-
bra.

(b)=(a): Suppose that ¢ € B; for B; being a cell. Then we have (c) =
Q\Bi = (I(c)) = (U(c))-

Further let B; = C(a;)UC(b;) with a; < b;, and b;ea; = b;. In this case we
have I(z) = B; U {1} = U(a;) for each z € B;, hence (I(z)) = Q\B; = ().

Since the join of ideals is their set-theoretical union and (C) = N{{(c);
¢ € C} for each C C @, we are done. =
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