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AN ALMOST SURE MAXIMUM LIMIT THEOREM 
FOR CERTAIN CLASS OF DEPENDENT 
STATIONARY GAUSSIAN SEQUENCES 

Abstract. Let {f„, n > 1} be a sequence of stationary standard normal random 
variables and Mn = max(£i,..., £n). 

Our goal is to prove that under some conditions on the covariance function r(n) = 
Cou(£i ,£i+ n ) and for certain pair of numerical sequences (a 

P I lim sup 
N-*OO _oo<x<cx> n=l ' 

where: A(a;) = exp(—e T) , for —oo < x < oo, /(_oo,i]( ')"^e indicator function of the set 
(—oo,x], log(-)-the natural logarithm. 

1. Introduction 
Leadbetter, Lindgren and Rootzen in [4] were concered with conditions 

under which, for suitable normalizing constants an > 0, bn, 

where Mn = max(Xi, . . . , Xn), for some sequence {Xn, n > 1} of random 
variables and denotes the convergence at continuity points of G. 

They showed that, if {Xn, n > 1} are i.i.d., then the possible nondegen-
erate didstribution function G, which may appear as such a limit has (up 
to location and scale changes) one of the following three forms - commonly 
called the three Extreme Value Distributions: 

A(x) = exp(—e~x), —oo < x < oo; 

Key words and phrases: maximum limit theorem; almost sure convergence; logarithmic 
means; dependent stationary Gaussian sequences. 

2000 Mathematics Subject Classification: Primary 60F15; Secondary 60F05. 



880 M. Dudzinski 

e < , ) - j l £ 0 -
[ exp(-x Q), for some a > 0, x > 0; 

T . , | exp(—(—i)a), for some a > 0, x < 0, 
= < K K ' ' ~ 

\ 1, a; > 0. 

Natural question raised, whether assertions are possible for almost ev-
ery realization of the random variables {Xn, n > 1}. In this case Cheng, 
Peng and Qi in [2] and simultaneously Fahrner and Stadtmuller in [3] con-
sidered the sequence J(_00x](M^~bn), where {Xn, n > 1} are i.i.d. and 
I(-oo,x]{') denotes the indicator function of the set (—oo,x], Since the se-
quence I(-og,x] (Mn

a~hn) does not converge almost surely for any x satisfying 
0 < G(x) < 1, they investigated the limitation of J(_OO I](M'^~b") by loga-
rithmic means and showed that, if P ( < x) G(x), then 

P ( lim sup 
, N—hx> 0<G(I)<1} 

On 
N 

1 " 1 ( M n - b n \ 
= 0 = 1 . 

The purpose of this paper is to prove similar result for some class of 
dependent stationary standard normal random variables {£n, n > 1}. In 
this case, we assume that 

1 , log log n +log 4tt 
an = r , bn = (2 logn)2 1 , for n > 2, 

(2 log n) 2 2(2 log n) 2 
0 < ai, a2 < 00, —00 < 61, f>2 < 00, 

G(x) — A(x) — exp(—e~~x), —00 < x < 00. 
The choice of an, bn is not accidental. Berman in [1] has given simple 

conditions on the covariance function r ( n ) = Cov(£i, £i+n)> which ensure 
that for such defined an and bn, 

p ( M n - b n < \ „ k { x ) 

\ On ) 

One of Berman's results is that it suffices that 
00 

y ^ r2(n) < 00. 
n=1 

It is easily seen that this is fulfilled, if 
00 

|r(n)| = «5 < 1 and 
n> 1 

Both the conditions above will be used as the assumptions of our theorem. 

max |r(n)| = «5 < 1 and ^ IHn)l < 00. 
n=1 
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2. Main result 
We shall consider the limitation of ^(-oo,x](Ma~6") by logarithmic means 

and prove the following theorem. 

T H E O R E M 1. Let {£n, n > 1 } be a sequence of stationary standard nor-
mal random variables, Mn = m a x ( £ i , . . . , £n). Assume that the covariance 
function r(n) = Cov(£ i,£i+n) is such that 

(1) max |r(n)| = 6 < 1, 
n> l 
oo 

(2) 

Then, we have 

y ; jr*(ri) [ < oo. 
n=l 

(3) P[ lim sup 
,N->co - o o < x < o o 

N 

log N ¿ n (-°°'xl •A(x) = 0 = 1 , 

where 

an = 
1 i /oi \ ~ log log n + log 4?r - , bn = (2logn)2 — - , for n > 2, 

(2 log n) 2 2(21ogn)2 
0 < ai , a2 < oo, — oo < 6i, 62 < oo 

and 

A(x) = exp(—e x ) , -00 < x < 00, 

- f(-oo,x]( ' ) ~ indicator function of the set (—00, x]. 

P r o o f . In our derivations C, C(x) denote some non-negative constants, 
which can vary from line to line (C(x) depends on the fixed real number x) 
and Ix(-) stands for the indicator function /(_00i I j(-). 

Set 
N 

(4) 

(5) 

n=l 

1 N 1 

Obviously, we have that 
N 

sup 
- o o < x < o o 

1 1 1 
- T - l l o g N ^ n • 

n=l 

M n - b n 

Mn - br, 

< 

- SN(x) 

K(N) 
log N 

- 1 0 a.s. (as N —> 0 0 ) . 
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Thus, to show (3), it suffices to prove that 

(6) l i m s u p \SN(X) — A ( x ) | = 0 a . s . 
N->oo -oo<x<oo 

Let us notice that, as A is continous, condition (6) is equivalent to 

(7) P{u> : lim SN(x) = A(x), for all - oo < x < oo} = 1. 
N—>oo 

(8) 

We now fix —oo < x < oo. Let for 1 < j < n, 

Mn - br, 
9jn — E 

I x [ M i - b i ] _ A { x ) 
- A ( z ) 

We shall write gjn in the following way 

where Mn = max(^i, . . . and n > 1} are i.i.d. standard normal 
random variables. 

Let us denote 
un(x) = 

o,nx + bn. 

It is easy to check that 
gjn = [P(Mj < UJ(x),Mn < un(x)) - P{Mj < UJ(x),Mn < un(x))] 

+ A(x)[P(Mj < Uj(x)) - P{Mj < u,-(x))] 
+ A(x)[P(Mn < un(x)) - P(Mn < un(x))] + gjn, 

where M-i - bn 
9jn '— E - A ( x ) h 

Hence, we have that 

(9) \gjn\ < | P { M j < uj(x),Mn < un(x)) - P(Mj < Uj{x),Mn < un(a;))| 
+ \P{Mj < Uj(x)) - P(M^ < uj{x))\ 

+ |P{Mn < un(x)) - P(Mn < un(x))| + \gjn\ 

= AI + A2 + A3 + A4. 

On the other hand, from definition of un(x) and sequences (an), (bn), we 
have that for n > 2, 

x i log log n + log 47r 
u n \ x ) = t t : — + (2logn)2 -

(21ogn): 2(2 log n) 2 
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and it is easy to check that un(x) > Uj(x), for n > j > h{x), where 

(10) h(x) = max 
M H - ^ M 

and [ ] denotes in this case the integer part of the number. 
Hence, for n> j > h(x), A\ in (9) can be written as follows 

M = | P ( Ê 1 < Uj(x), Uj(x),ij+1 < un(x), ...,£n< un(x)) 

- P{£1 < Uj(x), . . . , i j < Uj(x),£j+1 < Un(x), . . . , £ „ < Un{x))\. 

Due to the fact that {£n, n > 1} are standard normal and stationary, we 
have from Theorem 4.2.1 in [4] that, if 6 is such as in assumption (1), then 

A1<C £ | r ( / - A 0 | e x p ( - ^ 
1 ̂  k <7 

I ^ V ^ I /I M l ( l u ) { x ) + ul{x) 
+ C 2 s | r ( f - f c ) expl - -

iik<j V 2 1 + 6 

j<l<n 

+ C E | r ( / - f c ) | e x p ( - ^ ) . 
j<k<l<n 

Set 
(11) 7 = 1 + 5 
Using notation (11), we can write that 

i-1 
¿1 < C j e x p ( - 7 u J ( x ) ) 5 > ( < ) l 

t=i 

+ C j e x p ^ - ^ y u ^ x ) ) e x p ^ - ^ u * (x)^ ^ | r( t) | 

n—j—l 
+ Cnexp(-7<4(x)) £ \r(t)\ 

t=l 

and by assumption (2), 

(12) Ai <C 

+ nexp(-7ii^(x)) 

On the other hand, from definition of Uj(x), we have that 
_1 
P 

(13) exp(-7u^(x)) < C(x)-^(\ogj)'y. 
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(12) and (13) imply that 

(14) Ax < C{x) 1 1 a 1 i 1 
rp n2T 

Using Theorem 4.2.1 in [4] again and similar calculations as by the esti-
mation of A\, it is easy to find the estimates for A2 and A3 in (9). We have 
that 

(15) A2 < C(z)j±(logjP 

and 
(16) A3 < C{x)n^{\ogn)\ 

(14)-(16) yield that for n>j> h(x), 
(17) Ai + A2 + 

< C J-27 (log j ) 7 + j—(log;) 2 — (logn)2 + n - ^ ( l o g n ) 7 

' - p ni 
Thus, it remains to estimate A4 = \<jjn\. As 

n 27' 

A4 = E j / M3 ~ bJ 
a* A(x) Ix I ; J - A(s) 

it is easy to check that for n> j > h(x), 

(18) A4 < |P(£i < uj(x), < Uj(x),£j+i < un(x), ...,in< un(x)) 
- A { x ) P ( M j < uj(x))| + |P(Mn < un(x)) - A(s)| 

= Dt + D2. 
First, we estimate D\. Using the fact that {£n,n > 1} are i.i.d. standard 
normal random variables, we obtain that 

Di = |P(fi < Uj{x), < Uj(x))P(£j+1 < un(x), ...,in< un{x)) 
-A (x)P(Mj < uj(x))\ 

< \P{£j+\ < Un(x), ...,£„< Un(x)) - A(x)| 

= \9n-i{un(x))-A(x)\ 

= | [ ^ ' ( u n ( x ) ) - + [ ^ ( u n ^ ( x ) ) - A(x)]|, 
where $ is the standard normal distribution function. Hence 
(19) Di < | $ n " J ' K ( x ) ) - + | ^ K _ , ( x ) ) - A(x)|. 
From derivation on p. 39 in [4], we have 

$(itn(®)) = 1 - n 
(toglogn)' • 

16 log n v v 
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This implies that for n — j > 1, 
(20) |$ (u n (x) ) -$(u n _. , (x) ) | 

< C(x) 
| (loglogn)2

 | (log l o g { n - j ) ) 2 

nlogn (n — j) log(n — j). . ( n - j ) n 

Besides, it is easily seen that 

(21) | $ n - J K ( * ) ) - §n-j{un-j{x))\ < | $ K ( x ) ) - ${un-j{x))\{n - j ) . 

From (20) and (21), we obtain that for n — j > 1, 
(22) |$n _ J ' (un(x)) - $n_J '(un_.,(x))| 

< C(x) 

By (2.4.8) p. 39 in [4], 

j_ (log log n)2 (log log ( n - j ) ) 
n logn log(n — j) 

2l 

$ ^ K _ J ( x ) ) - A ( x ) 
exp(-e x)e x (loglog(n - j))2 

16 log(n - j ) 
Hence, we can write that for n — j > 1, 

(23) | $ n - J (u n _ j (x ) ) — A(x)| < C(x) 
(log log ( r a - j ) ) 2 

log(n - j) 
Prom (19), (22) and (23), we have that for n - j > 1, 

(24) D\ < C(x) 
(log logn)2 (log log { n - j ) ) 

n logn log(n — j) 
Applying again (2.4.8) p. 39 in [4], we have that for n > 1, D2 in (18) can 
be estimated as follows 

(log logn)2 

(25) D2 < C{x)- logn 
(18), (24) and (25) imply that, if h(x) < j < n - 1, then 

(26) A4 = \gjn\ < C(x) 
1 (log logn)2 (log log { n - j ) ) 2 

n logn log(n — j) 
Finally from (9), (17) and (26), we obtain that, there exists constant C(x), 
such that for h(x) < j < n - 1, 

(27) | ^ n | < C ( x ) 
' 1 1 2 1 2 
L> ̂  (log j ) 7 + j—(log j ) 2 — (log n) 2 

n*~ n 

j (log log (n — j))2 (log logn) 2n 
+ log(n — j) ' logn 

where 7 is defined in (11). 
Now, let us notice that, if K(N) and SN(X) are defined such as in (4) 

and (5), respectively, then 
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- a«i2={^ K ^ ) - H} 
N n 

< E E s j j i i L ± l _ A ( x ) 
dj 

This and definition of gjn in (8) imply that 

d a ) - A ( x ) 

. \ a n / 

E [ S N ( x ) - A(x)}2 < 

o
 N n u 

E E i <jn I K * ( N ) ^ jn 

O /i(x) n i l 0 
z + 

TV /i(i) 

£ £ 
!s 

n=l+/i(x) j=l 
TV 

+ E E 
19: <JTl | 

Let us write it as follows 
9 M®) 71 I I 

(28) E[S„{x) - A(rr)]2 < £ £ ~ 
jn 

O N h(x) . . 

iC2(iV) , Ar j n v ' n=l+/i(x) J=1 J 

+ 

+ 

TV 
E E la 

K 2 ( N ) n=l+h(x)j:l+h(x)<j<n-2 ^ 

N 

E E 1« 'jn\ 
K 2 ( N ) j n v ' n=l+/i(x) 3=n-l J 

= F l + F 2 + Fz + F 4 . 

We now estimate all the components F\, F2, F3, F4. For abbreviation, we 
introduce the following notation 

C(x) 
(29) C N { x ) = 

K 2 ( N ) ' 

where, for recollection, C(x) denotes any non-negative constant, depending 
on x. It is easily seen that 

(30) F\ + F2 < Cjv(x ) log AT. 

Thus, we need to estimate F3 and F4. From (28) and (27), we have 
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( 3 1 ) F 3 < C „ ( X ) £ £ S f f i 

n-l+h{x)j:l+h(x)<j<n-2 J 

+cN(X) £ e v * » ) * ^ 
n = l + / i ( x ) j:l+h(x)<j<n—2 

+ CN(X) £ £ 
n = l + / i ( x ) j:l+h(x)<j<n—2 

+ CN(X) £ £ 

n l + 7 j 7 

( l o g n ) 7 

n 2 7 j 

1 j 
nj n 

( l o g l o g ( n - j)) 
njlog(n - 3) 

( l o g l o g n ) 2 

nj l o g n 

+ cn(X) £ £ 
n = l + / i ( i ) j:l+h(x)<j<n-2 

+ c N ( x ) £ E 

n = l + / i ( i ) j : l + / i ( i ) < j ' < n — 2 

= GL + G2 + G 3 + G 4 + G5 + G 6 . 

W e n o w e s t i m a t e a l l t h e c o m p o n e n t s G\, G 2 , G 3 , G 4 , G 5 , G 6 -

" 1 n i lnff -»17 ^ 1 0 0 1 

n = l j=1 ^ n = l j = l 

B y d e f i n i t i o n o f 7 i n ( 1 1 ) , 2 7 > 1 . H e n c e - 7 7 < 0 0 a n d 
* ' J 

( 3 2 ) G i < G j v ( z ) ( l o g J V ) 7 + 1 . 

S i m i l a r l y w e c a n e s t i m a t e G 2 , G 3 . W e h a v e 

G , < c w ( x ) £ ; fl^i f : flsiii 

n = l j = l ^ 

W 1 n -j N 1 00 1 

< cN(x)(iogNy E - E < < W * ) 0 ° g E - E 7 2 T 
n = 1 j = l ^ n = l j = l ^ 

a n d h e n c e 

( 3 3 ) G 2 < C V ( i ) ( l o g N ) 1 + 1 . 

G a < C j » W £ ^ ± 1 < d , ( « ) ( l = g E 1 7 

n = l j = l ^ n = l j=1 ^ 

0 0 1 N 1 

n = l j = l J 
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and hence 
(34) G3 < Cjv(x)(logiV)7+1. 

It is also easy to estimate G4. We namely have 
N 1 n 1 i N 1 

g 4 < c N ( x ) E - E - - = c * ( x ) E ~ 
1 n J n ~ n n=l j = l J n=l 

and 
(35) G 4 < CN(x)\ogN. 

To get a bound for G5, we use the fact that 

(36) (log log i)2 < (logi)7, for all sufficiently large t. 

Therefore 

N N—2 

= cN(x) E E - 7 

Hence, we can write that 
N 1 

G5 < CN(x) E E 717 (login - i))^ 

+ ^ ( x ) e E 

< E E 
n=l+A(z) j:l<j<[2] n ^ l 0 g 

1 

- 7 •-./ v o 

N 

+ CN(X) E E - ( l o g 2)1-7' 

where denotes the integer part of 
This implies that 

Gs<CN{x) e i j ^ k ^ £ J 

" 1 1 ^ 1 + Cjv(x) E - ( l o g 2 ) i - , E , 
n=l+fc(x) 71 i=l+[f )<j<n-2 3 



Almost sure maximum limit theorem 889 

N 1 i N 

n=l+/i(x) v n=l+/i(x) v ° ' 

= CN(x) £ ¿ ( l o g ^ y + C ^ ® ) £ 2)7 

n = l + / i ( i ) n= l+ / i (x ) 

N 1 
< C ^ ( z ) ( l o g i V ) ^ -

i n n=1 
and hence 
(37) G s ^ C j v ^ O o g i V ) ^ 1 . 
Finally, applying (36) again, we obtain that 

n = l + f c ( x ) j = l 3 6 n= l+ / i (x ) " j=lJ 

< CN(x) £ < C;v(x)(logiV)7 £ i 
^ Tt i 7t n = l n = l 

and hence 
(38) G6<CW(aO(logW)7+1. 
From (31)—(35), (37) and (38), we have that 

( 3 9 ) F3<CN(x)(\ogN)i+1. 

Besides, it is very easy to check that F4 in (28) satisfies the inequality 
( 4 0 ) F 4 < CN(x)logN. 

By (28), (30), (39) and (40) JS7[5^(x) - A(x)]2 < CN(x)(\ogN)f+1. Using 
notation on C^r(x) in (29), K(N) in (4) and 7 in (11), we obtain that, there 
exists some non-negative constant C(x), such that 

(41) 2J[S*(s) - A(x)]2 < = C ( X ) , • 
(log Ny 1 (logiV)i+J 

From (41) and Chebyshev's inequality, we have 

(42) .P(|^(x) - A(x)| > e) < 
e2(\ogN)1+s 

Now, we put Nk = [efcm + 1], for some natural number m > where 6 is 
such as above and [efcm + 1] denotes the integer part of efcm + 1. Then (42) 
implies that 

£ p ( ! 5 J v f c ( x ) - A ( x ) | > e ) < ^ f : 4 r < o o ) 3 5 TT~c 
* = i e k=iki+t 1 + 0 
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From the Borei-Cantelli lemma, we conclude that 

SNk (x) — Mx) ~ ~ o a- s-
k—>oo 

On the other hand, we have that for N^ < N < iVfc+i, 

i c M c 9 i l ^ ( x ) - 5 ^ ) | < 2 ^ 2 _ _ l o g _ _ _ . 
Hence, we can write that 

1 (Jk+l)m 1 
\SN(x) - SNk(x)| < C— log f - g s - = C—[(fc + 1)- - km} 

_ [(fe+l)m-1+(fc+l)m~2fc+... +(fc+l)A:m~2-t-A:TTI~1] 

< C K , = Cm 1 + - 0 as k km \ k j k +1 oo. 

Thus, we have 
lim S N ( X ) = A(x) a.s.. 

AT—>oo 

Set r , = {w G fl : l im^oo = A ( g ) } . Then P ( r g ) = 1. Now, write 
T = p|9 r 9 , where the intersection takes over all rational numbers q. Then 
P(r) = 1. Noting that A is continous for all —oo < x < oo, the set of rational 
numbers is dense in (—oo, oo) and Spi(x) are monotonous functions, we have 
(7) and (6) and the proof is completed. • 
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