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SIMILARITY IN RELATIONAL DATABASES 
AND IN INFORMATION SYSTEMS THEORY 

Abstract. The motivation of the paper comes form two sources—theory of relational 
databases (RDB) and the information systems theory (1ST). On the one hand functional 
and multivalued dependencies in RDB capture a large portion of the semantics of real 
world relations, but it has proved useful to consider also other classes of dependencies eg. 
join or template dependencies. It is known that there is an equivalence between functional 
dependencies in a relational database and a certain fragment of prepositional logic. This 
was extended by many authors to include both functional and multivalued dependencies, 
and complete axiomatizations were given. Also for fully join and for template dependencies 
complete axioms are known. 

Dependencies of attributes in information systems theory (1ST) can be expressed in 
terms of indiscernibility relations derived from the system, in particular data constraints 
axe modeled by them. A generalization of this theory to dependencies in other information 
frames is an open problem. We propose here an attempt to solve it for frames based on 
similarity relations. We define dependencies for weak and strong similarity relations with 
parameters and develop logical formalism for reasoning about them. 

In RDB theory we propose the notion of "similarity of records", giving the motiva-
tions from medicine (eg. similar symptoms should imply similar diagnosis or treatment) 
and from economy (similar market informations should be followed by similar economic 
movement or decisions). In consequence we introduced the notions of similarity depen-
dency between sets of attributes in RDB. Examples are shown that the notion introduced 
is different from functional, multivalued, join and template dependencies in RDB. We 
analyse Armstrong axioms and Fagin axioms in this context, finding sound (but sis yet 
not necessarily complete) axiomatization of similarity dependency in RDB. 

1. Information systems 
We recall again that the aim of the following paper is twofold: first give a 

broad motivation for studying similarity of systems and similarity relations 
(or equivalently tolerance relations) in geometry, and logic, and second give 
a new definition of dependency of attributes in RDB and 1ST. 

Any collection of data specified as a structure (O, A, V, f ) such that O is a 
nonempty set of objects, A is a nonempty set of attributes, V is a nonempty 
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set of values of information function f , is referred to as an information 
system. In the sequel we assume that f : O x A —• V — {0}. 

A family of information systems indexed by a set I will be denoted by 
(O, A, V, F)7, i.e. for every i <E I 

fi : Oi x Ai Vi. 

Usually we assume that 

V = \J{Va:aeA}, 

Va is also called a domain of the attribute a. 
In this paper we assume that with every attribute a € A is related a 

tolerance relation (i.e. reflexive and symmetric relation) r(a). In most cases 
this relation shall be defined in the following way: 

Sim(a)xy iff f(x, a) D f(y, a) ± 0 
sim(a)xy = Sim(a)xy. 

For B C A we define 

Sim(J3)xy iff V6 e B Sim(6)xy 
s im(B)xy iff 3b E B sim(6)xy. 

Sim(JB) is called (strong) similarity relation and sim(B) is called weak sim-
ilarity with respect to the set of attributes B C A. Some authors use the 
notation sim, losim, ssim, respectively (cf. [3], [21]). 

The set { f ( x , a) : a € A} shall be called an information about the object 
x, in short a record of x or a row determined by x. We shall say that two 
records determined by x, y are strongly r-similar iff Va 6 A f(x, a)r(a)f(y, a). 
We will also consider the case when the above notion is restricted to a set 
B C A i.e. two records {/(x,a) : a € B} and { f ( y , b ) : b G B} are similar 
with respect to the set B C A iff 

VbeBf(x,b)r(b)f(y,b). 

In other words we can say that two records are strongly r-similar if 
for every attribute the respective values of attributes (i.e. the values of 
information function f(x,a), f(y,a)) are similar with respect to the family 
of tolerances {r(a) : a 6 A}. 

We shall say that two objects (records) x, y are weakly r-similar if for 
some attribute a € A, values / (x , a), f(y, a) are similar with respect to r(a). 

In symbols: 36 e Bf(x, b)r(b)f(y, b). We denote strong relation by r(BA) 
and weak one by r (B v ) , respectively. 

Now let us assume that one information system (0 ,A ,V , f ) is estab-
lished. 
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With the above definitions of similarity of objects and records we can 
examine the following questions: 

1. find a record r' similar but different to a given record r (if it exists), 
2. produce a record similar to a given one, 
3. find all records similar to a given one, 
4. check for a given two records r,r' if they are similar, 
5. determine the level of similarity for a given record r and a family of 

records wm, 
6. determine the properties of the dependency of attributes with respect 

to similarity relations. 
We can express special kind of similarity of records by formulating the 

proper query in the system. It is however strongly determined by the possi-
bilities of a given RDB system. By analogy to indiscernibility matrices (see 
Skowron, Rauszer [39]) we propose to use similarity matrices. As regards 
similarity queries based on distance access method compare for [4]. 
Let me examine first the question 6. We begin with the definition: 

The set of attributes Y C A depends on the set X C A with respect to 
the similarity relation Sim if and only if 

Sim(X) < Sim(y). 
We shall write in symbols 

X Y or X -5!=» Y. 
In the same way we can define dependency of attributes with respect to 
weak similarity relation sim: 

X -U Y iff sim(X) < sim(F) 
(here < is usual inclusion relation). 

In other words, X —> Y if strong similarity of objects with respect to 
the set of attributes X implies strong similarity of objects with respect to 
the set of attributes Y. 

R E M A R K . Dependency of attributes with respect to indiscernibility relations 
is formulated eg. in [3], [32]. The dependency with respect to similarity was 
formulated in 1994. 

Let me recall now Armstrong axioms for functional dependency (Let me 
recall that XY abbreviates X U Y\): 

B1 If Y C X C A then X->Y. 
B2 If X -» Y and Z C A then XZ YZ. 
B3 If X Y — Z then X -» Z. 
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The axioms hold for strong similarity relation Sim. They hold is some other 
classes of strong relations also, cf. MacCaull [18]. Let me show eg. Bl: 
Sim (X)xy iff Va G X Sim(a)xy but F C l s o all the more V a € 7 Sim(a)xy, 
i.e. Sim(X) < Sim(F) which means X - ^ Y . 

REMARK. For weak similarity we have just the opposite: 

if YCXCA then Y ^ X. 

Now let me prove B2 for Sim: 
By hypothesis we have Sim(X) < Sim(Y), Sim(XZ) = Sim(X U Z) by 
notation, so 

Sim(X U Z)xyifNa G (X U Z) Sim(a)xy iff 
V a e X Sim(a)x?/ A Va G Z Sim(a)xi/ 

Sim(Y U Z)xy iffV(o G Y) Sim(a)xy A Va G Z Sim(a)xy 

hence Sim(X U Z) < Sim(y U Z). 

Ad. B3: It follows by transitivity of inclusion <. • 

Also for weak similarity relation the axioms B2, B3 holds easily: 

Since sim XZ = simX U sim Z and X —> Y means that simX < simY 

and this gives that 

sim XZ < s i m F U s imZ = sim YZ. 

B3 holds by transitivity of inclusion. 
Let me finally introduce the mixed similarity dependency in the following 

way: 

I - ^ r i f f Sim(X) < sim(F) and 

X Y iff sim(X) < Sim(y). 

In Words: X Y if for all objects x,y G O strong similarity of x,y with 
respect to the set of attributes X implies weak similarity of x, y with respect 
to the set Y. • 

REMARK. The reason for a difference between Sim and sim relations in the 
axiom Bl is the following: 
If A < B and 3x G Aip then 3x G B<p. 
If A < B and Vx G B<p then Vx G Aip. 

In other words the pair (<,V) has slightly different properties then the 
pair (<, 3). 
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2. Tolerance relation 
"Any model of perception must take account of the fact that we cannot 

distinguish between points that are sufficiently close" (Zeeman [46]). Similar 
statement was formulated for choice behaviour by Luce. In consequence the 
notions of tolerance, threshold, just noticable difference has been formulated. 
We can say that the above notions of similarity and tolerance, threshold, 
just noticable difference have the same physical and philosophical fundation 
and the same role to play. 

If we substitute closeness for identity then we can define tolerance geo-
metry. In the Approach of Roberts it is important to "Study finite sets and 
axioms necessary and sufficient for isomorphism (or homomorphism) into 
certain kinds of spaces". 

We recall now a simple axiom system of Tarski for two-dimensional ele-
mentary geometry. The system consist of twelve individual axioms A1-A12, 
and the infinite collection of all elementary continuity axioms A13. We shall 
use the original notation of the axioms. 

Al [Identity axiom for betweennes] f\xy [¡3(xyx) —• (x = y)}, 
A2 [transitivity axiom for betweennes] f\xyzn[/3(xyn) A (3(yzn) —> f3(xyz)}, 
A3 [connectivity axiom for betweennes] 

hxyznlPisyz) A P{xyn) A 0(x ± y) 0(xzn) V (3(xnz)}, 
A4 [reflexivity axiom for equidistance] f\xy[6(xyyx)}, 
A5 [identity axiom for equidistance] l\xyz[6{xyzz) —> (x = z)], 
A6 [transitivity axiom for equidistance] 

AXyzuvw[6(xyzn) A ¿(xyvw) - > 6(zuvw)], 
A7 [Pasch's axiom] /\txyzu \Jv[0{xtu) A 0{yuz) 0{xvy) A P(ztr)], 
A8 [Euclid's axiom] 

htxyzn Vvwi0(xut) A Piv^z) A ( x ^ u ) - » (3{xzv) A 0{xyw) A 0{vty)], 
A9 [five segment axiom] 

Axx'yy'zz'uu' [S(xyx'y') A 6(yzy'z') A 6(xux'u>) A 6(yuy'u') 

A0(xyz) A (x'y'z1) A ( x ^ y) -» 0{zuz'u% 

A10 [axiom of segment construction] /\xyuv \J Z[0{xyz) A P(yzuv)}, 
Al l [lower dimension axiom] f\xyz[^ @{xyz) A -*(3(yzx) A -ifi(zxy)], 
A12 [upper dimension axiom] 

Axyzuv [S(xuxv) A 8{yuyv) A 6(zuzv) A (u ± v) 

-» 0{xyz) V 0{yzx) V 0(zxy)], 

A13 [elementary continuity axioms] 
All sentences of the form 
Vtm, • • • { A z V x y b Aip —+ fi(zxy)] Vxy [v A V - > P(xuy)]}, 
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where tp stands for any formula in which the variables x,v,w,... but 
neither y nor z nor u, occur free and similarly for ip, with x and y 
interchanged. 

We recall that if B(x, y, z) is ternary relation of betweennes B o n a set 
A, Tarski-type axiomatization for tolerance geometry, one-dimension case is 
the following: 

C2. B(x, y, z) —> B(z, y, x) 
C3. B(x,y,z) or B(x,z,y) or B(y,x,z) 
C4. B(x, y, u) and B(y, z, u) —> B(x, y, z) 
C5. If u ^ v then B(x, u, v) and B(u, v, y) —> B(x, u, y) 
C6. B(x, y, z) and B(y, x, z) —> x = y 
C7. x = y B(x,y, z). 

THEOREM (Roberts). Suppose B is a ternary relation on a finite set A. 
Then Axioms C2 - C7 are necessary and sufficient for the existence of a 
1 — 1 function f : A —> R so that for all x, y, z G A 

B{x,y,z) ^ [f(x) < f ( y ) < f ( z ) orf(z) < f ( y ) < f(x)). 

Let us now recall the definition of classical betweenes: there is / : A —> R 
Vx,y,zeA B(x,y, z) O | / (x) - f(y)\ + \f(y) - f(z)\ - | / (x) - f(z)and for 
e-betweenes we have: 

B(x,y,z) & |f(x) - f(y)\ + \f(y) - f(z)\ < \f(x) - f(z)\ + e. 

The tolerance axioms are stated in terms of B and a relation I on A defined 
from B by: 

xly & B(x,y,x). 

Let R be a simple (i.e. total) order on A. We say that R is compatible with 
I if for all x, y, u, v 6 A 

xRuRvRy & xly ulv. 

Axioms for g-betweeness on the line: 

T l . There is a simple order R on A compatible with I 
T2. B(x,y,z) —* B(z,y,x) 
T3. B(x, y, z) or B(x,z,y) or B(y,x,z) 
T4. B(x,y,u) and B(y,z,u) and B(x,y,z) —> uly and ulz 
T5. If ulv, then B(x,u,v) and B(u,v,y) —• B(x,u,y) 
T6. B(x,y,z) and B(y,x,z) —> xly or ( z l x and zly) 
T7. xly —• B(x,y,z). 

THEOREM (Roberts). Suppose B is a ternary relation on a finite set A and 
e > 0 is given. Then Axioms T l - T7 are necessary and sufficient for the 
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existence of a function f : A H satisfying 

B(x,y,z) * |f{x) - f(y)\ + \f(y) - f(z)\ < | / (x) - f(z)\ + s. 

The above two theorems of Roberts show the importance of similarity 
in geometry. 

We come back to them later, now let me define several relations consid-
ered in information systems: 

a) xry iff \x — y\ < e, 
b) xry iff p(x, y) < s, 
c) ( x i . . . xn) T (yi... yn) iff 

p((xi... xn), (yi... yn)J < £, where p is a distance function, 
d) ( x i . . . xn) T (yi... yn) iff 3 i j ( |x i - yj\ < e, 
e) Assume that x € 0\, y € O2, (0\A-[Vif\), (O2A2V2/2) are information 

systems and we define: 

xry iff 3 a i i a 2 / (x, a i ) n / (y, a2) ^ 0 

and 

XT(B1,B2)yiS 3h g B i , b2 6 B2, f (x,h) n / {y,b2) ± 0. 

Consider also the modification given by the following: 

| / ( x , 6 i ) - / ( i / , b a ) ! < e , 
where / is real valued. 
REMARK. It is a general question how to relate different objects in 
different information systems if for some reason we are obliged to do 
this. 

f) Assume that T\ T2 T3 . . . r n are tolerances on U, we define the rela-
tion r n 

xrny iff (3xi • • • Xn xi = x xn = y & V» xm Xi+i). 

We say that rn is generated by t\ . . . r n . It is clear that in most inter-
esting cases, there is no s.t. for all n > no we can not say reasonably 
that objects x,y related by r n are similar. In other words there is a 
threshold of similarity for a given information system. Finally let us 
consider. 

g) Similarity of texts (We define this relation for simple texts only): 

assume that Ti = a\a2 ... an and T2 = b\b2 ... bn 

where a^, b{ 6 char, 

We define 
f{TxT2) ^{cn^bi}, 
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and in more generalized setting: 

i i 

+ • • • + ¿R ' 

where c\ = 6 2 , . . . , Cn_i = bn, Cn = 0, di - 63, ¿2 = bn,..., dn_2 = 6 n , 

dn_i = 0 etc. are the original texts shifted to the right. It is easy to 
formulate analogical function /x for texts shifted to the left or to both 
sides. 

Let us finally mention that many properties of tolerance relation are 
examined by Chajda, Zelinka [5]. 

3. Similarity of systems 
The basic notion which expresses similarity of systems or algebras is the 

notion of homomorphism. We propose here slightly different notion, relating 
similarity of systems to the similarity structures which can be defined in (or 
on) the system. More exactly, we shall say that two systems are similar, if 
they have the same (i.e. isomorphic) similarity structures. In this context 
by similarity structures we mean: 

a) family of tolerance relations, 
b) topology or several topologies, 
c) hypergraph or connecting net, 
d) family of approximations operations. 

Every time we fix only one similarity structure, just for simplicity and con-
venience. 
EXAMPLE: SIMILARITY STRUCTURE ON INFORMATION SYSTEM 

By similarity structure on the system (O, A, V, f) we mean the following 
structure: 

(B, C,D,...,T) (Sim(B), Sim(C).. .) (v? . . . t / f ( i ) ) 

where B,C,D,... ,T are subsets of A, Sim(B),.. . are similarity relations, 

are partitions of the universe of objects O, satisfying conditions: 

^Ee{B,C,Dl...,T}^x,yeUf Sim(E)XV 

and 
V x G u f , ye u f f o r i j n o n ( x S i m (E)y). 
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Of course the above definition can be formulated also for weak similarity 
relations sim(B),. . . or other kind of tolerances related to attributes. The 
proposed notion of similarity of information systems can be especially useful 
in case when we have fixed set of objects O and dynamically changing sets 
A, V, f . In other words we can compare fixed set of objects from a different 
perspectives (in this case expressed by sets of attributes A, sets of values V 
and functions / ) (cf. [30], [33]). 

E x a m p l e . The following two systems are similar with respect to a similarity 
relation Sim: 

O i | a 2 « 3 | a 4 

® 1 1 0 Z l {7,8} 1 

X2 1 0 X2 {7} 1 

X3 1 0 Z3 {8} 1 

I 4 7 0 2 4 { 0 } 1 

X5 7 2 £ 5 { 0 } {3,5} 
1 6 7 2 2 6 { 0 } {5,10,12} 

Relaxing the condition that similarity structures for similar systems have 
to be isomorphic, we can obtain more general notion. 

4. Examples and further motivation 
In psychological investigations we often deal with experiments in which 

one has to estimate the values of a stimulus (for instance the light or sound-
stimulus) on a given measurement scale. This estimation is given by the 
interval in which we expect to find the actual value of the stimulus; in other 
words the postulated value has to be considered taking into account a certain 
error. 

If the results of such an experiment are presented in terms of information 
systems (see Pawlak [24]), then the values of the information function should 
be identified with the subsets of attribute values (instead of single values). In 
such circumstances the associated indiscernibility relation (for the objects) 
does not have to be the equivalence relation but it is the tolerance relation 
and consequently the family of the elementary sets forms a cover of U (but 
not necessarily a partition). 

E x a m p l e . Let Oj, i = 1 , . . . , n be the natural numbers. We define the tol-
erance relation £ C N x N, (which is not the equivalence one if (at,aj) = 1 
for some i ^ j, 1 < i, j < n) as follows 

x£y 3i<i<nz = V (mod a*). 
Let us describe what are the sets Ok, h and E in case when n = 2, a\ — 
2, 02 = 3. We have five elemntary sets, three of them axe arithmetical 
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progressions mod 3 and two of them are arithmetical progressions mod 2. I^ 
is the arithmetical progressions, namely. Ofc = {n : n = A;(mod2)} U {n : 
n = A;(mod3)}. 

EXAMPLE. Let us consider the following information system (U, A, V, F) 
where U = {p,q,r,s,t,u,v,w,x,y,z}, A = {a } , V = [0,10) and the values 
of F are intervals contained in V: 

F(x,a) 

V { 0 } 

Q (0,2) 
r (1,2) 
s (2,4) 
t (3,5) 
u (4,5) 
V (5,7) 
w (6,8) 
X (7,9) 

y (8,10) 
z (9,10) 

It is easy to check that the relation £4 is the following: 

U = {{q,r),(r,q),{s,t),(t,s),(t,u),(u,t),(u,w), 

(•w, v), (w, x), (X, w}, (x, y), (y, x), (y, z), (z, y)} 

U{(m,m), : m G U}. 

The family of all elementary sets contains the following sets: 

E = ( M > { ? » { « » 0 » FR {W> Y}> { 2 / . 2 } } • 

As regards the family of the kernels, we have one two-element kernel Iq = 
It = {9 ) r } - The other ones are one-element sets. 

We have the following indiscernibility neighbourhoods: Op = {p}, Oq = 
Or - {q,r}, Os = {s,t}, Ot - {s,t,u}, Ou = {i,u}, Ov = {v,w},Ow = 
{v,w,x},Ox = {w,x,y}, Oy = {x, y, z j , Oz = {y,z}. 

EXAMPLE. Suppose one has to select a group X of persons of the set U, 
which are to participate in a polar expedition, in a way that assures the best 
possible collaboration (i.e. without conflicts). For any person x belonging 
to U, two experts (the psychologist and the physician for instance) are to 
indicate independently the suitable "good working" groups with person x. 
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From data obtained by the experts we form the information system and we 
analyse it. The experts Ex 1, Ex2 will play the role of the "attributes". 

Ex 1 Ex 2 

Xl f ( x i , E x j ) 

X2 

X3 

xn i = l , . . . , n , j — 1 , 2 . 

The value of the information f(x, Ex 1) is the set of persons that expert 1 
regards as good working group containing the person x. Identically we define 
f(x,Ex 2). Let us observe that the families D1, D2 defined in the following 
way: 

D1 = {/(a?, Ex 1) : x e U} 

D2 = { f ( x , E x 2 ) : x e U } 

are the covers of the set U. We define the tolerance relation on U as follows: 
for any x, y 6 U 

x£y D e D 1 3D' E D2 ({x, y} C G & {x, y} C D') . 

Now we give the interpretation for the notions of elementary (with re-
spect to the opinion of both experts) if it is the greatest set of which all the 
members can stay together in the polar station without conflicts. 

Indiscernibility neighbourhood Ox is the set of all the people, who will 
no be in conflict with person x (pairly). 

The kernel Ix is the set of all persons (in agreement with each other) 
having the same "relation" as x to all the remaining members of U. 

We shall illustrate our approach on the simple numerical example: 

Ex 1 Ex 2 
Xl {X1,X2,X 3 } {X1,X 2 ,X3} 

X2 { x 2 , x 3 , x 4 } { x i , x 2 , x 3 } 

{X 2 ,X3 ,X 4 } { x 2 , x 3 , x 4 } 

X4 { x 4 , x 5 } { x 4 , X 5 } 

x n { x i , x 5 } { x i , x 4 , x 5 } . 
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We have the following elementary sets and indiscernibility neighbourhoods: 
E = {{xi ,x 2 , £3}, {xi, x5}, {x2, x 3 ,x 4} , {x4, x 5 }} 

0Xl = {X1,X2,X3,X5}, 0X2 = {X1,X2,X3,X4} = 0X3, 

Ox3 — {x 1,X2,X3,X4}, 0X 4 = {X2)X3,X4,X5}, 0Xg = {xi, X4) X5}. 

At last there are the following kernels: 

Ixi = {zi}, Ix2 " Ix3 - {
x2,xs}, hi = {2:4}, Ix5

 r i2^} 
on the universe U. 

The example suggests that in order to find the needed group of people 
it is convenient to proceed as follows: we take the greatest kernel and the 
(possibly) missing persons should be chosen from the biggest elementary set 
including this kernel. In our example the kernel is IX2 and the third element 
to be added is x\ or x4. 

5. Rough regions and Kuratowski lemma 
It is well known that if we apply to a set A two operations 

- the closure and the complement, 
- in a fixed topological space (f7, ) then the number of sets that can be 

obtained from A in this way is less or equal to 14 (Kuratowski[15]). 

This means that if we apply the closure and the complement operations to 
the sets A and we form an equality, then the number of relations defined 
with respect to these equalities in the family of all subsets of U has to be 
finite also. The equivalencies of the similar kind are sometimes applied in 
computer science and data analysis, for example so called rough, bottom 
and top equality (see Nowotny, Pawlak [19]). In this paper we construct 18 
relations (including rough top and bottom equalities) (see Pomykala [29]) 
obtaining as a special case also topological rough sets (see Wiweger [45]). 

Basic definitions 
Assume that (U, ) is a topological space. If w is a finite sequence of 

and (where ' means the complement operation) then we shall write 
w € Word (' , ). In other words w is a word over the alphabet { ' }. For 
A C U we define: 

A 0 - A 
Aw = A' for w = ' 
Aw = A" for w = ~ 

and inductively for arbitrary w E Word ( ' , ). 
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If R is an equivalence relation in U we denote by U and L, Pawlak's 
closure and interior operations on U, i.e. for A C U 

UA = A = {J{[x]:xeA} 

where [x] is an equivalence class of x w.r.t.R. 
L is defined to be conjugated to U, i.e. for each AC U, LA = —U — A. 
In the sequel the operation ~~ will be equal to U for some relation R. 

Usually we write A, A instead of U A, L A, respectively. (U, ) = (U, R) is 
called approximation space. 

Now let us define the following relations on P(U), let A, B C U: 

A —i B iff A = B 
¿=2 Biff A = -B 
-A —3 Biff A = B 
A =4 Biff A = -B 
A =5 Biff A = B 
-A —6 B iff A = -B 
A =7 B iff A = B 
¿=8 B i f f A = -B 
A =9 B iff A = B 
A =10 B iff A = -- -B 
A = n B iff A = --B 
A =12 B iff A = = -B 
A =i3 B iff A = -- B 
A =i4 B iff A = -- -B 
A B iff A = = R 
A =i6 B iff A = = -B 
A =i7 B iff 34 = = B 
A =i8 B iff A = = -B 

Let us observe that the first relation is the equivalence relation, the second 
is symmetric, the third is transitive, and the fifth is transitive and similarly 
13-th, finally 7-th, 9-th and 17-th are equivalences, 18-th is symmetric. 

Main result 
Our main theorem is the following 

THEOREM. If (U, ) = (U, U) is the approximation space for some equiva-
lence relation R and wl,w2 € Word ( , ' ) then the relation = (on P(U)) 
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defined by the condition 

A = B iff Awl = Bw2 

is equal to one of the above 18 relations. 

Proof. We need 3 Lemmas 

LEMMA 1 (Kuratowski 1922) . Suppose that we apply to a set A the operations 
and '. The number of sets that we obtain is less or equal to 14. 

LEMMA 2. If (U, U) is the approximation space and A' denotes the com-
plement of A then there exist no more then 6 sets obtained by applying to 
the set A the operations of closure and of the complement. The following 
inclusions are generally valid among them: 

A'~ ' C A C A~ 

AT' C A ' C A'~ 

LEMMA 3. The following equalities holds: 

A'~' = A'~'~ =A'~'~'~' 
A~'~' =A~'~'~=A~ 
AT' =A~'~ — A T ' 
A'~ = A'~ '~ ' =A'~'~'~ 

Now, in view of Kuratowski lemma we infer that the words wl, w2, in 
the equality Awl = Bw2 may be reduced to words over the set 

Considering every pair of words u>l, w2 belonging to W and examining the 
equalities Awl = Bw2 it is easy to check that Awl = Bw2 iff A ^ B for 
some i G { 1 , . . . 18}. Finally let us observe that all equivalences = 1 8 

are different. The proof of the theorem is completed. 

REMARK. The general construction of this paper for arbitrary Kuratowski 
closure operation will be given in a forthcoming paper. 

We leave open the problem of the description of all rough constructions 
defined with respect to the operations introduced in the paper [27]. 

It seems to be worth studying the structure of the algebras created from 
the family of all pairs (int A, cl A) in a fixed topological space. • 

6. The completeness theorem 
The concepts of functional and multivalued dependencies in RDB are 

important tools for database design. The complete and sound axiomatiza-
tions are known (see [1], [10], [2]). In this place we first recall axioms in the 
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RDB context, and we show the modification in information systems theory 
case (cf. [18]). 

Let us recall that a functional dependency (see [6]) is a statement of 
the form X —» Y, where X, Y are sets of attributes. Dependency X —> Y 
holds in a relation R if for every pair r i , r2 of tuples, if ri[X] = r2[X], then 
r1[Y}=r2[Y}. 

A multivalued dependency (see [10]) is a statement of the form 

X^Y, where X, Y C A. 

Let Z = A — X — Y . The dependency X->->Y holds in R if for all r i , r2 

in R, if r\[X] = r2 [X], then there are r 3 and in R such that 
1) r3[X] - n [ X ] , r3[y] = rx[y], r3[Z] = r2[Z}-

2) r 4 [ X ] = r2[X], r 4 [ y ] = r2[Y], r4[Z] = n [ Z ] . 

We say that a dependency d is a consequence of a set of dependencies D 
if for all relations R, d holds in R if all the dependencies D hold in R. 

We recall now axioms for multivalued dependencies: 

DO: Let X, Y, Z be sets of attributes such that XuYuZ = A and YC\Z C X . 
Then X - ^ Y iff X ^ Z . 

Dl: U Y C X then X ^ Y . 
D2: If ZCW and X - » Y , then X W ^ Y Z . 
D3: If X-»Y and Y-++Z then X-»Z - Y . 

Let D be a set of multivalued dependencies, and let d\d2... dn be 
dependences. We say that did2... dn is a derivation from D if the 
following holds: 
for all i, either di € D U {d i . . . dj-i} or di can be inferved from D U 
{d i . . . dj_i} by an application of one of the axioms (inference rules). 

The inference rules are sound if every dependency d that can be derived 
from D is also a logical consequence of D. The inference rules (i.e. here 
D0-D3) are complete if every dependency d that is a consequence of D can 
also be derived from D. In ([1], [10], [2], cf. [38] [43]), it is proved that 
the axioms (inference rules) for functional dependency (Armstrong axioms) 
and for multivalued dependency are sound and complete, with respect to 
relational semantics. 

Let D be a set of similarity dependencies and X C A. By X* we denote 
the closure of X with respect to D i.e. it is the set of attributes B such g 
that X —• B can be deduced from D by Armstrong's axioms. We shall 
follow the proof of completeness given by Ullman [20] (see also Armstrong 
[1], Fagin [10]). 

LEMMA. X —• Y follows from Armstrong's axioms i f f Y C X*. 
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P r o o f . Let Y = A\.. ,An and suppose Y C X*. By definition of closure, 
X —> Ai is implied by axioms for all i. By the property 

1) If X Y and X Z then X-^YZ 
s s we obtain that X —> Y follows. Conversely, suppose X —> Y follows from 

s axioms. For every i, X —> A{ holds by the property of decomposition: 

2) If X Y and Z C Y then X Z . 

By application of the lemma it holds: 

THEOREM. Armstrong's axioms are sound and complete in relational se-
mantics. 

Modifying the original proof it is possible to obtain: 

THEOREM. Armstrong's axioms are sound and complete with respect to in-
formation systems semantics. 

REMARK. It is possible to analyse properties of knowledge representation 
systems using the relations of indiscernibility, similarity and informational 
inclusion, together (cf. Vakarelow [44]). It is very interesting research topic, 
how to apply Vakarelow method to dependency theory unifying different 
relations with parameters. 

P r o o f . We checked above that axioms are sound i.e. respective properties 
of similarity relation Sim hold. 

Let D be a set of dependencies and suppose X —> Y cannot be inferred 
from axioms. Consider the following system: 
O — {x, y}, A - the set of attributes over which D is defined, V = {{1}, {0}}, 
and f(x,a) = 1 for every a € A, f{y,a) = 1 for a G X*, f(y,a) = 0 for 
a € A — X*. 

First let me show that all dependencies in D are satisfied in the system 
( • 0 , A , V , f ) . 

Suppose V' W 
is in D but is not satisfied in the system. Then V' C 

X* otherwise two records x, y are not similar for some attribute in V. And 
therefore can not destroy the dependency V' —» W. On the other hand W 
can't be a subset of X*, or V W is satisfied by our system. 

Let A\ be an attribute of W which does not belong to X*. Since V C s s X+, X - i * V' follows from the axioms by Lemma. Dependency V' —> W is 
s s in D, so by transitivity we have X —• W. By reflexivity condition W —> Ai, 

so X —> Ai follows from the axioms. But then A\ is in X*. By contradic-
tion, each V' —> W in D is satisfied in the system (O, A, V, f ) . 
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Now let us show that X —• Y is not satisfied. Assume, that it is satisfied 
in the system. As X C X*, it follows that Y' C X*, else the two tuples of 
system are similar on X but are not similar on Y'. But then Lemma tells 
that X —• Y can be inferred from axioms, a contradiction. Therefore X —> Y 
is not satisfied by (O, A, V, f) even though each dependency of D holds. • 

Finally we try to express multivalued dependency related to similarity 
relation Sim. Let us take Z = A — X — Y. There are many possibilities to 
define the notion analogical to multivalued dependency, let me propose the 
following: 

a) X^Y iff X YZ, 

b) X^Y iff Vxy (X Y A 3b e Z Sim(6)) xy, 
c) X-++Y iff Vxy (Sim(X)xy (Sim(y)xy V Sim(Z)®y)), 
d) X-^Y iff SimX < Sim(X U Y) o SimZ. 

Of course we can also consider the case of embedded dependencies i.e. under 
assumption Z C A—X—Y. Due to space limitations we consider multivalued 
case in a different article. 

In this paper we consider only the definition c), which is interesting for 
us from the point of view of the applications. 

Functional and strong similarity dependency 
Now let me explain the relation between functional and similarity de-

pendency of attributes. 
Let us consider the following systems: 

a b a b 

X 1 2 x {1} {2} 
y 1 2 and y {1} {2} 

In the first one we can define indiscernibility relation but not similarity, at 
least in a natural way. In the second system we can define both relations 
- indiscernibility and similarity. Therefore, in some cases it is technically 
useful to transform a system putting 

F(x,a) = {/(x,o)} forali x,a. 
Under such assumption we can say that the similarity dependency is a gen-
eralization of the functional dependency. More exactly: 
THEOREM. If the functional dependency X —* Y holds in a given informa-

§ 
tion system (OAVf ) then the similarity dependency X —• Y holds in the 
transformed system OAVF, where F(x,a) = {/(x,a)}. 

In view of this theorem, functional dependency can be interpreted as a 
similarity dependency. 
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On the other hand, similarity dependency is in an essential way different 
from multivalued dependency. This together means that similarity depen-
dency is a generalization of functional one in a different direction then the 
multivalued dependency. 

Let me recall the example from Fagin [10]. It is shown there the mul-
tivalued dependency Employee —»-• {Salary, Year} and it is argued that it 
does not hold 

Employee — S a l a r y nor Employee — Y e a r . 

In case of similarity dependency we have: 
Sim (Employee) < Sim (Salary, Year) means that: 

\/xy Sim (Employee) xy 

Sim (Salary) xy D Sim (Year) xy 
§ 

which implies that Sim (Employee) —> Sim (Salary) and Sim (Employee) 
—• Sim (Year). 

Therefore: strong similarity dependency can not be equivalent to multi-
valued dependency. 

1. Similarity dependency is a generalisation of functional dependency. 
2. It differs from multivalued dependency since its definition is indepen-

§ 
dent from the context i.e. X —> Y depends only on X, Y and not on 
the attributes from A - (X U Y). 

3. It differs from MVD since the rule of complementation does not hold 
for similarity dependency i.e. the rule. If XUYUZ = A and YDZ C X 
then X—iff X—»Z, is not true for . 
On the other hand reflexivity, augmentation and transitivity rules hold. 
Also the rules of Pseudo-transitivity, union and decomposition holds 
for similarity dependency. 

Now it is natural question if weak similarity dependency sim is a better 
candidate to be equivalent to (or to emulate) multivalued dependency? 

Weak similarity dependency shall be examined in the second part of this 
article. In this place we only formulate the axioms: 

1. X -U X, 
2. X Y Z implies X -U Z, 
3. if Y n Z ± 0 then X (Y n Z) implies {X -U Y & X -U Z), 
4. it is not true in the full class of information systems, that (XflF) Z 

implies (X ^ Z) k (Y Z). 
5. X -UYHZ implies X Y a n d X Z. 
6. X n Y Z implies X -U Z and Y Z. 
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They are called reflexivity axiom, transitivity axiom, decomposition of in-
tersection in second coordinate axiom and decomposition of intersection in 
the first coordinate, respectively. 

We propose also the following axioms for mixed dependencies with re-
spect to weak and strong similarity relations together: 

1. Armstrong axioms for strong similarity dependency, 
2. Axioms 1-6. 

It is not in general true that: 

1. X Y implies X Y, 
2. X Y Z implies X Z, 
3. X Y Z implies X Z , 
4. X Y D Z implies X -—> Y and X Z under condition that 

YnZ^H). m 

REMARK. Axioms are not sound in the full class of similarity structures. 

7. Similarity on the family of objects 
Now let me define some relations on the set of objects 0 . Let us denote 

now sets of objects by M, N, P, Q, X, Y, Z. For a, b 6 A we define 

Sim (m)ab iff f(m, a) n f(m, b) / 0 

sim (m)ab — Sim (m)ab. 

Next, for P C O we define 
Sim(P)a6 iff Vp ep Sim(p)a6 
sim(P)a6 iff 3Pep sim (p)ab. 

These relations are called strong similarity of attributes with respect to 
the set of objects P and weak similarity of attributes with respect to P , 
respectively. 

The set { f ( p , a) : p € P} is called the information about the attribute a 
w.r.t. the family of objects P. 

Now let us assume that we have also the set of tolerances on the set of 
attributes: 

i~(x),r(y),T{z),... for x,y,z,...E O. 

We shall say that two informations about attributes a, b w.r.t. P C O are 
strongly similar if 

Vp ep f(p,a)r{p)f(p,b). 

On the other hand, two attributes a, b are weakly similar w.r.t. P iff 

3PeP f{p,o.)r(p)f(p,b). 
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In other words we can say that two columns (attributes o, b) are strongly 
similar if for every object p € P the respective values of information function 
/ , f(p,a), f(p,b) are similar with respect of the family of tolerances r(p), 
p 6 P. By analogy we can describe weak similarity of attributes. 

Now let us consider definition of dependency between sets of objects. 
We begin with the definition: 
the set of objects F C O depends on the set X C O with respect to the 

similarity relation Sim if and only if 

Sim(X) < Sim(F). 
We shall write in symbols 

X Y or X Y. 
In the same way we can define dependency of objects with respect to weak 
similarity relation sim: 

X Y iff sim(X) < sim(F) 

(here < is usual inclusion relation). 
§ 

In other words, X —• Y if strong similarity of attributes with respect 
to the set of objects X implies strong similarity of attributes with respect 
to the set of objects Y. 

Let us define functional dependency for objects as a statement of the 
form X —> Y, where X, Y are sets of objects. Dependency X —> Y holds in 
a relation R (or in information system) if for every pair ri , of columns in 
the relation (in the system), if r\[X] = ^[X], then ri[V] = ^[F] . 

A multivalued dependency is a statement of the form 
X-++Y, where I . K C O . 

Let Z = A — X — Y. The dependency X-++Y holds in R if for all r\,r2 
in R, if r\[X] = r2 [X], then there are r^ and r4 in R such that 
1) r3[X] = n[X], r3[y] = r x [ n r3[Z] = r2[Z]; 
2) rA[X] = r2[X], u[Y] = r2[Y], u[Z] = n[Z]. 

We say that a dependency d is a consequence with respect to relational 
semantics of a set of dependencies D if for all relations R, d holds in R if all 
the dependencies D hold in R. We will say that d is a consequence of D if 
for all systems, d holds in (OAVF) if all dependencies D hold in it. 

We recall now axioms for multivalued dependencies: 

DO: Let X, Y, Z be sets of attributes such that XUYUZ = A and YnZ C X. 
Then X^Y iff X-+*Z. 

Dl: If YCX then X-»Y. 
D2: If Z C W and X ^ Y , then XW^YZ. 
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D3: If X-++Y and Y-»Z then X-»Z - Y. 
Let D be a set of multivalued dependencies, and let <¿1̂ 2 •. • dn be 
dependiences. We say that d\d2..-dn is a derivation from D if the 
following holds: 
for all i, either di E D U {d\.. . di- i} or ck can be inferred from D U 
{¿I . . . di- i} by an application of one of the axioms (inference values). 

The inference rules are sound if every dependency d that can be derived 
from D is also a logical consequence of D. The inference rules (i.e. here 
D0-D3) are complete if every dependency d that is a consequence of D 
can also be derived from D. In [22] it is proved that the axioms (inference 
rules) for functional dependency (Armstrong axioms) and for multivalued 
dependency are sound and complete. 

Let D be a set of similarity dependencies for sets of objects and X C A. 
By X* we denote the closure of X with respect to D i.e. it is the set of objects 
B such that X —> B can be deduced from D by Armstrong's axioms. 

Modyfying proof of completeness for attributes we can obtain the com-
pleteness theorem for objects also: 

THEOREM. Armstrong's axioms expressing functional dependency for sets 
of objects are sound and complete. 

At the end of this section let me state the following language: 
Language: Oi, O2, • • • propositional symbols 

Ai, A2,. . . attributes symbols 
s, S weak and strong similarity symbols 

Axioms: 
S(Ai)Oj - s(Ai)Oj, 

s(Ai)(Oi A 02) s{Ai)Oi A s(Ai)02, 

s(Ai)(Oi V 02) «- «(ili)Oi V s(Ai)02, 

S(Ai)(0! A 0 2 ) -» S(Ai)01 A S(Ai)02, 

5(A)(Oi V 02) ~ S(Ai)Oi V 5 ( ^ ) 0 2 , 

s(Ai U Aj)Oi 5(Ai)Oi V S{Aj)Oi, 

s(Ai n Aj)Ox 5(Ai)0i A S(Aj)0\, 
under condition Ai fl Aj ^ 0. 

If Ai fl A, = 0 then we assume by convention: 
5(0)0! = 0, 
S(Ai U Aj)Oi S(Ai)Oi A S(Aj)Oi, 
S(Ai)Oi A S(Aj)Oi S(Ai n A^Oi. 
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Standard interpretation: 

Oj - sets of objects, 

Ai - sets of attributes, 

s - weak similarity relation, 

S - strong similarity relation. 

8. Normal forms 

Let me recall now the definitions of normal forms in the formulations 
given by Fagin and Date. 

A relation schema is a pair (A, D) where A is a set of attributes and D 
is a set of dependences involving only these attributes. 

An attribute is a key attribute if it is contained in some key. Otherwise 
it is a nonkey attribute. 

A relation schema is in third normal form ( 3 N F ) if whenever X —* A is 
a nontrivial FD of the schema, where A is a single attribute, then either X 
is a superkey or A is a key attribute. 

A relation schema is in BCNF if whenever X —» Y is a nontrivial FD of 
the scheme, necessarily X is a superkey. 

A relation schema is in fourth normal form (4NF) if whenever X—>->Y is 
a nontrivial MVD of the schema, necessarily X is a superkey. 

We shall consider normal forms in view of our similarity dependency in 
the second part of this article. 

9. Further examples 
EXAMPLE. 

Real time systems with the hierarchy [RTS], [Petri net]. 

Input = digital data for software system 
Output = digital data that control external hardware 

The time between the presentation of a set of inputs and the appearance 
of all the associated outputs is called response time 
Hard r.t.s. = resp. time is explicitv bounded 
Soft r.t.s. = those in which performance is degraded 

but not destroyed when response 
time constraints are not mat. 

R.t.s. which are reactive or embedded have ongoing interactions with 
their environment. 
Event : any occurence that results in a change 

in the sequential flow or program execution. 
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Synchronous events : occur at predictable times 
such as execution of a branch 
instruction or hardware trop. 

Asynchronous events occur at unpredictable points in the flow-of-control 
and are usually caused by external sources such as a clock signal. 

Both types of events can be signaled to the CPU by hardware interrupts. 
There is an inherent delay between when an interrupt occurs and when 

the CPU begins reacting to it, called the interrupt latency. 
Task driven by interrupt, that occur aperiodically are called sporadic 

tasks. Systems in which interrupts occur only at fixed frequencies are called 
fixed-rate-svstems and those with interrupts occuring sporadically are called 
sporadic systems. 

A higher-priority task is said to preempt a lower-priority task if it inter-
rupts the lower priority task; that is a lower priority task is running when 
the higher priority task signal that is about to begin. 

Systems instead of round-robin or first-come-first-served scheduling are 
called preemptive priority systems. The priorities assigned to each of the 
task associated with that Interrupt. 

The above description of some features of real time systems is given in 
the literature, but I was not able to recall the proper reference. Any way 
we propose the following definitions: input data Di, D2 are similar if the 
corresponding output data H\, H2 are also similar. 

Next, we shall say that two events Ev\ Ev2 are similar if the change in 
sequential flow or in program execution will not destroy the main aim of the 
program or the main functions of the external hardware. 

Finally, two interrupt events ie 1, ie2 are e-similar if the difference be-
tween corresponding interrupt latencies is smaller than e > 0. 

E X A M P L E . Let us assume that we have the following R O I - let it be a medical 
image showing the flow of contrast or the flow of the blood (cf. Goszczyriska 
[11])-

Vertical lines show where approximately is the contrast in the blood after 
ti,t2, • • • ,tn moments of time. Let us denote the region between tl, t j and 
the anatomical border observed on the image by R(U, tj). We have that 

A p r (R (ti, t j ) ) = A p r (R (to,tj)) — A p r {R{t0,ti)). 

So in this case with the flow of contrast in the blood we can observe which 
anatomical rejon is filled by contrast after the given period of time. 

On the other hand we can also devide the ROI on equal parts along the 
X-axis and estimate moments of time in which every point is obtained. Here 
we have the function F(pi) = Apr (R(to,tj)) and more precisely speaking 
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Pi —> tj i.e. given a point pt we find tj such that after ij-th moment of time 
we obtained the point Pi. 

In the examinations like the above we can compare the series of time 
with the similar space properties. In other words definition of similarity of 
time series can be used to distinquish space properties of the flow, and vice 
versa - by considering similar space properties we can reason about " proper" 
time series in a conducted experiment. 

We plan the second part of the article in the following way: 

1. Applications in medical imaging and in genomic databases. 
2. Normal forms and decomposition algorithms in view of similarity rela-

tions. 
3. Mixed FD and MVD axioms in view of Sim and sim relations. 
4. Relation of similarity dependency to join and template dependency. 
5. Mixed dependency with respect to ind, Ind, sim and Sim relations. 
6. Application of Orlowska-Mac Caull tableaux procedure for the impli-

cation problem for association rules. 
7. The role of symmetry in biocybernetics. 
8. Why RDB and 1ST are different theories? 
9. Quants, atoms and similarity - searching for a new laws of theoretical 

physics. 
10. In the paper of Togawa and Otsuka a model of cortical neural structure 

consisting of threshold elements is proposed in which the single cell 
representation hypothesis is introduced. We suggest that it is possible 
to apply in this model the ideas related to tolerance and approximation, 
and in this way to obtain the better understanding of mental processes 
such as consciousness and cognition. 

Final remarks 

We list some problems and ideas which can be further developed: 

1. Formulate and examine definitions more throughly of similarity of sys-
tems, algebras and logics. 

2. Formulate dependency theory on a lattice (cf. Lee [17]). 
3. Examine approximation operations on a lattice (cf. Iwiiiski [12]). 
4. Express algebraic properties of algebras defined by operations R* for 

special classes of R. 
5. Find applications to medical imaging. 
6. Develop similarity of many sorted algebra (Bidirectional morphisms) 

(cf. A. J. Pomykala [31]). 
7. Make comparison between the notions of approximation in Partition 

space, in Cover Space and in the algebra of Images. 
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8. Examine the elementary axioms of geometry in view of similarity neigh-
bourhood-formulations using different systems of axioms (cf. Tarski 
[41], Roberts [37]). 

9. Finally, we suggest to consider also questions: 
- when two systems are similar (and not homomorphic), and describe 

more exactly a relation between homomorphism and similarity of sys-
tems. 

10. Karen Kwast [16] considered the definition of reduct and dependency 
in the following general setting: take any relation R satisfying only a 
single requivement - distribution over the attributes. Formally: 

(*) Vr,s£R '• r(X)s iff Va e X : r(A)s. As a consequence, (0) = R x R. 
Then she formulated definitions of independent set of attributes, dis-
pensable element, the core of X and the reduct of the set of attributes. 
She axiomatixed dispensable subsets and considered reduced reducts 
and showed the connection to normal forms. It is possible to use some 
result of her to relativise reducts and dependency to both Ind and Sim 
relations, generally speaking every relation satisfying (*) belongs to 
similar formalisation. 

REMARK. The paper was presented on the Relmics 6 conference in Holland. 
Extended and orthogonal version of it shall be submitted in the Proceedings 
of the conference. 

Finally let me recall axioms for mixed functional and multivalued de-
pendencies cf. [2]. Axioms 1, 2, 3 are equivalent to Armstrong's axioms. 

4. X -» Y, YW -> Z implies XW -» Z. 
5. X -» Y, X -> Z implies X -» YZ. 
6. X -» YZ, implies X -» Y and X -» Z. 
7. If XUYl)Z = A and Y C\ Z C X then X^Y iff X^Z. 
8. If Y C X then X ^ Y . 
9. If Z C W and X-»Y then XW-^YZ. 

10. If X-++Y and Y^Z then X-^Z - Y. 
11. UX-*Y then X ^ Y . 

As regards to mixed inference rules, the following holds: 
UX-+Y then X Y. 
On the other hand the rules: 

12. If X -» Z and Y Z' where Z' C Z and Y and Z are disjoint, then 
X -> Z'. 

13. If X-++Y and XY -» Z then X-+Z-Y, 
do not hold. (Here —> means functional dependency.) 

End of part I. 
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