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AN ALMOST SURE MAXIMUM LIMIT THEOREM
FOR CERTAIN CLASS OF DEPENDENT
STATIONARY GAUSSIAN SEQUENCES

Abstract. Let {{n, n > 1} be a sequence of stationary standard normal random
variables and Mn = maz(£1,...,&xn).

Our goal is to prove that under some conditions on the covariance function r(n) =
Cov(£1,€14+n) and for certain pair of numerical sequences (arn), (bn),
= 0) =1,

N
1 1 Mn — bn
log N Z ;I("m”]( an ) ~ A=)
n=1

where: A(z) = exp(—e™ %), for —00 < z < 00, J{_z)(-)-the indicator function of the set
(—o00,z], log(-)-the natural logarithm.

p ( lim sup

N—oo —xocz<oo

1. Introduction

Leadbetter, Lindgren and Rootzen in (4] were concered with conditions
under which, for suitable normalizing constants a, > 0, b,

P(—Ag’i—:---{)—’l < z) 5 G(z),
an

where M,, = max(Xy,...,X,), for some sequence {X,, n > 1} of random

variables and = denotes the convergence at continuity points of G.

They showed that, if {X,,, n > 1} are i.i.d., then the possible nondegen-
erate didstribution function G, which may appear as such a limit has (up
to location and scale changes) one of the following three forms - commonly
called the three Ertreme Value Distributions:

A(z) = exp(—e™%), -0 <z < o0
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O(z) = 0, z <0,
exp(—z~®), for some o > 0, z > 0;

(s f <
\Il(a:)—{exP( (—z)®), for some o > 0, z < 0,
1, z > 0.

Natural question raised, whether assertions are possible for almost ev-
ery realization of the random variables {X,, n > 1}. In this case Cheng,
Peng and Qi in [2] and 51multaneously Fahrner and Stadtmuller in (3] con-
sidered the sequence I(_ oo75](—"—"), where {X,, n > 1} are iid. and
I(—o0,z)(-) denotes the indicator function of the set (—oc,z]. Since the se-
quence I(_, r,,](-——“‘—’l) does not converge almost surely for any z satisfying

0 < G(z) < 1, they investigated the limitation of I(_oo’z](—%féﬂ) by loga-
rithmic means and showed that, if P(—%;;—bﬂ < z) = G(z), then

1 X M, - b,
e 2 () ~ 60| =0) -

The purpose of this paper is to prove similar result for some class of
dependent stationary standard normal random variables {{,,n > 1}. In
this case, we assume that

1 1
ap = ———, b 2logn)z —
" (2 log n) n = ™

P( lm su
N—oo (g 0<G(z)<1}

loglogn + log 4w
3 2(2logn)%
0<ai,ag <00, —00 < by, by < 00,
) =

, forn > 2,

G(z

The choice of an, b, is not accidental. Berman in [1} has given simple
conditions on the covariance function 7(n) = Cov(€;,£14n), Which ensure
that for such defined a, and b,,

P(F222 <a)  Ala).
n

A(z) = exp(—e™7%), -0 <z <00,

a

One of Berman'’s results is that it suffices that
o0

Z r(n) < oo.

n=1

It is easily seen that this is fulfilled, if

maxlr(n)|—6<1 and er(n|<oo

n=1

Both the conditions above will be used as the assumptions of our theorem.
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2. Main result
We shall consider the limitation of I(_ 4 (Mg:—bﬂ) by logarithmic means
and prove the following theorem.

THEOREM 1. Let {£{,, n > 1} be a sequence of stationary standard nor-
mal random variables, M, = max(&y,...,&,). Assume that the covariance
function r(n) = Cov(&1,€14n) is such that

1) mas () = 6 < 1,
(2) Z [r(n)] < oo.
n=1

Then, we have

1 X M, by,
3) P| l =I_ —-Alz)|=0) =1,
@ P(gm, s |y X lsa (T @] <o)
where
1 log 1 log 4
an = ———1>» bn:(2logn)%— g ogn T Olg Tr’ fOI'TLZ2,
(2logn)z 2(2logn)z
0<aj,09 <00, —00<b,by <0
and
A(z) = exp(—€™%), —o0o<z< 00,

I(_coq)(*) — the indicator function of the set (—oo,z].

Proof. In our derivations C, C(z) denote some non-negative constants,
which can vary from line to line (C(z) depends on the fixed real number z)
and I(-) stands for the indicator function I(_ 4(-)-

Set,
N1
(4) K(N)=> ~
n=1
N
(5) Sw(z) = ﬁ > (M=t
n=1 n

Obviously, we have that

1 X1 /M,-b,
E _Ia:<'_——_n )_SN(:B)
logNn=1n n

sup
—00<TL 00

K(N)
< |27
log N

1'—»0 as. (as N — ).
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Thus, to show (3), it suffices to prove that
(6) lim sup |Sy(z)—A(z)|=0 as.

N—oo —oo<z<oo

Let us notice that, as A is continous, condition (6) is equivalent to
(7) Plw: A}im Sn(z) = A(z), for all —oc0o <z < o0} =1.
—00
We now fix —00 < z < 00. Let for 1 < j < m,
0 el (52 sl fu(2) ]
a; (1
We shall write g;, in the following way

o {1 (52 -0 (B2 o (B2) )
) (B (o) e

where J\?n = max(gl,...,gn) and {En, n > 1} are i.i.d. standard normal
random variables.
Let us denote

Un(z) = anz + by.
It is easy to check that
gin = [P(M; < uj(z), My, < un(2)) — P(Mj < uj(z), My < un(z))]
+ A@)[P(M; < uj(@)) - P(M; < uj(z))]
+ A@)[P(Mn < un()) = P(Mn < un())] + Gjn,

Gin = E[I(ﬁ —4) - AGe)| [I(J‘7 —) - A@)]

a; an

where

Hence, we have that
9) lginl < |P(M; < uj(z), My < un(2)) — P(Mj < uj(z), Mn < un())|
+ |P(M; < uj(z)) — P(M; < u(2))|
+|P(My, < un(2)) = P(Mn < un(2))| + |Gjnl
=A; + A+ A3+ Ay,

On the other hand, from definition of u,(x) and sequences (ay), (bn), we
have that for n > 2,
loglogn + log 47

1
+ (2logn)z —
( ) 2(2logn)%

un(@) = (2log n)%
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and it is easy to check that un(z) > uj(z), for n > j > h(z), where

(10) h(z) = [max{exp (g + % - l&:‘f),z}}

and [ | denotes in this case the integer part of the number.
Hence, for n > j > h(z), A; in (9) can be written as follows

= |P(€1 < ’U/](fl)), s aéJ < ’Uq‘(il)),{j.;.]_ < ’U.n(il)), € < u‘n(m))
— P(&1 < uj(2),. .., & < uj(x), i1 S un(2), ..., E&n < un())).

Due to the fact that {£,, n > 1} are standard normal and stationary, we
have from Theorem 4.2.1 in [4] that, if é is such as in assumption (1), then

a<c T 0l ( f(w)>
1 )| exp
1<k<l<_7 146
1y (z) + ui(z)
+C Y (- k)|exp( ———)
1S 2 146
i<i<n
+C Y -k exp(—M)
j<k<i<n 1+6
Set
(11) - _L_
TEIF
Using notation (11), we can write that
j=1
Ay < Cjexp(—yud(z)) D Ir(t)|
t=1

+Cj exp(—%fyu?(z)) exp( —yul(z) ) Z |r(¢)
n—j-1

j
+ Cnexp(—yui(z)) Y. Ir(t)
t=1

and by assumption (2),
. 1
(12) A <cC [J exp (—W?(z)) +J’exr>(—§7u2(x)) exp(—%wﬁ(w))
+nexp(—yu(@)].
On the other hand, from definition of u;(z), we have that

(13) exp(—112(z)) < C(z)j%aogj)*.
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(12) and (13) imply that
.1 . 1 21 1 1
(14) A1 <C(z) 335(1089)7 575 (log)* 5 (logn)? + o (logn)? .
Using Theorem 4.2.1 in [4] again and similar calculations as by the esti-

mation of Aj, it is easy to find the estimates for Az and A3 in (9). We have
that

1 :
(15) Az < C(z)j 757 (log 5"
and )
(16) Az < C(m)n;ﬂ(log n)?.
(14)—(16) yield that for n > j > h(z),
(17) A; + A + Ag

.1 . 1 N2 1 2 1
< C|izg50g3)" + s log ) (o m)3 + = (log ).

Thus, it remains to estimate Ay = |Gjn]. As

1 (%) - () s

a; Qp,

Ay =

Y

it is easy to check that for n > j > h(z),
(18) A4 <|P(& < uj(z),..,& < uj(2),&41 < tal(z), ..., €n < Un())
— A(2) P(M; < u;(2))| + |P(My < un(z)) — A2)]
= D1 + Ds.

First, we estimate D;. Using the fact that {En,n > 1} are i.i.d. standard
normal random variables, we obtain that

D = |P(& < uj(e),. & < 4j(@))P (€41 S un(a), ., &n < un(2))
~ A@)P(M; < u;(2))|
<IPE 1 < un(a), -, 6n < un(2)) — A2)]
= 2" (un(z)) — Alz)|
= |[@" (un()) — " (un—;(2))] + (8" (un—;(2)) = A(2)]l,
where ® is the standard normal distribution function. Hence
(19) D1 < 8" (un()) — " (un—j(2))| + 2" (un-j(2)) — Al2)].
From derivation on p. 39 in [4], we have
e 7 (loglogn)?

1- —(1+o(1))].

n 16logn

b(uy(z))=1-
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This implies that for n — j > 1,
(20) | @(un(z)) — ®(un—;(z))|
J (loglogn)?  (loglog(n — j))° ]
<C(= [ , . ~1.
(=) (n—j)n ~ nlogn  (n-j)log(n —j)
Besides, it is easily seen that
(21) |2"7 (un(z)) = 8" (un—j(2))| < 1@ (un(2)) ~ B(tn-;(2))l(n — j).
From (20) and (21), we obtain that for n — j > 1,

(22) 1277 (un(2)) — 8" (un—j(2))|
;. (Joglogn)® _ (loglog(n — 5))*}
sCle )[ logn log(n — 7)

By (2.4.8) p. 39 in (4],
5 () — Af) ~ ZRCE T (oBlosln = 9))

16 log(n — 7)
Hence, we can write that forn — 5 > 1,
-j (log log(n — 4))?
23 " Nup-i(z)) — Alz)| < C(z - .
(23) 5773 (un-5(@)) - A@)| < O(o) 2EE S
From (19), (22) and (23), we have that forn — 5 > 1,
(loglogn)*  (loglog(n — j))z}

2 < .
(24) Dy C= )[n logn log(n — 7)

Applying again (2.4.8) p. 39 in [4], we have that for n > 1, D in (18) can
be estimated as follows
(log log n)?

25 Dy < —_—,
(29 2 < 0(e) 5%
(18), (24) and (25) imply that, if h(z) < j < n — 1, then

~ j . (loglogn)? (loglog(n — j))z]
26 Ay = |Gjn| < = :
(6)  Au= (g < Ofe) | 4 BN , D8 OER
Finally from (9), (17) and (26), we obtain that, there exists constant C(z),
such that for h(z) < j <n -1,

27) gl < C(z) [j—.l:—(logj)'f +j.i(logj)%i(logn)%

(oglogtn )" , (oglogn
log(n — 7) logn

+ n—(log n)7 + +

where v is defined in (11).
Now, let us notice that, if K(N) and Sn(z) are defined such as in (4)
and (5), respectively, then
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R A= ),

an

This and definition of g;,, in (8) imply that

Z Z |gjn|

E[Sy(z) - A(z))? <

K2(N e L
h(z) N h
5 & Z z(z:)[gjn|
K(N n—1317n N)n 1+h(z) j=1 I"

2 = |gjn|
e, o

n=1+h(z) j=1+hz)

Let us write it as follows

hMz) n
|in|
(28)  E[Sn(z) — A(z))? < K2 (N) = 1 ]]n
2 N h(z) | jnl
* Sy

n=1+h(z) j=1 jn
9 N

tEwm Ly

n—1+h(z)j'1+h(:z:)<j<'n. 2 Jn
2 |anI
+ 72w Z >
K (N) n=1+h(z) j=n—1 Jn
=R+ F+ F3+ Fy.

We now estimate all the components Fy, Iy, F3, Fy. For abbreviation, we
introduce the following notation

(29) On(s) = g

where, for recollection, C(z) denotes any non-negative constant, depending
on z. It is easily seen that

(30) o+ By SCN(J:)logN.
Thus, we need to estimate F3 and Fy4. From (28) and (27), we have
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N Ny
(Bl)  F<Cn(@) 3 y (gD

2y
n=1+h(z) j:1+h(z)<j<n-2 )

N ) % o %
+ Cn(z) Z Z (logn)? (log 5)

nl+757
n=1+h(z) j:1+h(z)<j<n-2

- (logn)
+ Cn(z) Z Z oy
n=1+h(z) j:l+h()<j<n-2 " I
N 1
+ Cn(z) Z Z —Z
n=1th(z) j1+h(z)<j<n-2 J "
+Cn(z) f: ) (log log(n — 7))?
n=1th(z) jl+h(z)<j<n-2 D log(n — j)
+Cn(2) i Z (loglog n)?
n=1th(z) j1+h(z)<j<n-2 logn
=G1+ G2+ G3 + G4 + Gs + Gg.

We now estimate all the components G1, G, G3, G4, G5, Gg.

G1 < Cn(z Z E IOgJ Cn(z)(log N)? %Z.—-
n= 1

By definition of v in (11), 2y > 1. Hence 372, ;%; < oo and
(32) G1 < Cn(z)(log N)*TL.

Similarly we can estimate G4, G3. We have

Gy < CN(z)Z (log n)? Z (1og 1)

nlty = ]'Y
n N 1 [eS)
< Cn(z )logN)"Z Z Nn(z)(log N)? ZEZ
n_ = = =
and hence
(33) Gy < CN(w)(log Ny
N n
6 <on@) 3 S S L < valonny' 3 5
j=1 J n=1 n? j=1 J
* 1 X1

< Cn(a)(log N)' Y —

n=1 7=1 J

887
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and hence
(34) G3 < Cn(z)(log N)™.
It is also easy to estimate G4. We namely have
N1
G4 < Cn(z) Z Z—— = Cpn(z) Z
— jn —n
n= ] 1 n=1
and
(35) G4 < Cn(z)logN.
To get a bound for G5, we use the fact that
(36) (loglogt)? < (logt)?, for all sufficiently large ¢.
Therefore

Gs < Cn(z) Z ZIOg(" 7))

n—1+h(:c).7 1™ log(n — ])

SNCIDIR>

n=1+h(z) j=1 n‘] log n- J))

Hence, we can write that

Y 1
P P D =) i

n=1+h(z) j:1<i<(3]
N 1

+ Cn(z) Z }:

. —=T
n=1+h(z)j:1+[g]gjgn-2nJ(log(n )

N 1
<On(®) Y. Y —rowns

n=1+h(z) j:1<5<[3] nj(log 3)
- 1

AP e

n=14+h(z) j:1+[5]<i<n-2

where [3] denotes the integer part of 7.
This implies that

i) 3 AL y 2
N TS Y r
i@ U8 i cna ]
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< Cn(z) i L - log = + C(z) i 11
= YN Ao nyi-y 9875 N - —
n=1th(z) " (log )17 =2 n=1+th(z) " (log 2)t—7
N N
1 n\"7 1
= Cn(z) Z —~ ( log 5) + Cn(z) Z —(log2)"

n=1+h(z) n=1+h(x)

log 2

N
< Cn(z)(log N)* Y -

n=1
and hence
(37) Gs < Cn(a)(log N+,
Finally, applying (36) again we obtain that

n

(logm)” N (logn)"= 1
Gs < Cn(z) Z Z < Cn(z) Z 3

n=1+h(z) j=1 njlogn n

n=1+h(z) =17
(logn)” N1
< ——< -
_C'N(.'z:)ng1 — Cn(z)(log N)Y gn
and hence

(38) Gs < Cn(z)(log N)*1.

From (31)-(35), (37) and (38), we have that

(39) F3 < Cn(z)(log N)™.

Besides, it is very easy to check that Fy in (28) satisfies the inequality
(40) Fy < Cn(z)logN.

By (28), (30), (39) and (40) E[Sn(z) — A(z)]? < Cn(z)(log N)"*!. Using
notation on Cn(z) in (29), K(N) in (4) and ~ in (11), we obtain that, there
exists some non-negative constant C(z), such that

Clz) _  Clz)
(log )™ (j0g N)THE
From (41) and Chebyshev’s inequality, we have

(42) P(ISn(z) — A(z)] > €) <

(41) E[Sn(z) — A()]* <

C(z)
—_
e2(log N)1+8
Now, we put Ny = [e¥” + 1], for some natural number m > , where § is

such as above and [e*™ + 1] denotes the integer part of e* + 1. Then (42)
implies that

1+6

ZP(]SNk(m) -A)|>€) < Cla) Z . < o0, as _mé > 1.
k=1 k1+5 1+6
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From the Borel-Cantelli lemma, we conclude that
Sn.(z) —A(z) — 0 as.
k—oo

On the other hand, we have that for Ny < N < N1,

K(Nk+1—1)—K(Nk) 1 Nk+1—1
S — <2 ~ .
ISn(z) — Sw, (2)] < RV 2log . log N
Hence, we can write that
1, ektD™ 1 m
|Sn(2) = Sn, (2)] < Oz log —gm— = Coml(k+1)™ — &™)
_c [(k+1)™ 14 (k+1)™ 2k+. .. +(k+1)k™ 2 4+km 1]
= e
m(k + 1)™1 \" 1
<C——t = ) — .
<C P C’m(1+k) k+1—+Oask—->oo

Thus, we have
lim Sy(z) = A(z) as..
N—oo

Set Ty = {w € Q : limy_c Sn(¢q) = A(g)}. Then P(T'y) = 1. Now, write
I' = Ny Iy, where the intersection takes over all rational numbers ¢. Then
P(T') = 1. Noting that A is continous for all —co < z < 00, the set of rational
numbers is dense in (—o00, 00) and Sy(z) are monotonous functions, we have
(7) and (6) and the proof is completed. m
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