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STANDARD QBCC-ALGEBRAS 

A b s t r a c t . The class of QBBC-algebras was introduced and studied by the authors 
in [5]. These algebras model properties of the logical connective implication " in which 
the validity of formulas x =r> y and y => x does not imply the equivalence of x and y. In 
the paper the properties of s tandard QBCC-algebras derived from qosets are studied. 

1. Introduction 
The notion of a BCC-algebra was introduced and studied by Y. Komori 

[7] when solving the problem whether the class of all BCK-algebras forms a 
variety. These algebras were then studied by many authors, see e.g. A.Wrori-
ski [9] and W. A. Dudek [2]. 

BCC-algebras serve as an algebraic model describing properties of impli-
cation reducts of certain logics containing the constant 1 meaning the logical 
value "true". More precisely, we use the formal definition from [2]: 

DEFINITION 1. An algebra (A, •, 1) is a BCC-algebra if it satisfies the 
identities: 

(BCC1) ( x * y ) . [ ( z . x ) * ( z . y ) ] = 1 
(BCC2) x»x = l 
(BCC3) x • 1 = 1 
(BCC4) 1 • x = x 
(BCC5) (x»y = l k y x = l)=> x = y. 

The class of BCC-algebras satisfying the commutation axiom 

(C) x » ( y z ) = y ( x » z ) 
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is known to be the class of all BCK-algebras. The class of all Hilbert 
algebras, an algebraic counterpart of the logical connective implication 
in intuitionistic logic, is just the class of BCK-algebras satisfying the left-
distributivity axiom: 

It is well-known that every BCC-algebra A = (A, •, 1) can be viewed as a 
poset w.r.t. natural ordering defined on A by 

A new construction of BCC-algebras derived from posets was given by 
the first author in [4], In a recent paper I.Chajda and R.Halas [3] started 
to study Hilbert algebras in which the axiom (BCC5) is not valid, the so-
called pre-logics. This motivated us to introduce the class containing both 
the pre-logics and BCC-algebras as follows: 

DEFINITION 2 . A QBCC-algebra is an algebra A — (^4, •, 1) satisfying the 
axioms (BCC1)-(BCC4). 

As it was shown in [5], the relation defined by (1) on any QBCC-algebra 
A = (A, •, 1) is a quasiordering, the so-called natural quasiordering on 
A. For any quasiordered set (Q, <) (qoset) we adopt the following notation: 
we write a ~ b whenever a < b and b < a and call the pair a, b indistin-
guishable; the set C(a) = {x G Q; x ~ a} is called the cell of a; we shall 
write a < b if a < b and a b, and a || b whenever a ^ b and b ^ a. A pair 
(a, b), where a > b is called a bridge if for each c 6 Q the following (dual) 
conditions hold: 

(bl) c > b implies c> a, 
(b2) c < a implies c < b. 

2. Standard QBCC-algebras 
Following the paper [5], a QBCC-algebra A = (A, 1) is called stan-

dard if every subset of A containing the element 1 is a subalgebra of A. 
A pair (x, y) of elements x, y 6 A, x > y, is called normal if x • y — y. 
Recall the main result of [5] describing all standard QBCC-algebras: 

PROPOSITION 1. Let (Q,<, 1) be a qoset with a greatest element 1 and 
C( 1) = {1}. Let us define the operation • on Q as follows: 

(ql) x • y = 1 if x <y, 
(q2) 1 • x = x, 
(q3) x • y = y if x \\ y, 
(q4) x • y = y if x > y and (x, y) is not a bridge, 

(D) x • (y • z) = (x • y) • (x • z). 

(1) x < y iff x • y = 1. 
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(q5) if (x, y) is a bridge in Q and ï / 1 one can set x *y = y or x • y = x] 
in the latter case for each z > x we have either z ~ x and z • y — z 
or z > x and z • x = x, z • y = y; for each z < y we have either z ~ y 
and x • z = x or z < y and x»z = y»z = z. 

Then (Q, 1) is a standard QBCC-algebra and each standard QBCC-algebra 
is of this form. 

Hence, Proposition 1 allows to construct all standard QBCC-algebras 
starting from a given qoset. 

EXAMPLE 1. Let us consider a qoset Q with the diagram in Fig.l. 

By setting d» c = d we get by (q5) e * c = e, c * a = a, d* a = a, c»b = b. 
The rest of cases is given by (ql), (q2) and (q4), hence the operation • is 
completely determined. 

In the following we will describe algebraic properties of standard QBCC-
algebras. 

3. Congruences , ideals and annihilators in standard QBCC-alge-
bras 

DEFINITION 3. A subset 0 / I C Q of a standard QBCC-algebra Q = 
( Q 1 ) satisfying the conditions 

(11) x E I,y G Q,x <y imply y e l , 
(12) (x, y) being a bridge and x • y = x € I imply y G / , 

is called an ideal of Q. 

1 

c 

Fig. 1 
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The set of all ideals of Q will be denoted by Id{Q). For a congruence 9 
on Q (9 G Con(Q)) denote by [1]^ its congruence class containg the element 
1, the so-called kernel of 9. The following lemma shows that the set of 
congruence kernels of standard QBCC-algebras coincide with their ideals. 

LEMMA 1. Let Q = (Q,<, 1 ) be a standard QBCC-algebra, 9 G Con(Q), 
I G Id(Q). Then 

(a) IQ : = [l]o is an ideal of Q, 

(b) the relation 9i on Q defined by 

(x, y) G 0/ iff x ~ y or x,y G I 

is the greatest congruence 6 on Q with [ljp = I. 
P r o o f , (a) Suppose (x, 1) G 6,y > x. By compatibility we obtain 
(x • y, 1 • y) = (l,y) G 9. If (x,y) is a bridge and x • y = x € Ie, then 
again by compatibility (x • y, 1 • y) — (x,y) G 0. Hence [x\g = [y]e = [ljp 
and y G Ie-

(b) We will show that Oi is a congruence on Q. 
Reflexivity and symmetry of 8j are clear. To prove transitivity, let (x, y), 

(y,z) G Oj. If x ~ y ~ z or x, y, z G I occur, we have (x,z) G 8j. In the 
remaining case x ~ y, y, z G / we obtain by (II) x G I, hence also (x, z) G 9j. 

Now we prove compatibility of Suppose (x, y) G Oj and u G Q be an 
arbitrary element. It is enough to prove {u • x,u • y), (x • u,y • u) G 0/. 

First let x, y G I. Applying (II) one gets u • x,u • y G I, and so 
(u • x,u • y) G 9i. 

If x»u = 1, then x»u G I and x < u so by (II) u G I. This yields yu G I. 
Suppose further x*u = u. The case yu = u gives us (x»u,yu) = (u, u) G 
0/. For y • u = y yi u, 1 due to (12) u G I and (x • u,y • u) = (u, y) G 9j. If 
x • u = x ^ u, 1 then u G / according to (12) and hence y •u G I yielding 
(x • u,y • u) = (x,y • u) G 9j. 

Secondly let us suppose that x ~ y. We will show that u • x ~ u • y 
and x • u ~ y • u hold. Let u || x. By (q3) n * x = x ~ j / = ax*y, 
x»u = u~u = y»u. The case u ~ x leads to u • x — 1 ~ 1 = u • y, 
x»u = l ~ l = y»u. Suppose further u > x. The following two subcases 
can occur. If both pairs (ix, x), (u, y) are normal we get u»x = x~y = u»y, 
x *u — l ~ l = y * u . If they are non-normal, then u»x = u~u = u»y, 
x * u = l ~ l — yu. The last possibility is u < x. In this case we have also 
two subcases. The both pairs (x,u ) , (y, u) are either normal, then u • x = 
l ~ l = it*y, x»u = u~u = yu, or non-normal and u»x = l ~ l = u»y, 
x • u — x ~ y = y • u. 

The equality [1]^ = I follows directly from the definition of 9j. 
Let us show that 9[ is the greatest congruence on Q with kernel I . 
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Suppose 6 E Con(Q) , [ l ]e = I, and let (x,y) E 6. This by using of 
substitution property of 6 leads to (x»y,l),(yx,l) € 6, i.e. x»y,yx E I. 

Assume further that x / y. If x, y are incomparable, we get x • y = y E I 

and y • x = x E I. In the case of comparability let e.g. x < y. Then y x 

(otherwise x ~ y), hence y • x € {x,y}. Having y • x = x E I we obtain 
with respect to x < y and ( I I ) also y E I. For y • x = y E I the pair (y, x) 
is a bridge, and so by (12) also x E I. In the summary, we have proved that 
x y implies x,y E I. Finally, we have got 6 C Qj. • 

EXAMPLE 2. In contrast to BCC-algebras, standard QBBC-algebras need 
not be congruence distributive: 

Consider a qoset (Q, < ) given in Fig. 2 and the corresponding standard 
QBCC-algebra Q = (Q, <, 1). 

6 

Fig. 2 

Then Con(Q) is visualized in Fig. 3, 

t 

Fig.3 

where 
01 . . . { { 0 ,6 } , { a } , { 1 } } , 
0 2 . . . { { O , a } , { 6 } , { l } } , 
93...{{a,b},{ 0 } , { 1 } } , 
0 4 . . . { { O , a , 6 } , { ! } } . 
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This example also shows that ideals of QBCC-algebras can be kernels of 
more than one congruence. 

We will show that congruence kernels in arbitrary QBCC-algebras (i.e. 
not necessarily standard ones) correspond to deductive systems: 

DEFINITION 4. A subset D C A of a QBCC-algebra A = (A, •, 1) is called 
a deductive system if 

( D l ) l e D 
(D2) x • (y z) G D and y G D imply x • z G D. 

Denote by Ck(A) or Ded(A) the set of all congruence kernels of A or the 
set of all deductive systems of A, respectively. 

LEMMA 2. For an arbitrary QBCC-algebra A it holds Ck(A)=Ded(A). 

P r o o f . It is easy to prove that Ck(A) C V] [ ( . 4 ) . 
Conversely, let D G Ded(A). Define the relation OD on A by 

(x, y) G 0D iff x • y, y • x G D. 

We show that 0D G Con(A) with [l]gD = D. 
Reflexivity and symmetry of OD are clear. To prove transitivity of OD, 

assume that (x ,y) , (y ,z) G Op, i-e. x • y,y • x,y • z,z • y G D. Then by 
(Dl) and (BCC1) we have 1 = (y • z) • [(x • y) • (x • z)\ G D, and since 
x • y G D, (D2) yields (y • z) • (x • z) G D. Applying (D2) once more to 
1 • ((y • z) • (x • z)) € D with y • z € D, we obtain x • z = 1 • (x • z) G D. 
The validity of z*x G D can be proved analogously, and so Qp is transitive. 

Further, let (x, y) € 6D and u G A be an arbitrary element. Then x • y, 
y x e D and, by (BCC1), 

(u • x) • (u • y) > x • y G D. 

This leads by (D2) to (u»x)»(u»y) G D (observe that a G D,b G A and a < b 
imply l»(a»b) = a»b = leD and hence b = 1 • b G D according to (D2)). 
Analogously we prove (u»y) • (u»x) G D and (u»x,u»y) G OD- Applying 
(D2) again for 1 = (x • u) • [(y • x) • (y • u)] G D and y • x G D one gets 
(x»u)*(yu) G D. Interchanging x and y we have also (yu)»(x»u) G D and 
(x • u,y • u) G OD- Finally, using transitivity of OD this gives OD G Con(A) 
with [\]Qd = D. » 

COROLLARY 1. For an arbitrary standard QBCC-algebra Q = (Q,*,l) it 
holds Id(Q) = Ck(Q) = Ded(Q). 

In what follows it is shown that congruences on standard QBCC-algebras 
are of a very special type: 

LEMMA 3. Let Q — (Q, *,1) be a standard QBCC-algebra, 0 G Con(Q). If 
{x, y) G 0 and x,y 0 / = [l]e, then x ~ y. 
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P r o o f . It results from Lemma 1. • 

DEFINITION 5. Let Q = (Q, <, 1) be a standard QBCC-algebra and B, C 

be non-void subsets of Q. The set 

(C) = {x G Q\x • c = c for each c G C } 

is called the annihilator of C. The set 

(C, B) - {x e Q] (x • c) • c e B for each c G C } 

is called the relative annihilator of C with respect to B. 

If C = { c } is a singleton then (C) will be briefly denoted by (c). For a 
qoset (Q, <) and 0 ± M C Q put U(M) = {x G Q\m < x for each m G M}. 

In case M = { a i , . . . , an} we also write U(ai,..., an) instead of U(M). 

THEOREM 1. Let Q = (Q, <, 1) be a standard, QBCC-algebra and I be an 
ideal of Q. Then (I) is also an ideal and a pseudocomplement of I in the 
lattice Id(Q). Moreover, 

(I) = {x e Q',x || i for all i 6 I\{ 1 } } U {1} . 

P r o o f . At first we prove that (I) = {x G Q\x || i for all i G A i 1 } } u i 1 } -
Suppose a G (I), i.e. a • i = i for all i G I. Evidently, for every i G A { 1 } 
either a || i or a > i. If there exists i G /\{1} with a > i then we have by 
( I I ) a G I and so 1 = a • a — a, proving that a G { x G Q', x || i for all 
i 6 /\{1} } U {1 } . The converse inclusion is clear. 

Further let us prove that (I) G Id(Q). Suppose x G (I) and x < y ^ 1. 
Then y < i for some i G A ( l } leads to a; < i, contadicting x G (I). The 
case y > i for some i G /\{1} means y G I which is also impossible due 
to x < y. This shows y G (I). We have to show that (12) holds. For this 
let x • y = x € (I) for some bridge (x, y). Let us note that x = 1 would 
imply y = 1 • y = 1, hence it holds i / l . Since (x,y) forms a bridge, the 
property x || i for each i G A i 1 } yields also y || i for each i G A i 1 } » a n ( 1 s o 

y e (A-
It is evident that I PI (I) = {1 } . Suppose that J is any ideal of Q with 

the property J f l J = {1 } . If j G A i 1 } ; ^ € A i 1 } then ^ II J otherwise either 
i<jeInJoij<i€lnJ,& contradiction. This means that J C (I) and 
hence ( I ) is a pseudocomplement of I in Id(Q). m 

THEOREM 2. Let B, C be ideals of a standard QBCC-algebra Q = (Q, <, 1). 
Then (C, B) is a relative pseudocomplement of C with respect to B in the 
lattice Id(Q). Moreover, 

(C, B) = {x G Q\x || c for each c G C\B} U B. 
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P r o o f . At first we show that (C,B) = {x E Q;x \\ c for each c 6 C\B}U B. 

It is easily seen that B C ( C , B ) . Suppose x || c for each c E C\B. Then 
(x»c)»c — C»C = 1eB for all c 6 C\B. In the remaining case we have 
also (x • d) • d E B whenever d E C fl B, and altogether x E (C, B). 

Conversely, suppose y € (C,B)\B and assume y [f c for some c £ C\5. 
If y < c then (¡/1 c) • c = 1 i c = c € B, a contradiction. In the case y > c 

we conclude y € C and, moreover, y=l»y=(yy)*yEB, which is also 
a contradiction. This proves y || c for each c E C\B. 

Now we show that (C, B) is an ideal of Q. Let x E (C, B) and x < y. 

We have y € B whenever x € B. Suppose further x || c for each c € C\5. 
It is clear that y ^ c for any c € C\B, otherwise x < c. So let y > c for 
some c € C\i?. Then by ( I I ) also y E C. Moreover, y E B C (C, B ) since in 
the opposite case we would have x || y. In the remaining case y || c for each 
c e C\B, hence also y E (C, B). 

We prove that (C, B ) satisfies (12). Let x»y — x E (C, £?) for some bridge 
(x, y). Then y E B whenever x E B. Suppose further that x \\ c for each 
c E C\B and assume y ^ c for some c € C\B. If y < c we get x > c or x < c 

(since (x ,y ) is a bridge), a contradiction. Similarly, c < y < x contradicts 
c || x and, finally, ( C , B ) is an ideal of Q. 

It is clear that C f l (C, B) C B. Let J be an ideal of Q with the property 
C D J C B and assume j E J\B. Suppose further j |f c for some c E C\B. 

If c < jj then jECC\JC.B,a, contradiction. The case j < c leads to the 
contradiction c E J fl C C B. This means that J C (C, B) and (C, B) is the 
relative pseudocomplement of C with respect to B in Id(Q). m 

There is a natural question to find conditions under which the annihilator 
of every non-void subset M of Q is equal to the annihilator of the ideal 
generated by M . We will show that the answer is closely connected with the 
following example: 

EXAMPLE 3. Consider a qoset Q with a greatest element 1 where Q\{1} 
is composed by pairwise incomparable blocks Bi,i E fi, being either a cell 
or Bi = C(a,i) U C(bi) for â  < with bi • aj = bi. Such a standard 
QBCC-algebra will be called a quasiimplication algebra. 

THEOREM 3. For a standard QBCC-algebra Q = (Q, <, 1) the following 

conditions are equivalent: 

(a) for each 0 ^ M C Q it holds (M) = (I(M)), 

(b) Q is a quasiimplication algebra. 

P r o o f . (a)=>(b): Take M = { c } for c € Q\{1>. We know that 1(c), the 
principal ideal generated by { c } , is equal to U(c) if there is no non-normal 
pair (c, d) with c > d in Q or 1(c) — U(c) U {d} if such a pair exists (see [5]). 
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We will show that in both cases 

(*) (I(c)) = {xGQ-,U(x,c) = { 1}}. 

Suppose x G (/(c)) and let y G U(x,c) be an arbitrary element. Then 
y G 1(c), hence 1 = x • y = y proving that U(x, c) = {1}. 

Suppose conversely that U(x, c) = {1} for some x G Q and let y G U(c). 
If x < y, then y G U(x, c) = {1} and hence x»y = x»l = l = y. Otherwise 
we have either x || y and x»y = y or y<x and x G U(x, c) = {1} and 
x»y = l*y — y. Altogether we proved that x G (U(c)). Finally, let (c, d.) be 
a non-normal pair of Q with c > d, so c • d ^ d. Let us prove that x G (d). 
We have either x = 1 and x • d — 1 • d = d or x || c. In the latter case 
since (c, d) is a bridge, also x || d and x • d = d, hence the equality (*) is 
proved. 

Consider now b > c for some b G Q. If the pair (b, c) is normal, then 
b*c = c, hence b G (c) = (/(c)) which, by (*), gives U(b, c) = U(b) = {1} and 
6 = 1 . By Proposition 1 this means that Q contains at most three-element 
chains otherwise it would contain a normal pair (x, y) with x,y / 1. If 
1 > b > c is a three-element chain of Q, the pair (6, c) cannot be normal, 
hence b • c = 6, i.e. b £ (c) verifying that Q is a quasiimplication alge-
bra. 

(b)=>(a): Suppose that c € Bi for Bi being a cell. Then we have (c) = 
Q\Bi = (1(c)) = (U(c)). 

Further let Bi = C(a i )uC(6 i ) with a; < bi, and b^di = bi. In this case we 
have I(x) = Bi U {1} = U(a,i) for each x G Bi, hence (I(x)) = Q\Bi = (x). 

Since the join of ideals is their set-theoretical union and (C) = n{(c); 
c G C} for each C C Q, we are done. • 
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