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SIMILARITY IN RELATIONAL DATABASES
AND IN INFORMATION SYSTEMS THEORY

Abstract. The motivation of the paper comes form two sources—theory of relational
databases (RDB) and the information systems theory (IST). On the one hand functional
and multivalued dependencies in RDB capture a large portion of the semantics of real
world relations, but it has proved useful to consider also other classes of dependencies eg.
join or template dependencies. It is known that there is an equivalence between functional
dependencies in a relational database and a certain fragment of propositional logic. This
was extended by many authors to include both functional and multivalued dependencies,
and complete axiomatizations were given. Also for fully join and for template dependencies
complete axioms are known.

Dependencies of attributes in information systems theory (IST) can be expressed in
terms of indiscernibility relations derived from the system, in particular data constraints
are modeled by them. A generalization of this theory to dependencies in other information
frames is an open problem. We propose here an attempt to solve it for frames based on
similarity relations. We define dependencies for weak and strong similarity relations with
parameters and develop logical formalism for reasoning about them.

In RDB theory we propose the notion of ”similarity of records”, giving the motiva-
tions from medicine (eg. similar symptoms should imply similar diagnosis or treatment)
and from economy (similar market informations should be followed by similar economic
movement or decisions). In consequence we introduced the notions of similarity depen-
dency between sets of attributes in RDB. Examples are shown that the notion introduced
is different from functional, multivalued, join and template dependencies in RDB. We
analyse Armstrong axioms and Fagin axioms in this context, finding sound (but as yet
not necessarily complete) axiomatization of similarity dependency in RDB.

1. Information systems

We recall again that the aim of the following paper is twofold: first give a
broad motivation for studying similarity of systems and similarity relations
(or equivalently tolerance relations) in geometry, and logic, and second give
a new definition of dependency of attributes in RDB and IST.

Any collection of data specified as a structure (0, A, V, f) such that O is a
nonempty set of objects, A is a nonempty set of attributes, V is a nonempty
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set of values of information function f, is referred to as an information
system. In the sequel we assume that f : O x A -V — {0}.

A family of information systems indexed by a set I will be denoted by
(0,A,V,F)!, ie. for everyi € I

fi:O;x Ay — V.
Usually we assume that
V=|J{Va:a€ 4},

V. is also called a domain of the attribute a.

In this paper we assume that with every attribute a € A is related a
tolerance relation (i.e. reflexive and symmetric relation) 7(a). In most cases
this relation shall be defined in the following way:

Sim(a)ey iff f(z,a)N f(y,a) #0
sim(a)zy = Sim(a)zy.
For B C A we define
Sim(B)zy iff Vb€ B Sim(b)zy
sim(B)zy iff 3be€ B sim(b)zy.

Sim(B) is called (strong) similarity relation and sim(B) is called weak sim-
ilarity with respect to the set of attributes B C A. Some authors use the
notation sim, wsim, ssim, respectively (cf. [3], [21]).

The set {f(z,a) : a € A} shall be called an information about the object
z, in short a record of z or a row determined by z. We shall say that two
records determined by z, y are strongly 7-similar iff Va€ A f(z, a)7(a) f(y, a).
We will also consider the case when the above notion is restricted to a set
B C A i.e. two records {f(z,a) : a € B} and {f(y,b) : b € B} are similar
with respect to the set B C A iff

Vb € B f(z,b)7(b)f(y, b).

In other words we can say that two records are strongly 7-similar if
for every attribute the respective values of attributes (i.e. the values of
information function f(z,a), f(y,a)) are similar with respect to the family
of tolerances {7(a) : a € A}.

We shall say that two objects (records) z,y are weakly r-similar if for
some attribute a € A, values f(z,a), f(y,a) are similar with respect to 7(a).

In symbols: 3b € Bf(z,b)7(b) f(y,b). We denote strong relation by 7(B")
and weak one by 7(BV), respectively.

Now let us assume that one information system (O, A,V, f) is estab-
lished.
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With the above definitions of similarity of objects and records we can
examine the following questions:

1. find a record r’ similar but different to a given record r (if it exists),
produce a record similar to a given one,

find all records similar to a given one,

check for a given two records 7,7’ if they are similar,

determine the level of similarity for a given record r and a family of
records wi, ..., Wn,

determine the properties of the dependency of attributes with respect
to similarity relations.

R

bdd

We can express special kind of similarity of records by formulating the
proper query in the system. It is however strongly determined by the possi-
bilities of a given RDB system. By analogy to indiscernibility matrices (see
Skowron, Rauszer [39]) we propose to use similarity matrices. As regards
similarity queries based on distance access method compare for [4].

Let me examine first the question 6. We begin with the definition:

The set of attributes Y C A depends on the set X C A with respect to

the similarity relation Sim if and only if

Sim(X) < Sim(Y).
We shall write in symbols
X5y o X3y,

In the same way we can define dependency of attributes with respect to
weak similarity relation sim:

X -5Y iff sim(X)<sim(Y)
(here < is usual inclusion relation).

In other words, X S,y if strong similarity of objects with respect to
the set of attributes X implies strong similarity of objects with respect to
the set of attributes Y.

REMARK. Dependency of attributes with respect to indiscernibility relations
is formulated eg. in [3], [32]. The dependency with respect to similarity was
formulated in 1994.

Let me recall now Armstrong axioms for functional dependency (Let me
recall that XY abbreviates X UY.):

Bl fYCXCAthen X —-Y.
B2 If X Y and ZC Athen XZ —-YZ.
B3 If X—-Y - Zthen X — Z.
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The axioms hold for strong similarity relation Sim. They hold is some other
classes of strong relations also, cf. MacCaull [18]. Let me show eg. B1:

Sim(X)zy iff Va € X Sim(a)zy but Y C X so all the more Va € Y Sim(a)zy,
i.e. Sim(X) < Sim(Y") which means X 2y,

REMARK. For weak similarity we have just the opposite:
if YCXCA then Y25 X.
Now let me prove B2 for Sim:
By hypothesis we have Sim(X) < Sim(Y), Sim(XZ) = Sim(X U Z) by
notation, so
Sim(X U Z)zyifiva € (X U Z) Sim(a)zy iff
Va € X Sim(a)zy A Va € Z Sim(a)zy
Sim(Y U Z)zyiffV(a € Y') Sim(a)zy A Va € Z Sim(a)zy
hence Sim(X U Z) < Sim(Y U Z).
Ad. B3: It follows by transitivity of inclusion <. "
Also for weak similarity relation the axioms B2, B3 holds easily:
Since sim X Z = sim X Usim Z and X — Y means that sim X <simY
and this gives that
simXZ <simY UsimZ =simY Z.

B3 holds by transitivity of inclusion.
Let me finally introduce the mixed similarity dependency in the following
way:
X 25 Y iff Sim(X) < sim(Y) and
X =5 Y iff sim(X) < Sim(Y).

In Words: X 2% Y if for all objects ,y € O strong similarity of z,y with
respect to the set of attributes X implies weak similarity of z,y with respect
to the set Y. =

REMARK. The reason for a difference between Sim and sim relations in the
axiom Bl is the following:

If A< B and 3z € Ap then 3z € Bep.
If A< B and Vz € By then Vz € Ap.

In other words the pair (<,V) has slightly different properties then the
pair (<, 3).
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2. Tolerance relation

“Any model of perception must take account of the fact that we cannot
distinguish between points that are sufficiently close” (Zeeman {46]). Similar
statement was formulated for choice behaviour by Luce. In consequence the
notions of tolerance, threshold, just noticable difference has been formulated.
We can say that the above notions of similarity and tolerance, threshold,
just noticable difference have the same physical and philosophical fundation
and the same role to play.

If we substitute closeness for identity then we can define tolerance geo-
metry. In the Approach of Roberts it is important to ”Study finite sets and
axioms necessary and sufficient for isomorphism (or homomorphism) into
certain kinds of spaces”.

We recall now a simple axiom system of Tarski for two-dimensional ele-
mentary geometry. The system consist of twelve individual axioms A1-A12,
and the infinite collection of all elementary continuity axioms A13. We shall
use the original notation of the axioms.

Al [Identity axiom for betweennes] A,,[B(zyz) — (z = y)],
A2 [transitivity axiom for betweennes| A,,.,[B(zyn) A B(yzn) — B(zyz)],
A3 [connectivity axiom for betweennes]
NeyenlB(z32) A Blzyn) A B(z # y) — Bwzn) V Bzna),
A4 [reflexivity axiom for equidistance] A,, [6(zyyz)],
A5 [identity axiom for equidistance] A, [6(zyzz) — (z = 2)],
A6 [transitivity axiom for equidistance]
Aeyrusnl8(yn) A 8(zy0w) — 6(zu00)],
AT [Pasch’s axiom] Ayyy.,, Vo [B(ztu) A B(yuz) — B(zvy) A B(2tr)),
A8 [Euclid’s axiom]
Atzyzn Vou[B(zut) A Blyuz) A (z # u) — B(zzv) A Blzyw) A B(vty)],

A9 [five segment axiom]
Nzzryy 22w [8(2yz'y") A (y2y'2") A 6(zuz'v’) A 6(yuy')

AB(zyz) A (z'y'2) A (z # y) — Bzuz'v')],
A10 [axiom of segment construction] Ay, V,[8(zyz) A B(yzuv)),
A1l [lower dimension axiom] A, [# B(zyz) A ~f(yzz) A —~B(zzy)],
A12 [upper dimension axiom]

Azyzuv [6(zuzv) A S(yuyw) A §(2uzv) A (u # v)
— B(zyz) V Byzz) V B(2zy)),

Al3 [elementary continuity axioms]
All sentences of the form

Vow -+ {As Vaylp A = Blzzy)] = Vo lo A% = Blzuy)]},
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where ¢ stands for any formula in which the variables z,v,w, ... but
neither y nor z nor u, occur free and similarly for v, with z and y
interchanged.

We recall that if B(z,y, 2) is ternary relation of betweennes B on a set
A, Tarski-type axiomatization for tolerance geometry, one-dimension case is
the following:

C2. B(z,y,z) — B(z,y,z)

C3. B(z,y,z2) or B(z,z,y) or B(y,z,z)

C4. B(z,y,u) and B(y, z,u) — B(z,y, 2)

C5. If u # v then B(z,u,v) and B(u,v,y) — B(z,u,y)

C6. B(z,y,z) and B(y,z,2) »z =y

C7. z =y — B(z,y, z).

THEOREM (Roberts). Suppose B is a ternary relation on a finite set A.

Then Azioms C2 - CT7 are necessary and sufficient for the ezistence of a
1—1 function f: A — R so that for all z,y,z € A

B(z,y,2) & [f(z) < f(y) < f(2) or f(2) < fy) < f(2)].

Let us now recall the definition of classical betweenes: thereis f: A — R
Vayea B(z,y,2) & |f(2) = fF) + |f(y) — f(2)] = |f(z) — f(2)], and for
e-betweenes we have:

B(z,y,2) & |f(z) — f)l + |f(y) ~ F(2)] <|f(z) - f(2)| + &
The tolerance axioms are stated in terms of B and a relation I on A defined

from B by:
zly & B(z,y, ).

Let R be a simple (i.e. total) order on A. We say that R is compatible with
I if for all z,y,u,v € A

zRuRvRy & zIy — ulv.

Axioms for e-betweeness on the line:

T1. There is a simple order R on A compatible with I

T2. B(z,y,2) — B(z,y,z)

T3. B(z,y,z2) or B(z, z,y) or B(y,z,2)

T4. B(z,y,u) and B(y, z,u) and B(z,y,2) — uly and ulz
T5. If ulv, then B(z,u,v) and B(u,v,y) — B(z,u,y)

T6. B(z,y,2) and B(y,z,z) — zIy or (zIz and zly)

T7. zIy — B(z,y, 2).

THEOREM (Roberts). Suppose B is a ternary relation on a finite set A and
€ > 0 is given. Then Azioms T1 - T7 are necessary and sufficient for the
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eristence of a function f : A — R satisfying

B(z,y,2) & |f(z) = fW)| +1f(y) = f(2) < |f(z) - F(2)| +e
The above two theorems of Roberts show the importance of similarity
in geometry.
We come back to them later, now let me define several relations consid-
ered in information systems:
a) zry iff |z —y| < ¢,
b) zry iff p(z,y) <&,
c) (z1...20)T(y1...yn) iff
pl(zy..-zn), (v1-. .yn)) < g, where p is a distance function,
d) (:El .. .zn)T(yl .. .yn) iff ai,j(|$i - yj| <Eg,
e) Assume that z € Oy, y € Oq, (0141 Vi f1), (0242, f2) are information
systems and we define:

xry iff 3g, 6, f(z,01) N f(y,02) # ¢
and

z7(B1,B)y iff 3b; € By, by € Bz, f(z,b1) N f(y,b2) #0.

Consider also the modification given by the following:

If(z.b1) = f(,b2)| <&,

where f is real valued.

REMARK. It is a general question how to relate different objects in
different information systems if for some reason we are obliged to do
this.

f) Assume that 7 72 73 ... T, are tolerances on U, we define the rela-

tion ™"
zry iff (3zq...zn 1 =22, =y &V, TiTi Tit1).

We say that 7™ is generated by 71 ...7,. It is clear that in most inter-
esting cases, there is ng s.t. for all n > ng we can not say reasonably
that objects z,y related by 7" are similar. In other words there is a
threshold of similarity for a given information system. Finally let us
consider.

g) Similarity of texts (We define this relation for simple texts only):

assume that 7y = aja3...a, and Ty = b1by ... b,
where a;,b; € char,

We define
FMT) £ {ai # b},

i
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and in more generalized setting:

BT = 55w A b+ {as e} +

+...+2ln2{ai7é’h'},

where Ccl = b2,...,cn_1 = bn, Cp = (D, d1 = b3, d2 = bn,..., dn-—2 = bn,
dn—1 = 0 etc. are the original texts shifted to the right. It is easy to
formulate analogical function u for texts shifted to the left or to both
sides.

Let us finally mention that many properties of tolerance relation are
examined by Chajda, Zelinka [5].

3. Similarity of systems

The basic notion which expresses similarity of systems or algebras is the
notion of homomorphism. We propose here slightly different notion, relating
similarity of systems to the similarity structures which can be defined in (or
on) the system. More exactly, we shall say that two systems are similar, if
they have the same (i.e. isomorphic) similarity structures. In this context
by similarity structures we mean:

a) family of tolerance relations,

b) topology or several topologies,

c) hypergraph or connecting net,

d) family of approximations operations.

Every time we fix only one similarity structure, just for simplicity and con-
venience.

EXAMPLE: SIMILARITY STRUCTURE ON INFORMATION SYSTEM
By similarity structure on the system (O, A, V, f) we mean the following
structure:

(B,C,D,...,T)(Sim(B),Sim(C)....) (UF ... UE)

(ve...USy) - (UT . . UFy),
where B,C, D, ..., T are subsets of A, Sim(B), ... are similarity relations,
B B T T
(Ul s e UB(Z)) e (Ul Y UT('I:))
are partitions of the universe of objects O, satisfying conditions:

and
VeeUP, ye UJ-E fori#j non (zSim(E)y).
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Of course the above definition can be formulated also for weak similarity
relations sim(B), ... or other kind of tolerances related to attributes. The
proposed notion of similarity of information systems can be especially useful
in case when we have fixed set of objects O and dynamically changing sets
A,V, f. In other words we can compare fixed set of objects from a different
perspectives (in this case expressed by sets of attributes A, sets of values V
and functions f) (cf. [30], [33]).

ExAMPLE. The following two systems are similar with respect to a similarity
relation Sim:

a1 a2 a3 | as
z7 {1 O z, [{7,8} 1
zo | 1 0 z2 | {7} 1
I3 1 0 I3 {8} 1
z4 | T 0 zq | {0} 1
Ts 7 2 Ty {0} {3, 5}
ze | 7 2 z¢ | {0} {5,10,12}

Relaxing the condition that similarity structures for similar systems have
to be isomorphic, we can obtain more general notion.

4. Examples and further motivation

In psychological investigations we often deal with experiments in which
one has to estimate the values of a stimulus (for instance the light or sound-
stimulus) on a given measurement scale. This estimation is given by the
interval in which we expect to find the actual value of the stimulus; in other
words the postulated value has to be considered taking into account a certain
€rror.

If the results of such an experiment are presented in terms of information
systems (see Pawlak [24]), then the values of the information function should
be identified with the subsets of attribute values (instead of single values). In
such circumstances the associated indiscernibility relation (for the objects)
does not have to be the equivalence relation but it is the tolerance relation
and consequently the family of the elementary sets forms a cover of U (but
not necessarily a partition).

EXAMPLE. Let a;, 1 = 1,...,n be the natural numbers. We define the tol-
erance relation £ C N x N, (which is not the equivalence one if (a;,a;) =1
for some i # j, 1 <14, j < n) as follows

z{y A4 HISiSnz =y (mod a,,') .

Let us describe what are the sets Oy, I and F in case when n = 2, a; =
2, aa = 3. We have five elemntary sets, three of them are arithmetical
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progressions mod 3 and two of them are arithmetical progressions mod 2. I,
is the arithmetical progressions, namely. Oy = {n : n = k(mod2)} U {n :
n = k(mod 3)}.

EXAMPLE. Let us consider the following information system (U, A,V, F)
where U = {p,q,7, s,t,u,v,w,z,y,2}, A = {a}, V = [0, 10) and the values
of F are intervals contained in V:

N e B g @ g St ow o 3a g

It is easy to check that the relation {4 is the following:
§a={{a7),(r ), (s,1),{t,9), (t,u), (u, 1), (u, w),
(w,v), (w, z), (z, ), (2,9), (¥, 2), (¥, 2), (z,9) }
U{{(m,m),: me U}.
The family of all elementary sets contains the following sets:

E={{p}.{g, v} {s:2}, {t,u}, {v,w}, {w, 2}, {2, y}, {y, 2}}.
As regards the family of the kernels, we have one two-element kernel I, =
I, = {g,r}. The other ones are one-element sets.
We have the following indiscernibility neighbourhoods: Op = {p}, O4 =
Or = {q,r}, 05 = {s,t}, O¢ = {s,t,u}, Oy = {t,u}, Oy = {v,w},04
{v,w,2},0; = {w,z,y}, Oy = {z,y,2}, O, = {y, z}.

EXAMPLE. Suppose one has to select a group X of persons of the set U,
which are to participate in a polar expedition, in a way that assures the best
possible collaboration (i.e. without conflicts). For any person z belonging
to U, two experts (the psychologist and the physician for instance) are to
indicate independently the suitable “good working” groups with person z.
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From data obtained by the experts we form the information system and we
analyse it. The experts Exz 1, Ex 2 will play the role of the “attributes”.

Ezl Ezx?2
T f((II'L,ECB])
)
z3

ot =1,...,n, 7=12.

The value of the information f(z, Ex 1) is the set of persons that expert 1
regards as good working group containing the person z. Identically we define
f(z, Ex2). Let us observe that the families D!, D? defined in the following
way:

D! = {f(z,Ex1):z € U}
D? = {f(z,FEz2):z €U}

are the covers of the set U. We define the tolerance relation on U as follows:
for any z,y e U

z¢y < 3D € D! & 3D' € D* ({z,y} C G & {z,y} Cc D’).

Now we give the interpretation for the notions of elementary (with re-
spect to the opinion of both experts) if it is the greatest set of which all the
members can stay together in the polar station without conflicts.

Indiscernibility neighbourhood O, is the set of all the people, who will
no be in conflict with person z (pairly).

The kernel I, is the set of all persons (in agreement with each other)
having the same “relation” as z to all the remaining members of U.

We shall illustrate our approach on the simple numerical example:

Ezxl Ex2
{z1, 22,23} {1, T2, 23}
{z2, 3,24} {71, T2, 23}
{z2, 3,24} {2, 73, T4}
{z4,25}  {z4,25}
zol{z1,2z5}  {z1,z4,25}.

x

—

x

(&)

x

w

x

[~y
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We have the following elementary sets and indiscernibility neighbourhoods:
E= {{1:11 x2, $3}7 {(El, $5}’ {z2) z3, .’174}, {.’134, xS}}
0:1:1 = {$1,$2,$3,(IJ5}, O:l:z = {1:1,:132,:1:3,134} = 013,

Oz:; = {-’31,1;2,273,1'4}, O:l:4 = {332,333,2}4,1'5}, Oa:s = {$1,$4) $5}.

At last there are the following kernels:

L, = {z1}, Ly = Ipy = {:Ez,:va}, Iy = {z4}, Iy = {:1:5}
on the universe U.

The example suggests that in order to find the needed group of people
it is convenient to proceed as follows: we take the greatest kernel and the
(possibly) missing persons should be chosen from the biggest elementary set
including this kernel. In our example the kernel is I, and the third element
to be added is z; or z4.

5. Rough regions and Kuratowski lemma
It is well known that if we apply to a set A two operations

~ the closure and the complement,
- in a fixed topological space (U, ) then the number of sets that can be
obtained from A in this way is less or equal to 14 (Kuratowski[15]).

This means that if we apply the closure and the complement operations to
the sets A and we form an equality, then the number of relations defined
with respect to these equalities in the family of all subsets of U has to be
finite also. The equivalencies of the similar kind are sometimes applied in
computer science and data analysis, for example so called rough, bottom
and top equality (see Nowotny, Pawlak [19]). In this paper we construct 18
relations (including rough top and bottom equalities) (see Pomykala [29])
obtaining as a special case also topological rough sets (see Wiweger [45]).

Basic definitions
Assume that (U, ) is a topological space. If w is a finite sequence of
and  (where '’ means the complement operation) then we shall write
w € Word (/, ). In other words w is a word over the alphabet {’ ~ }. For
A C U we define:

A =4
A=A forw="
A=A forw=

and inductively for arbitrary w € Word (/, ).
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If R is an equivalence relation in U we denote by U and L, Pawlak’s
closure and interior operations on U, i.e. for ACU

UA=A=J{[z]: = € 4}

where [z] is an equivalence class of z w.r.t.R.
L is defined to be conjugated to U, i.e. foreach AC U, LA=-U — A.

In the sequel the operation ~ will be equal to U for some relation R.
Usually we write A4, A instead of U A, L A, respectively. (U,” ) = (U, R) is
called approximation space.

Now let us define the following relations on P(U), let A, B C U:

A=, Bif A=B
~ Bif A=-B
A=3; Bif A=B
A, Bif A=-B
A~ Bif A=B
A= Bif A=-B
A=, Bif A=1B
A Biff A=-B
A= Biff A=B
A 310 B lﬁ A = —_.B
A=, Bif A=B
A, Bif A=-B
A3 Bif A=B
A=y, Biff A=-B
A2 Bif A=B
A~ Bif A=-B
A 217 B lﬁ Z = F
A= Bif A=-B
Let us observe that the first relation is the equivalence relation, the second
is symmetric, the third is transitive, and the fifth is transitive and similarly
13-th, finally 7-th, 9-th and 17-th are equivalences, 18-th is symmetric.

Main result
Our main theorem is the following

THEOREM. If (U, ) = (U,U) is the approzimation space for some equiva-
lence relation R and wl,w2 € Word (" , ') then the relation = (on P(U))
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defined by the condition

A= B iff A" = B*?
s equal to one of the above 18 relations.
Proof. We need 3 Lemmas

LEMMA 1 (Kuratowski 1922). Suppose that we apply to a set A the operations
"~ and '. The number of sets that we obtain is less or equal to 14.

LEMMA 2. If (U,U) is the approzimation space and A’ denotes the com-
plement of A then there exist no more then 6 sets obtained by applying to
the set A the operations of closure and of the complement. The following
inclusions are generally valid among them.:

A TCACA
A— ! g AI g AI_
LEMMA 3. The following equalities holds:
AI_I =Al_l_' =AI_I_I_I
A_I_I =A_I_l_ =A_
A_/ =A_I_ =A_’_,—/
AI_ =AI_I_I =AI—‘I_I-
Now, in view of Kuratowski lemma we infer that the words wl, w2, in
the equality A¥! = B*? may be reduced to words over the set

Wz{l_lm_—l II*}
Considering every pair of words wl, w2 belonging to W and examining the
equalities A¥! = B¥? it is easy to check that A¥! = B¥? iff A =; B for
some ¢ € {1,...18}. Finally let us observe that all equivalences &1, ..., %3
are different. The proof of the theorem is completed.

REMARK. The general construction of this paper for arbitrary Kuratowski
closure operation will be given in a forthcoming paper.

We leave open the problem of the description of all rough constructions
defined with respect to the operations introduced in the paper [27].

It seems to be worth studying the structure of the algebras created from
the family of all pairs (int A, cl A) in a fixed topological space. .

6. The completeness theorem

The concepts of functional and multivalued dependencies in RDB are
important tools for database design. The complete and sound axiomatiza-
tions are known (see [1], [10], [2]). In this place we first recall axioms in the
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RDB context, and we show the modification in information systems theory
case (cf. [18]).

Let us recall that a functional dependency (see [6]) is a statement of
the form X — Y, where X,Y are sets of attributes. Dependency X — Y
holds in a relation R if for every pair r1, 7 of tuples, if r1[X] = 5[ X], then
Tl[Y] = T‘z[Y].

A multivalued dependency (see [10]) is a statement of the form

X—Y, where X,Y C A.

Let Z= A~ X —Y. The dependency X—Y holds in R if for all 1,72
in R, if r1{X] = ro[X], then there are r3 and r4 in R such that
1) r3[X] = ri[X], r3[Y] = r1[Y), r3[Z] = [ Z];
2) 1‘4[X] = T2[X], T4[Y] = Tz[Y], 7‘4[Z] = Tl[Z].

We say that a dependency d is a consequence of a set of dependencies D
if for all relations R, d holds in R if all the dependencies D hold in R.

We recall now axioms for multivalued dependencies:

DO0: Let X,Y, Z be sets of attributes such that XUYUZ = AandYNZ C X.
Then X—Y iff X— 2.

D1: If Y C X then X—»Y.

D2: If ZC W and X—Y, then XW—Y Z.

D3: If X—Y and Y—Z then X—Z -Y.
Let D be a set of multivalued dependencies, and let dids...d, be
dependences. We say that didz...d, is a derivation from D if the
following holds:
for all 4, either d; € DU {d;...di—1} or d; can be inferved from D U
{d1...d;~1} by an application of one of the axioms (inference rules).

The inference rules are sound if every dependency d that can be derived
from D is also a logical consequence of D. The inference rules (i.e. here
D0-D3) are complete if every dependency d that is a consequence of D can
also be derived from D. In ([1], {10], [2], cf. [38] [43]), it is proved that
the axioms (inference rules) for functional dependency (Armstrong axioms)
and for multivalued dependency are sound and complete, with respect to
relational semantics.

Let D be a set of similarity dependencies and X C A. By X* we denote
the closure of X with respect to D i.e. it is the set of attributes B such

that X —» B can be deduced from D by Armstrong’s axioms. We shall

follow the proof of completeness given by Ullman [20] (see also Armstrong
[1], Fagin [10]).

LEMMA. X -5 Y follows from Armstrong’s azioms iff Y C X*.
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Proof Let Y = A;... A, and suppose Y C X*. By definition of closure,
x -2 4; is implied by axioms for all . By the property

1) X -5Y and X = Zthen X 2272

we obtain that X ~2- Y follows. Conversely, suppose X 2, Y follows from
axioms. For every 1, X 5, A; holds by the property of decomposition:

2) IfX-2,Yand ZCY then X - 2.
By application of the lemma it holds:

THEOREM. Armstrong’s axioms are sound and complete in relational se-
mantics.

Modifying the original proof it is possible to obtain:

THEOREM. Armstrong’s azioms are sound and complete with respect to in-
formation systems semantics.

REMARK. It is possible to analyse properties of knowledge representation
systems using the relations of indiscernibility, similarity and informational
inclusion, together (cf. Vakaretow [44]). It is very interesting research topic,
how to apply Vakarelow method to dependency theory unifying different
relations with parameters.

Proof. We checked above that axioms are sound i.e. respective properties
of similarity relation Sim hold.

Let D be a set of dependencies and suppose X -5, ¥ cannot be inferred
from axioms. Consider the following system:

O = {z,y}, A —the set of attributes over which D is defined, V = {{1}, {0}},
and f(z,a) = 1 for every a € A, f(y,a) = 1 for a € X*, f(y,a) = 0 for
a€ A-X*

First let me show that all dependencies in D are satisfied in the system
(0, AV, f).

Suppose V' 5, W isin D but is not satisfied in the system. Then V' C
X* otherwise two records z,y are not similar for some attribute in V. And
therefore can not destroy the dependency V/ — W. On the other hand W
can’t be a subset of X*, or V — W is satisfied by our system.

Let A; be an attribute of W which does not belong to X*. Since V' C
Xt X -5, V' follows from the axioms by Lemma. Dependency V' S,wis
in D, so by transitivity we have X Sow. By reflexivity condition W 3, A,

so X =, A; follows from the axioms. But then A; is in X*. By contradic-
tion, each V' — W in D is satisfied in the system (O, 4,V, f).
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Now let us show that X —2- ¥ is not satisfied. Assume, that it is satisfied
in the system. As X C X*, it follows that Y’ C X*, else the two tuples of
system are similar on X but are not similar on Y’. But then Lemma tells
that X — Y can be inferred from axioms, a contradiction. Therefore X — Y
is not satisfied by (O, A,V, f) even though each dependency of D holds. =

Finally we try to express multivalued dependency related to similarity
relation Sim. Let us take Z = A — X — Y. There are many possibilities to
define the notion analogical to multivalued dependency, let me propose the
following:

a) XY iff X -Y2Z,

b) X—»Y iff Vo (X < Y ATb € Z Sim(b)) zy,

c) X—Y iff Vg (Sim(X)zy = (Sim(Y)zy V Sim(Z)zy)),

d) X—Y iff Sim X < Sim(X UY)oSimZ.
Of course we can also consider the case of embedded dependencies i.e. under
assumption Z C A— X —Y . Due to space limitations we consider multivalued
case in a different article.

In this paper we consider only the definition c), which is interesting for
us from the point of view of the applications.

Functional and strong similarity dependency

Now let me explain the relation between functional and similarity de-
pendency of attributes.
Let us consider the following systems:

y |l 2 and y {{1} {2}

In the first one we can define indiscernibility relation but not similarity, at
least in a natural way. In the second system we can define both relations
- indiscernibility and similarity. Therefore, in some cases it is technically
useful to transform a system putting

F(z,a) = {f(z,a)} forall =z,a.
Under such assumption we can say that the similarity dependency is a gen-
eralization of the functional dependency. More exactly:
THEOREM. If the functional dependency X — Y holds in a given informa-
tion system (OAV f) then the similarity dependency X 5, Y holds in the
transformed system OAV F, where F(z,a) = {f(z,a)}.

In view of this theorem, functional dependency can be interpreted as a
similarity dependency.
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On the other hand, similarity dependency is in an essential way different
from multivalued dependency. This together means that similarity depen-
dency is a generalization of functional one in a different direction then the
multivalued dependency.

Let me recall the example from Fagin [10]. It is shown there the mul-
tivalued dependency Employee — {Salary, Year} and it is argued that it
does not hold

Employee — Salary nor Employee — Year.

In case of similarity dependency we have:
Sim (Employee) < Sim (Salary, Year) means that:

Vzy Sim (Employee) zy =
= Sim (Salary) zy N Sim (Year) zy

which implies that Sim (Employee) £, Sim (Salary) and Sim (Employee)
=, Sim (Year).

Therefore: strong similarity dependency can not be equivalent to multi-
valued dependency.

1. Similarity dependency is a generalisation of functional dependency.
2. It differs from multivalued dependency since its definition is indepen-

dent from the context ie. X =Y depends only on X,Y and not on
the attributes from A — (X UY).

3. It differs from MVD since the rule of complementation does not hold
for similarity dependency i.e. the rule. f XUYUZ =AandYNZ C X
then X —Y iff X—-2Z, is not true for —— .

On the other hand reflexivity, augmentation and transitivity rules hold.
Also the rules of Pseudo-transitivity, union and decomposition holds
for similarity dependency.

Now it is natural question if weak similarity dependency sim is a better
candidate to be equivalent to (or to emulate) multivalued dependency?

Weak similarity dependency shall be examined in the second part of this
article. In this place we only formulate the axioms:

. X 5 X,

2. X 5Y -5 Z implies X = Z,

3.if YNZ #0 then X - (Y N Z) implies (X > Y & X - Z),

4. it is not true in the full class of information systems, that (XNY) — Z
implies (X ~ Z) & (Y —> 2).

X Y NZimplies X Y and X -2 Z.

6. XNY - Z implies X —» Z and Y - Z.

«
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They are called reflexivity axiom, transitivity axiom, decomposition of in-
tersection in second coordinate axiom and decomposition of intersection in
the first coordinate, respectively.

We propose also the following axioms for mixed dependencies with re-
spect to weak and strong similarity relations together:

1. Armstrong axioms for strong similarity dependency,
2. Axioms 1-6.

It is not in general true that:

1. X 5,7 implies X => Y,

2. X 5 Y £, Z implies X - Z,

3. X—LY—stimpliesX—“’—»Z,

4. X 25 Y N Z implies X <> Y and X - Z under condition that
YNZ#0D. =

REMARK. Axioms are not sound in the full class of similarity structures.

7. Similarity on the family of objects
Now let me define some relations on the set of objects O. Let us denote
now sets of objects by M, N, P,Q, X,Y,Z. For a,b € A we define

Sim(m)ab iff f(m,a)N f(m,b) #0
sim(m)ab = Sim(m)ab.
Next, for P C O we define
Sim(P)ab iff Vpep Sim(p)ab
sim(P)ab iff Jpecp sim(p)ab.
These relations are called strong similarity of attributes with respect to
the set of objects P and weak similarity of attributes with respect to P,
respectively.
The set {f(p,a) : p € P} is called the information about the attribute a
w.r.t. the family of objects P.

Now let us assume that we have also the set of tolerances on the set of
attributes:

r(z),7(y),7(2),... for z,y,z,...€0.

We shall say that two informations about attributes a,b w.r.t. P C O are
strongly similar if

Vper f(p,a)T(p)f(p,b).
On the other hand, two attributes a, b are weakly similar w.r.t. P iff

Fpep f(p,a)7(p)f(p,b).
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In other words we can say that two columns (attributes a,b) are strongly
similar if for every object p € P the respective values of information function
[, f(p,a), f(p,b) are similar with respect of the family of tolerances 7(p),
p € P. By analogy we can describe weak similarity of attributes.

Now let us consider definition of dependency between sets of objects.

We begin with the definition:

the set of objects Y C O depends on the set X C O with respect to the
similarity relation Sim if and only if

Sim(X) < Sim(Y).
We shall write in symbols

X5y o x3my.

In the same way we can define dependency of objects with respect to weak
similarity relation sim:

X -5Y iff sim(X)<sim(Y)
(here < is usual inclusion relation).

In other words, X S,y strong similarity of attributes with respect
to the set of objects X implies strong similarity of attributes with respect
to the set of objects Y.

Let us define functional dependency for objects as a statement of the
form X — Y, where X,Y are sets of objects. Dependency X — Y holds in
a relation R (or in information system) if for every pair 71,79 of columns in
the relation (in the system), if r1[X] = r2[X], then r[Y] = r[Y].

A multivalued dependency is a statement of the form

X—Y, where X, Y CO.

Let Z=A - X — Y. The dependency X—-Y holds in R if for all r1,7;
in R, if 11 [X] = ro[X], then there are r3 and r4 in R such that
1) r3[X] = ri[X], r3[Y] = m[Y], r3[Z] = o[ Z];

2) 7‘4[X] = Tg[X], 7‘4[Y] = 7‘2[Y], T4[Z] = Tl[Z].

We say that a dependency d is a consequence with respect to relational
semantics of a set of dependencies D if for all relations R, d holds in R if all
the dependencies D hold in R. We will say that d is a consequence of D if
for all systems, d holds in (OAVF) if all dependencies D hold in it.

We recall now axioms for multivalued dependencies:

DO0: Let X,Y, Z be sets of attributes such that XUYUZ = Aand YNZ C X.
Then X —Y iff X—2Z.

D1: If Y C X then X—Y.

D2: If ZC W and X—»Y, then XW—Y Z.
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D3: If X—Y and Y—Z then X—Z -Y.
Let D be a set of multivalued dependencies, and let didy...d, be

dependiences. We say that djd;...d, is a derivation from D if the
following holds:

for all i, either d; € DU {d;...d;-1} or d; can be inferred from D U
{d1...di—1} by an application of one of the axioms (inference values).

The inference rules are sound if every dependency d that can be derived
from D is also a logical consequence of D. The inference rules (i.e. here
D0-D3) are complete if every dependency d that is a consequence of D
can also be derived from D. In [22] it is proved that the axioms (inference
rules) for functional dependency (Armstrong axioms) and for multivalued
dependency are sound and complete.

Let D be a set of similarity dependencies for sets of objects and X C A.
By X* we denote the closure of X with respect to D i.e. it is the set of objects

B such that X -2 B can be deduced from D by Armstrong’s axioms.
Modyfying proof of completeness for attributes we can obtain the com-
pleteness theorem for objects also:

THEOREM. Armstrong’s axioms expressing functional dependency for sets
of objects are sound and complete.

At the end of this section let me state the following language:
Language: 0;,0,,... propositional symbols
A1, Ag, ... attributes symbols

s, S weak and strong similarity symbols
Axioms:
5(4:)0; — s(A1)0;,

S(Ai)(01 A 02) — s(A,-)Ol A S(A,')Oz,
S(A,;)(Ol \Y 02) — S(A,;)Ol V 5(A;)0s,
S(Al-)(Ol A 02) - S(Ai)O]_ A S(A;)0q,
S(Ai)(O1V O2) & S(A;))O1V S(4;)0-,
s(Ai U A;)01 — S(4:)0; V S(4;)0n,
5(A; N A;)01 — S(A4:)O1 A S(4;)0n,
under condition A; N A; # 0.
If A;N A; = () then we assume by convention:

S(@)0: =90,

S(A; U 4;)01 — S(A;)O1 A S(4;)04,
S(A;)O1 A S(A;)0, — S(AiN A;)O;.
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Standard interpretation:

O; - sets of objects,

A; - sets of attributes,

s — weak similarity relation,
S - strong similarity relation.

8. Normal forms

Let me recall now the definitions of normal forms in the formulations
given by Fagin and Date.

A relation schema is a pair (A4, D) where A is a set of attributes and D
is a set of dependences involving only these attributes.

An attribute is a key attribute if it is contained in some key. Otherwise
it is a nonkey attribute.

A relation schema is in third normal form (3N F) if whenever X — A is
a nontrivial FD of the schema, where A is a single attribute, then either X
is a superkey or A is a key attribute.

A relation schema is in BCNF if whenever X — Y is a nontrivial F'D of
the scheme, necessarily X is a superkey.

A relation schema is in fourth normal form (4NF) if whenever X —Y is
a nontrivial MVD of the schema, necessarily X is a superkey.

We shall consider normal forms in view of our similarity dependency in
the second part of this article.

9. Further examples

EXAMPLE.
Real time systems with the hierarchy [RTS], [Petri net).

Input =digital data for software system
Output = digital data that control external hardware
The time between the presentation of a set of inputs and the appearance
of all the associated outputs is called response time
Hard r.t.s. = resp. time is explicity bounded
Soft r.t.s. = those in which performance is degraded
but not destroyed when response
time constraints are not mat.

R.t.s. which are reactive or embedded have ongoing interactions with
their environment.
Event : any occurence that results in a change
in the sequential flow or program execution.



Similarity in RDB and in IST 949

Synchronous events : occur at predictable times
such as execution of a branch
instruction or hardware trop.

Asynchronous events occur at unpredictable points in the flow-of-control
and are usually caused by external sources such as a clock signal.

Both types of events can be signaled to the CPU by hardware interrupts.

There is an inherent delay between when an interrupt occurs and when
the CPU begins reacting to it, called the interrupt latency.

Task driven by interrupt, that occur aperiodically are called sporadic
tasks. Systems in which interrupts occur only at fixed frequencies are called
fixed-rate-systems and those with interrupts occuring sporadically are called
sporadic systems.

A higher-priority task is said to preempt a lower-priority task if it inter-
rupts the lower priority task; that is a lower priority task is running when
the higher priority task signal that is about to begin.

Systems instead of round-robin or first-come-first-served scheduling are
called preemptive priority systems. The priorities assigned to each of the
task associated with that Interrupt.

The above description of some features of real time systems is given in
the literature, but I was not able to recall the proper reference. Any way
we propose the following definitions: input data D;, Dy are similar if the
corresponding output data H;, H> are also similar.

Next, we shall say that two events Fv; Evs are similar if the change in
sequential flow or in program execution will not destroy the main aim of the
program or the main functions of the external hardware.

Finally, two interrupt events ie;, tes are e-similar if the difference be-
tween corresponding interrupt latencies is smaller than ¢ > 0.

ExXAMPLE. Let us assume that we have the following ROI - let it be 2 medical
image showing the flow of contrast or the flow of the blood (cf. Goszczyriska
[11]).

Vertical lines show where approximately is the contrast in the blood after
t1,12,...,t, moments of time. Let us denote the region between ¢;,¢; and
the anatomical border observed on the image by R(t;,t;). We have that

Apr (R (tia tj)) = Apr (R (to’tj)) - Apl‘ (R (tO,ti))'

So in this case with the flow of contrast in the blood we can observe which
anatomical rejon is filled by contrast after the given period of time.

On the other hand we can also devide the ROI on equal parts along the
X-axis and estimate moments of time in which every point is obtained. Here
we have the function F(p;) = Apr(R(%p,t;)) and more precisely speaking
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p; — t; i.e. given a point p; we find ¢; such that after ¢;-th moment of time
we obtained the point p;.

In the examinations like the above we can compare the series of time
with the similar space properties. In other words definition of similarity of
time series can be used to distinquish space properties of the flow, and vice
versa — by considering similar space properties we can reason about ” proper”
time series in a conducted experiment.

We plan the second part of the article in the following way:

1.
. Normal forms and decomposition algorithms in view of similarity rela-

<Y W JOR X

[o BN |

10.

Applications in medical imaging and in genomic databases.

tions.

. Mixed FD and MVD axioms in view of Sim and sim relations.

Relation of similarity dependency to join and template dependency.
Mixed dependency with respect to ind, Ind, sim and Sim relations.

. Application of Orlowska-Mac Caull tableaux procedure for the impli-

cation problem for association rules.

. The role of symmetry in biocybernetics.
. Why RDB and IST are different theories?
. Quants, atoms and similarity — searching for a new laws of theoretical

physics.

In the paper of Togawa and Otsuka a model of cortical neural structure
consisting of threshold elements is proposed in which the single cell
representation hypothesis is introduced. We suggest that it is possible
to apply in this model the ideas related to tolerance and approximation,
and in this way to obtain the better understanding of mental processes
such as consciousness and cognition.

Final remarks

We list some problems and ideas which can be further developed:

1.

w

Formulate and examine definitions more throughly of similarity of sys-
tems, algebras and logics.

. Formulate dependency theory on a lattice (cf. Lee [17]).
. Examine approximation operations on a lattice (cf. Iwiriski {12]).
. Express algebraic properties of algebras defined by operations R* for

special classes of R.
Find applications to medical imaging.

. Develop similarity of many sorted algebra (Bidirectional morphisms)

(cf. A. J. Pomykata [31]).
Make comparison between the notions of approximation in Partition
space, in Cover Space and in the algebra of Images.



Similarity in RDB and in IST 951

8. Examine the elementary axioms of geometry in view of similarity neigh-
bourhood-formulations using different systems of axioms (cf. Tarski
[41], Roberts [37]).

9. Finally, we suggest to consider also questions:

- when two systems are similar (and not homomorphic), and describe
more exactly a relation between homomorphism and similarity of sys-
tems.

10. Karen Kwast [16] considered the definition of reduct and dependency
in the following general setting: take any relation R satisfying only a
single requivement — distribution over the attributes. Formally:

(*) Vrser:7{X)s iff V4 € X : r(A)s. As a consequence, (§) = R x R.
Then she formulated definitions of independent set of attributes, dis-
pensable element, the core of X and the reduct of the set of attributes.
She axiomatixed dispensable subsets and considered reduced reducts
and showed the connection to normal forms. It is possible to use some
result of her to relativise reducts and dependency to both Ind and Sim
relations, generally speaking every relation satisfying (*) belongs to
similar formalisation.

REMARK. The paper was presented on the Relmics 6 conference in Holland.
Extended and orthogonal version of it shall be submitted in the Proceedings
of the conference.

Finally let me recall axioms for mixed functional and multivalued de-
pendencies cf. [2]. Axioms 1, 2, 3 are equivalent to Armstrong’s axioms.

4. X -Y, YW — Z implies XW — Z.

5. X Y, X — Zimplies X - YZ.

6. X - YZ, implies X - Y and X — Z.

7. EXUYUZ=Aand YNZ C X then XY iff X— 2.
8. If Y C X then X—Y.

9. If Z C W and X—-Y then XW-—Y Z.

10 If X—»Y and Y—>Z then X—2Z -Y.

11. If X - Y then X—-Y.

As regards to mixed inference rules, the following holds:

If X - Y then X -5, V.
On the other hand the rules:
122 If X > Zand Y — Z’ where Z' C Z and Y and Z are disjoint, then
X - 2Z.
13. HX—Y and XY > Z then X - Z-Y,
do not hold. (Here — means functional dependency.)

End of part 1.
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