

Marcin Dudziński

AN ALMOST SURE MAXIMUM LIMIT THEOREM
 FOR CERTAIN CLASS OF DEPENDENT
 STATIONARY GAUSSIAN SEQUENCES

Abstract. Let $\{\xi_n, n \geq 1\}$ be a sequence of stationary standard normal random variables and $M_n = \max(\xi_1, \dots, \xi_n)$.

Our goal is to prove that under some conditions on the covariance function $r(n) = \text{Cov}(\xi_1, \xi_{1+n})$ and for certain pair of numerical sequences $(a_n), (b_n)$,

$$P\left(\lim_{N \rightarrow \infty} \sup_{-\infty < x < \infty} \left| \frac{1}{\log N} \sum_{n=1}^N \frac{1}{n} I_{(-\infty, x]} \left(\frac{M_n - b_n}{a_n} \right) - \Lambda(x) \right| = 0\right) = 1,$$

where: $\Lambda(x) = \exp(-e^{-x})$, for $-\infty < x < \infty$, $I_{(-\infty, x]}(\cdot)$ -the indicator function of the set $(-\infty, x]$, $\log(\cdot)$ -the natural logarithm.

1. Introduction

Leadbetter, Lindgren and Rootzen in [4] were concerned with conditions under which, for suitable normalizing constants $a_n > 0, b_n$,

$$P\left(\frac{M_n - b_n}{a_n} \leq x\right) \xrightarrow{w} G(x),$$

where $M_n = \max(X_1, \dots, X_n)$, for some sequence $\{X_n, n \geq 1\}$ of random variables and \xrightarrow{w} denotes the convergence at continuity points of G .

They showed that, if $\{X_n, n \geq 1\}$ are i.i.d., then the possible nondegenerate distribution function G , which may appear as such a limit has (up to location and scale changes) one of the following three forms - commonly called the three *Extreme Value Distributions*:

$$\Lambda(x) = \exp(-e^{-x}), \quad -\infty < x < \infty;$$

Key words and phrases: maximum limit theorem; almost sure convergence; logarithmic means; dependent stationary Gaussian sequences.

2000 *Mathematics Subject Classification:* Primary 60F15; Secondary 60F05.

$$\Theta(x) = \begin{cases} 0, & x \leq 0, \\ \exp(-x^{-\alpha}), \text{ for some } \alpha > 0, x > 0; \end{cases}$$

$$\Psi(x) = \begin{cases} \exp(-(-x)^\alpha), \text{ for some } \alpha > 0, x \leq 0, \\ 1, & x > 0. \end{cases}$$

Natural question raised, whether assertions are possible for almost every realization of the random variables $\{X_n, n \geq 1\}$. In this case Cheng, Peng and Qi in [2] and simultaneously Fahrner and Stadtmüller in [3] considered the sequence $I_{(-\infty, x]}(\frac{M_n - b_n}{a_n})$, where $\{X_n, n \geq 1\}$ are i.i.d. and $I_{(-\infty, x]}(\cdot)$ denotes the indicator function of the set $(-\infty, x]$. Since the sequence $I_{(-\infty, x]}(\frac{M_n - b_n}{a_n})$ does not converge almost surely for any x satisfying $0 < G(x) < 1$, they investigated the limitation of $I_{(-\infty, x]}(\frac{M_n - b_n}{a_n})$ by logarithmic means and showed that, if $P(\frac{M_n - b_n}{a_n} \leq x) \xrightarrow{w} G(x)$, then

$$P\left(\lim_{N \rightarrow \infty} \sup_{\{x: 0 < G(x) < 1\}} \left| \frac{1}{\log N} \sum_{n=1}^N \frac{1}{n} I_{(-\infty, x]} \left(\frac{M_n - b_n}{a_n} \right) - G(x) \right| = 0\right) = 1.$$

The purpose of this paper is to prove similar result for some class of dependent stationary standard normal random variables $\{\xi_n, n \geq 1\}$. In this case, we assume that

$$a_n = \frac{1}{(2 \log n)^{\frac{1}{2}}}, \quad b_n = (2 \log n)^{\frac{1}{2}} - \frac{\log \log n + \log 4\pi}{2(2 \log n)^{\frac{1}{2}}}, \quad \text{for } n \geq 2,$$

$$0 < a_1, a_2 < \infty, \quad -\infty < b_1, b_2 < \infty,$$

$$G(x) = \Lambda(x) = \exp(-e^{-x}), \quad -\infty < x < \infty.$$

The choice of a_n, b_n is not accidental. Berman in [1] has given simple conditions on the covariance function $r(n) = \text{Cov}(\xi_1, \xi_{1+n})$, which ensure that for such defined a_n and b_n ,

$$P\left(\frac{M_n - b_n}{a_n} \leq x\right) \xrightarrow{w} \Lambda(x).$$

One of Berman's results is that it suffices that

$$\sum_{n=1}^{\infty} r^2(n) < \infty.$$

It is easily seen that this is fulfilled, if

$$\max_{n \geq 1} |r(n)| = \delta < 1 \quad \text{and} \quad \sum_{n=1}^{\infty} |r(n)| < \infty.$$

Both the conditions above will be used as the assumptions of our theorem.

2. Main result

We shall consider the limitation of $I_{(-\infty, x]}(\frac{M_n - b_n}{a_n})$ by logarithmic means and prove the following theorem.

THEOREM 1. *Let $\{\xi_n, n \geq 1\}$ be a sequence of stationary standard normal random variables, $M_n = \max(\xi_1, \dots, \xi_n)$. Assume that the covariance function $r(n) = \text{Cov}(\xi_1, \xi_{1+n})$ is such that*

$$(1) \quad \max_{n \geq 1} |r(n)| = \delta < 1,$$

$$(2) \quad \sum_{n=1}^{\infty} |r(n)| < \infty.$$

Then, we have

$$(3) \quad P\left(\lim_{N \rightarrow \infty} \sup_{-\infty < x < \infty} \left| \frac{1}{\log N} \sum_{n=1}^N \frac{1}{n} I_{(-\infty, x]} \left(\frac{M_n - b_n}{a_n} \right) - \Lambda(x) \right| = 0\right) = 1,$$

where

$$a_n = \frac{1}{(2 \log n)^{\frac{1}{2}}}, \quad b_n = (2 \log n)^{\frac{1}{2}} - \frac{\log \log n + \log 4\pi}{2(2 \log n)^{\frac{1}{2}}}, \quad \text{for } n \geq 2,$$

$$0 < a_1, a_2 < \infty, \quad -\infty < b_1, b_2 < \infty$$

and

$$\Lambda(x) = \exp(-e^{-x}), \quad -\infty < x < \infty,$$

$I_{(-\infty, x]}(\cdot)$ — the indicator function of the set $(-\infty, x]$.

Proof. In our derivations C , $C(x)$ denote some non-negative constants, which can vary from line to line ($C(x)$ depends on the fixed real number x) and $I_x(\cdot)$ stands for the indicator function $I_{(-\infty, x]}(\cdot)$.

Set

$$(4) \quad K(N) = \sum_{n=1}^N \frac{1}{n},$$

$$(5) \quad S_N(x) = \frac{1}{K(N)} \sum_{n=1}^N \frac{1}{n} I_x \left(\frac{M_n - b_n}{a_n} \right).$$

Obviously, we have that

$$\begin{aligned} \sup_{-\infty < x < \infty} \left| \frac{1}{\log N} \sum_{n=1}^N \frac{1}{n} I_x \left(\frac{M_n - b_n}{a_n} \right) - S_N(x) \right| \\ \leq \left| \frac{K(N)}{\log N} - 1 \right| \rightarrow 0 \quad \text{a.s. (as } N \rightarrow \infty\text{).} \end{aligned}$$

Thus, to show (3), it suffices to prove that

$$(6) \quad \lim_{N \rightarrow \infty} \sup_{-\infty < x < \infty} |S_N(x) - \Lambda(x)| = 0 \quad \text{a.s.}.$$

Let us notice that, as Λ is continuous, condition (6) is equivalent to

$$(7) \quad P\{\omega : \lim_{N \rightarrow \infty} S_N(x) = \Lambda(x), \text{ for all } -\infty < x < \infty\} = 1.$$

We now fix $-\infty < x < \infty$. Let for $1 \leq j \leq n$,

$$(8) \quad g_{jn} = E \left[I_x \left(\frac{M_j - b_j}{a_j} \right) - \Lambda(x) \right] \left[I_x \left(\frac{M_n - b_n}{a_n} \right) - \Lambda(x) \right].$$

We shall write g_{jn} in the following way

$$g_{jn} = E \left\{ \left[I_x \left(\frac{M_j - b_j}{a_j} \right) - I_x \left(\frac{\widehat{M}_j - b_j}{a_j} \right) \right] + \left[I_x \left(\frac{\widehat{M}_j - b_j}{a_j} \right) - \Lambda(x) \right] \right\} \\ \times \left\{ \left[I_x \left(\frac{M_n - b_n}{a_n} \right) - I_x \left(\frac{\widehat{M}_n - b_n}{a_n} \right) \right] + \left[I_x \left(\frac{\widehat{M}_n - b_n}{a_n} \right) - \Lambda(x) \right] \right\},$$

where $\widehat{M}_n = \max(\widehat{\xi}_1, \dots, \widehat{\xi}_n)$ and $\{\widehat{\xi}_n, n \geq 1\}$ are i.i.d. standard normal random variables.

Let us denote

$$u_n(x) = a_n x + b_n.$$

It is easy to check that

$$g_{jn} = [P(M_j \leq u_j(x), M_n \leq u_n(x)) - P(\widehat{M}_j \leq u_j(x), \widehat{M}_n \leq u_n(x))] \\ + \Lambda(x)[P(\widehat{M}_j \leq u_j(x)) - P(M_j \leq u_j(x))] \\ + \Lambda(x)[P(\widehat{M}_n \leq u_n(x)) - P(M_n \leq u_n(x))] + \widehat{g}_{jn},$$

where

$$\widehat{g}_{jn} := E \left[I_x \left(\frac{\widehat{M}_j - b_j}{a_j} \right) - \Lambda(x) \right] \left[I_x \left(\frac{\widehat{M}_n - b_n}{a_n} \right) - \Lambda(x) \right].$$

Hence, we have that

$$(9) \quad |g_{jn}| \leq |P(M_j \leq u_j(x), M_n \leq u_n(x)) - P(\widehat{M}_j \leq u_j(x), \widehat{M}_n \leq u_n(x))| \\ + |P(M_j \leq u_j(x)) - P(\widehat{M}_j \leq u_j(x))| \\ + |P(M_n \leq u_n(x)) - P(\widehat{M}_n \leq u_n(x))| + |\widehat{g}_{jn}| \\ = A_1 + A_2 + A_3 + A_4.$$

On the other hand, from definition of $u_n(x)$ and sequences (a_n) , (b_n) , we have that for $n \geq 2$,

$$u_n(x) = \frac{x}{(2 \log n)^{\frac{1}{2}}} + (2 \log n)^{\frac{1}{2}} - \frac{\log \log n + \log 4\pi}{2(2 \log n)^{\frac{1}{2}}}$$

and it is easy to check that $u_n(x) \geq u_j(x)$, for $n \geq j > h(x)$, where

$$(10) \quad h(x) = \left[\max \left\{ \exp \left(\frac{x}{2} + \frac{1}{2} - \frac{\log 4\pi}{4} \right), 2 \right\} \right]$$

and $[]$ denotes in this case the integer part of the number.

Hence, for $n \geq j > h(x)$, A_1 in (9) can be written as follows

$$A_1 = |P(\xi_1 \leq u_j(x), \dots, \xi_j \leq u_j(x), \xi_{j+1} \leq u_n(x), \dots, \xi_n \leq u_n(x)) - P(\widehat{\xi}_1 \leq u_j(x), \dots, \widehat{\xi}_j \leq u_j(x), \widehat{\xi}_{j+1} \leq u_n(x), \dots, \widehat{\xi}_n \leq u_n(x))|.$$

Due to the fact that $\{\xi_n, n \geq 1\}$ are standard normal and stationary, we have from Theorem 4.2.1 in [4] that, if δ is such as in assumption (1), then

$$\begin{aligned} A_1 &\leq C \sum_{1 \leq k < l \leq j} |r(l-k)| \exp \left(-\frac{u_j^2(x)}{1+\delta} \right) \\ &\quad + C \sum_{\substack{1 \leq k \leq j \\ j < l \leq n}} |r(l-k)| \exp \left(-\frac{1}{2} \frac{u_j^2(x) + u_n^2(x)}{1+\delta} \right) \\ &\quad + C \sum_{j < k < l \leq n} |r(l-k)| \exp \left(-\frac{u_n^2(x)}{1+\delta} \right). \end{aligned}$$

Set

$$(11) \quad \gamma = \frac{1}{1+\delta}.$$

Using notation (11), we can write that

$$\begin{aligned} A_1 &\leq Cj \exp(-\gamma u_j^2(x)) \sum_{t=1}^{j-1} |r(t)| \\ &\quad + Cj \exp \left(-\frac{1}{2} \gamma u_j^2(x) \right) \exp \left(-\frac{1}{2} \gamma u_n^2(x) \right) \sum_{t=1}^{n-1} |r(t)| \\ &\quad + Cn \exp(-\gamma u_n^2(x)) \sum_{t=1}^{n-j-1} |r(t)| \end{aligned}$$

and by assumption (2),

$$(12) \quad \begin{aligned} A_1 &\leq C \left[j \exp \left(-\gamma u_j^2(x) \right) + j \exp \left(-\frac{1}{2} \gamma u_j^2(x) \right) \exp \left(-\frac{1}{2} \gamma u_n^2(x) \right) \right. \\ &\quad \left. + n \exp(-\gamma u_n^2(x)) \right]. \end{aligned}$$

On the other hand, from definition of $u_j(x)$, we have that

$$(13) \quad \exp(-\gamma u_j^2(x)) \leq C(x) \frac{1}{j^{2\gamma}} (\log j)^\gamma.$$

(12) and (13) imply that

$$(14) \quad A_1 \leq C(x) \left[j \frac{1}{j^{2\gamma}} (\log j)^\gamma + j \frac{1}{j^\gamma} (\log j)^{\frac{\gamma}{2}} \frac{1}{n^\gamma} (\log n)^{\frac{\gamma}{2}} + n \frac{1}{n^{2\gamma}} (\log n)^\gamma \right].$$

Using Theorem 4.2.1 in [4] again and similar calculations as by the estimation of A_1 , it is easy to find the estimates for A_2 and A_3 in (9). We have that

$$(15) \quad A_2 \leq C(x) j \frac{1}{j^{2\gamma}} (\log j)^\gamma$$

and

$$(16) \quad A_3 \leq C(x) n \frac{1}{n^{2\gamma}} (\log n)^\gamma.$$

(14)–(16) yield that for $n \geq j > h(x)$,

$$(17) \quad \begin{aligned} A_1 + A_2 + A_3 \\ \leq C \left[j \frac{1}{j^{2\gamma}} (\log j)^\gamma + j \frac{1}{j^\gamma} (\log j)^{\frac{\gamma}{2}} \frac{1}{n^\gamma} (\log n)^{\frac{\gamma}{2}} + n \frac{1}{n^{2\gamma}} (\log n)^\gamma \right]. \end{aligned}$$

Thus, it remains to estimate $A_4 = |\widehat{g}_{jn}|$. As

$$A_4 = \left| E \left[I_x \left(\frac{\widehat{M}_j - b_j}{a_j} \right) - \Lambda(x) \right] \left[I_x \left(\frac{\widehat{M}_n - b_n}{a_n} \right) - \Lambda(x) \right] \right|,$$

it is easy to check that for $n \geq j > h(x)$,

$$(18) \quad \begin{aligned} A_4 &\leq |P(\widehat{\xi}_1 \leq u_j(x), \dots, \widehat{\xi}_j \leq u_j(x), \widehat{\xi}_{j+1} \leq u_n(x), \dots, \widehat{\xi}_n \leq u_n(x)) \\ &\quad - \Lambda(x)P(\widehat{M}_j \leq u_j(x))| + |P(\widehat{M}_n \leq u_n(x)) - \Lambda(x)| \\ &= D_1 + D_2. \end{aligned}$$

First, we estimate D_1 . Using the fact that $\{\widehat{\xi}_n, n \geq 1\}$ are i.i.d. standard normal random variables, we obtain that

$$\begin{aligned} D_1 &= |P(\widehat{\xi}_1 \leq u_j(x), \dots, \widehat{\xi}_j \leq u_j(x))P(\widehat{\xi}_{j+1} \leq u_n(x), \dots, \widehat{\xi}_n \leq u_n(x)) \\ &\quad - \Lambda(x)P(\widehat{M}_j \leq u_j(x))| \\ &\leq |P(\widehat{\xi}_{j+1} \leq u_n(x), \dots, \widehat{\xi}_n \leq u_n(x)) - \Lambda(x)| \\ &= |\Phi^{n-j}(u_n(x)) - \Lambda(x)| \\ &= |[\Phi^{n-j}(u_n(x)) - \Phi^{n-j}(u_{n-j}(x))] + [\Phi^{n-j}(u_{n-j}(x)) - \Lambda(x)]|, \end{aligned}$$

where Φ is the standard normal distribution function. Hence

$$(19) \quad D_1 \leq |\Phi^{n-j}(u_n(x)) - \Phi^{n-j}(u_{n-j}(x))| + |\Phi^{n-j}(u_{n-j}(x)) - \Lambda(x)|.$$

From derivation on p. 39 in [4], we have

$$\Phi(u_n(x)) = 1 - \frac{e^{-x}}{n} \left[1 - \frac{(\log \log n)^2}{16 \log n} (1 + o(1)) \right].$$

This implies that for $n - j > 1$,

$$(20) \quad |\Phi(u_n(x)) - \Phi(u_{n-j}(x))| \leq C(x) \left[\frac{j}{(n-j)n} + \frac{(\log \log n)^2}{n \log n} + \frac{(\log \log(n-j))^2}{(n-j) \log(n-j)} \right].$$

Besides, it is easily seen that

$$(21) \quad |\Phi^{n-j}(u_n(x)) - \Phi^{n-j}(u_{n-j}(x))| \leq |\Phi(u_n(x)) - \Phi(u_{n-j}(x))|(n-j).$$

From (20) and (21), we obtain that for $n - j > 1$,

$$(22) \quad |\Phi^{n-j}(u_n(x)) - \Phi^{n-j}(u_{n-j}(x))| \leq C(x) \left[\frac{j}{n} + \frac{(\log \log n)^2}{\log n} + \frac{(\log \log(n-j))^2}{\log(n-j)} \right].$$

By (2.4.8) p. 39 in [4],

$$\Phi^{n-j}(u_{n-j}(x)) - \Lambda(x) \sim \frac{\exp(-e^{-x})e^{-x}}{16} \frac{(\log \log(n-j))^2}{\log(n-j)}.$$

Hence, we can write that for $n - j > 1$,

$$(23) \quad |\Phi^{n-j}(u_{n-j}(x)) - \Lambda(x)| \leq C(x) \frac{(\log \log(n-j))^2}{\log(n-j)}.$$

From (19), (22) and (23), we have that for $n - j > 1$,

$$(24) \quad D_1 \leq C(x) \left[\frac{j}{n} + \frac{(\log \log n)^2}{\log n} + \frac{(\log \log(n-j))^2}{\log(n-j)} \right].$$

Applying again (2.4.8) p. 39 in [4], we have that for $n > 1$, D_2 in (18) can be estimated as follows

$$(25) \quad D_2 \leq C(x) \frac{(\log \log n)^2}{\log n}.$$

(18), (24) and (25) imply that, if $h(x) < j < n - 1$, then

$$(26) \quad A_4 = |\hat{g}_{jn}| \leq C(x) \left[\frac{j}{n} + \frac{(\log \log n)^2}{\log n} + \frac{(\log \log(n-j))^2}{\log(n-j)} \right].$$

Finally from (9), (17) and (26), we obtain that, there exists constant $C(x)$, such that for $h(x) < j < n - 1$,

$$(27) \quad |g_{jn}| \leq C(x) \left[j \frac{1}{j^{2\gamma}} (\log j)^\gamma + j \frac{1}{j^\gamma} (\log j)^{\frac{\gamma}{2}} \frac{1}{n^\gamma} (\log n)^{\frac{\gamma}{2}} + n \frac{1}{n^{2\gamma}} (\log n)^\gamma + \frac{j}{n} + \frac{(\log \log(n-j))^2}{\log(n-j)} + \frac{(\log \log n)^2}{\log n} \right],$$

where γ is defined in (11).

Now, let us notice that, if $K(N)$ and $S_N(x)$ are defined such as in (4) and (5), respectively, then

$$\begin{aligned}
[S_N(x) - \Lambda(x)]^2 &= \left\{ \frac{1}{K(N)} \sum_{n=1}^N \frac{1}{n} \left[I_x \left(\frac{M_n - b_n}{a_n} \right) - \Lambda(x) \right] \right\}^2 \\
&\leq \frac{2}{K^2(N)} \sum_{n=1}^N \sum_{j=1}^n \frac{1}{jn} \left[I_x \left(\frac{M_j - b_j}{a_j} \right) - \Lambda(x) \right] \left[I_x \left(\frac{M_n - b_n}{a_n} \right) - \Lambda(x) \right].
\end{aligned}$$

This and definition of g_{jn} in (8) imply that

$$\begin{aligned}
E[S_N(x) - \Lambda(x)]^2 &\leq \frac{2}{K^2(N)} \sum_{n=1}^N \sum_{j=1}^n \frac{|g_{jn}|}{jn} \\
&= \frac{2}{K^2(N)} \sum_{n=1}^{h(x)} \sum_{j=1}^n \frac{|g_{jn}|}{jn} + \frac{2}{K^2(N)} \sum_{n=1+h(x)}^N \sum_{j=1}^{h(x)} \frac{|g_{jn}|}{jn} \\
&\quad + \frac{2}{K^2(N)} \sum_{n=1+h(x)}^N \sum_{j=1+h(x)}^n \frac{|g_{jn}|}{jn}.
\end{aligned}$$

Let us write it as follows

$$\begin{aligned}
(28) \quad E[S_N(x) - \Lambda(x)]^2 &\leq \frac{2}{K^2(N)} \sum_{n=1}^{h(x)} \sum_{j=1}^n \frac{|g_{jn}|}{jn} \\
&\quad + \frac{2}{K^2(N)} \sum_{n=1+h(x)}^N \sum_{j=1}^{h(x)} \frac{|g_{jn}|}{jn} \\
&\quad + \frac{2}{K^2(N)} \sum_{n=1+h(x)}^N \sum_{j:1+h(x) \leq j \leq n-2} \frac{|g_{jn}|}{jn} \\
&\quad + \frac{2}{K^2(N)} \sum_{n=1+h(x)}^N \sum_{j=n-1}^n \frac{|g_{jn}|}{jn} \\
&= F_1 + F_2 + F_3 + F_4.
\end{aligned}$$

We now estimate all the components F_1, F_2, F_3, F_4 . For abbreviation, we introduce the following notation

$$(29) \quad C_N(x) = \frac{C(x)}{K^2(N)},$$

where, for recollection, $C(x)$ denotes any non-negative constant, depending on x . It is easily seen that

$$(30) \quad F_1 + F_2 \leq C_N(x) \log N.$$

Thus, we need to estimate F_3 and F_4 . From (28) and (27), we have

$$\begin{aligned}
(31) \quad F_3 &\leq C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1+h(x) \leq j \leq n-2} \frac{(\log j)^\gamma}{n j^{2\gamma}} \\
&\quad + C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1+h(x) \leq j \leq n-2} \frac{(\log n)^{\frac{\gamma}{2}} (\log j)^{\frac{\gamma}{2}}}{n^{1+\gamma} j^\gamma} \\
&\quad + C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1+h(x) \leq j \leq n-2} \frac{(\log n)^\gamma}{n^{2\gamma} j} \\
&\quad + C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1+h(x) \leq j \leq n-2} \frac{1}{n j} \frac{j}{n} \\
&\quad + C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1+h(x) \leq j \leq n-2} \frac{(\log \log(n-j))^2}{n j \log(n-j)} \\
&\quad + C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1+h(x) \leq j \leq n-2} \frac{(\log \log n)^2}{n j \log n} \\
&= G_1 + G_2 + G_3 + G_4 + G_5 + G_6.
\end{aligned}$$

We now estimate all the components $G_1, G_2, G_3, G_4, G_5, G_6$.

$$G_1 \leq C_N(x) \sum_{n=1}^N \frac{1}{n} \sum_{j=1}^n \frac{(\log j)^\gamma}{j^{2\gamma}} \leq C_N(x) (\log N)^\gamma \sum_{n=1}^N \frac{1}{n} \sum_{j=1}^\infty \frac{1}{j^{2\gamma}}.$$

By definition of γ in (11), $2\gamma > 1$. Hence $\sum_{j=1}^\infty \frac{1}{j^{2\gamma}} < \infty$ and

$$(32) \quad G_1 \leq C_N(x) (\log N)^{\gamma+1}.$$

Similarly we can estimate G_2, G_3 . We have

$$\begin{aligned}
G_2 &\leq C_N(x) \sum_{n=1}^N \frac{(\log n)^{\frac{\gamma}{2}}}{n^{1+\gamma}} \sum_{j=1}^n \frac{(\log j)^{\frac{\gamma}{2}}}{j^\gamma} \\
&\leq C_N(x) (\log N)^\gamma \sum_{n=1}^N \frac{1}{n} \sum_{j=1}^n \frac{1}{j^{2\gamma}} \leq C_N(x) (\log N)^\gamma \sum_{n=1}^N \frac{1}{n} \sum_{j=1}^\infty \frac{1}{j^{2\gamma}}
\end{aligned}$$

and hence

$$(33) \quad G_2 \leq C_N(x) (\log N)^{\gamma+1}.$$

$$\begin{aligned}
G_3 &\leq C_N(x) \sum_{n=1}^N \frac{(\log n)^\gamma}{n^{2\gamma}} \sum_{j=1}^n \frac{1}{j} \leq C_N(x) (\log N)^\gamma \sum_{n=1}^N \frac{1}{n^{2\gamma}} \sum_{j=1}^n \frac{1}{j} \\
&\leq C_N(x) (\log N)^\gamma \sum_{n=1}^\infty \frac{1}{n^{2\gamma}} \sum_{j=1}^N \frac{1}{j}
\end{aligned}$$

and hence

$$(34) \quad G_3 \leq C_N(x)(\log N)^{\gamma+1}.$$

It is also easy to estimate G_4 . We namely have

$$G_4 \leq C_N(x) \sum_{n=1}^N \frac{1}{n} \sum_{j=1}^n \frac{1}{j} \frac{j}{n} = C_N(x) \sum_{n=1}^N \frac{1}{n}$$

and

$$(35) \quad G_4 \leq C_N(x) \log N.$$

To get a bound for G_5 , we use the fact that

$$(36) \quad (\log \log t)^2 \leq (\log t)^\gamma, \text{ for all sufficiently large } t.$$

Therefore

$$\begin{aligned} G_5 &\leq C_N(x) \sum_{n=1+h(x)}^N \sum_{j=1}^{n-2} \frac{(\log(n-j))^\gamma}{nj \log(n-j)} \\ &= C_N(x) \sum_{n=1+h(x)}^N \sum_{j=1}^{n-2} \frac{1}{nj(\log(n-j))^{1-\gamma}}. \end{aligned}$$

Hence, we can write that

$$\begin{aligned} G_5 &\leq C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1 \leq j \leq [\frac{n}{2}]} \frac{1}{nj(\log(n-j))^{1-\gamma}} \\ &\quad + C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1+\lceil \frac{n}{2} \rceil \leq j \leq n-2} \frac{1}{nj(\log(n-j))^{1-\gamma}} \\ &\leq C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1 \leq j \leq [\frac{n}{2}]} \frac{1}{nj(\log \frac{n}{2})^{1-\gamma}} \\ &\quad + C_N(x) \sum_{n=1+h(x)}^N \sum_{j:1+\lceil \frac{n}{2} \rceil \leq j \leq n-2} \frac{1}{nj(\log 2)^{1-\gamma}}, \end{aligned}$$

where $[\frac{n}{2}]$ denotes the integer part of $\frac{n}{2}$.

This implies that

$$\begin{aligned} G_5 &\leq C_N(x) \sum_{n=1+h(x)}^N \frac{1}{n} \frac{1}{(\log \frac{n}{2})^{1-\gamma}} \sum_{1 \leq j \leq [\frac{n}{2}]} \frac{1}{j} \\ &\quad + C_N(x) \sum_{n=1+h(x)}^N \frac{1}{n} \frac{1}{(\log 2)^{1-\gamma}} \sum_{j:1+\lceil \frac{n}{2} \rceil \leq j \leq n-2} \frac{1}{j} \end{aligned}$$

$$\begin{aligned}
&\leq C_N(x) \sum_{n=1+h(x)}^N \frac{1}{n} \frac{1}{(\log \frac{n}{2})^{1-\gamma}} \log \frac{n}{2} + C_N(x) \sum_{n=1+h(x)}^N \frac{1}{n} \frac{1}{(\log 2)^{1-\gamma}} \log 2 \\
&= C_N(x) \sum_{n=1+h(x)}^N \frac{1}{n} \left(\log \frac{n}{2} \right)^\gamma + C_N(x) \sum_{n=1+h(x)}^N \frac{1}{n} (\log 2)^\gamma \\
&\leq C_N(x) (\log N)^\gamma \sum_{n=1}^N \frac{1}{n}
\end{aligned}$$

and hence

$$(37) \quad G_5 \leq C_N(x) (\log N)^{\gamma+1}.$$

Finally, applying (36) again, we obtain that

$$\begin{aligned}
G_6 &\leq C_N(x) \sum_{n=1+h(x)}^N \sum_{j=1}^{n-2} \frac{(\log n)^\gamma}{n j \log n} \leq C_N(x) \sum_{n=1+h(x)}^N \frac{(\log n)^{\gamma-1}}{n} \sum_{j=1}^n \frac{1}{j} \\
&\leq C_N(x) \sum_{n=1}^N \frac{(\log n)^\gamma}{n} \leq C_N(x) (\log N)^\gamma \sum_{n=1}^N \frac{1}{n}
\end{aligned}$$

and hence

$$(38) \quad G_6 \leq C_N(x) (\log N)^{\gamma+1}.$$

From (31)–(35), (37) and (38), we have that

$$(39) \quad F_3 \leq C_N(x) (\log N)^{\gamma+1}.$$

Besides, it is very easy to check that F_4 in (28) satisfies the inequality

$$(40) \quad F_4 \leq C_N(x) \log N.$$

By (28), (30), (39) and (40) $E[S_N(x) - \Lambda(x)]^2 \leq C_N(x) (\log N)^{\gamma+1}$. Using notation on $C_N(x)$ in (29), $K(N)$ in (4) and γ in (11), we obtain that, there exists some non-negative constant $C(x)$, such that

$$(41) \quad E[S_N(x) - \Lambda(x)]^2 \leq \frac{C(x)}{(\log N)^{1-\gamma}} = \frac{C(x)}{(\log N)^{\frac{\delta}{1+\delta}}}.$$

From (41) and Chebyshev's inequality, we have

$$(42) \quad P(|S_N(x) - \Lambda(x)| > \varepsilon) \leq \frac{C(x)}{\varepsilon^2 (\log N)^{\frac{\delta}{1+\delta}}}.$$

Now, we put $N_k = [e^{k^m} + 1]$, for some natural number $m > \frac{1+\delta}{\delta}$, where δ is such as above and $[e^{k^m} + 1]$ denotes the integer part of $e^{k^m} + 1$. Then (42) implies that

$$\sum_{k=1}^{\infty} P(|S_{N_k}(x) - \Lambda(x)| > \varepsilon) \leq \frac{C(x)}{\varepsilon^2} \sum_{k=1}^{\infty} \frac{1}{k^{\frac{m\delta}{1+\delta}}} < \infty, \quad \text{as } \frac{m\delta}{1+\delta} > 1.$$

From the Borel-Cantelli lemma, we conclude that

$$S_{N_k}(x) - \Lambda(x) \xrightarrow{k \rightarrow \infty} 0 \quad \text{a.s.}.$$

On the other hand, we have that for $N_k < N < N_{k+1}$,

$$|S_N(x) - S_{N_k}(x)| \leq 2 \frac{K(N_{k+1} - 1) - K(N_k)}{K(N_k)} \sim 2 \frac{1}{\log N_k} \log \frac{N_{k+1} - 1}{N_k}.$$

Hence, we can write that

$$\begin{aligned} |S_N(x) - S_{N_k}(x)| &\leq C \frac{1}{k^m} \log \frac{e^{(k+1)^m}}{e^{k^m}} = C \frac{1}{k^m} [(k+1)^m - k^m] \\ &= C \frac{[(k+1)^{m-1} + (k+1)^{m-2}k + \dots + (k+1)k^{m-2} + k^{m-1}]}{k^m} \\ &\leq C \frac{m(k+1)^{m-1}}{k^m} = Cm \left(1 + \frac{1}{k}\right)^m \frac{1}{k+1} \rightarrow 0 \text{ as } k \rightarrow \infty. \end{aligned}$$

Thus, we have

$$\lim_{N \rightarrow \infty} S_N(x) = \Lambda(x) \quad \text{a.s.}$$

Set $\Gamma_q = \{\omega \in \Omega : \lim_{N \rightarrow \infty} S_N(q) = \Lambda(q)\}$. Then $P(\Gamma_q) = 1$. Now, write $\Gamma = \bigcap_q \Gamma_q$, where the intersection takes over all rational numbers q . Then $P(\Gamma) = 1$. Noting that Λ is continuous for all $-\infty < x < \infty$, the set of rational numbers is dense in $(-\infty, \infty)$ and $S_N(x)$ are monotonous functions, we have (7) and (6) and the proof is completed. ■

Acknowledgement. I wish to thank Professor W. Dziubdziela for his comments and support.

References

- [1] S. M. Berman, *Limit theorems for the maximum term in stationary sequences*, Ann. Math. Statist. 35 (1964), 502–516.
- [2] S. Cheng, L. Peng and Y. Qi, *Almost sure convergence in extreme theory*, Math. Nachr. 190 (1998), 43–50.
- [3] I. Fahrner and U. Stadtmüller, *On almost sure max-limit theorems*, Statist. Prob. Lett. 37 (1998), 229–236.
- [4] M. R. Leadbetter, G. Lindgren and H. Rootzen, *Extremes and Related Properties of Random Sequences and Processes*, Springer, New York, Heidelberg, Berlin 1983.

FACULTY OF MATHEMATICS AND INFORMATION SCIENCE
 WARSAW UNIVERSITY OF TECHNOLOGY
 Pl. Politechniki 1
 00-661 WARSZAWA, POLAND
 E-mail: mdudzinski@prioris.mlni.pw.edu.pl

Received January 10, 2002.