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MEASURABLE LINEAR OPERATORS
INDUCED BY STOCHASTIC PROCESSES

Abstract. The purpose of this paper is to describe the structure of some class of
measurable linear operators on the Lz—space with the probability measure induced by a
stochastic process with independent increments. Our results extends the similar fact that
has been considered in [3] and (5] for measurable linear functionals.

1. Introduction
Let X and Y be real separable complete locally convex linear metric
spaces and let u be a Borel probability measure on X. Denote by B(X) the
Borel o-algebra on X and by B,(X) the completion in measure p of B(X).
An operator A defined on a linear subset Dy € X with values in Y is
called a u—measurable linear operator if:

(a) Dg € B,(X) and pu(Dy) =1
(b) A is a measurable mapping with respect to (B,(X),B(Y))
(c) A is linear on D 4.

If Y = R then we will say simply functional instead operator.

For the theory of measurable linear functionals and operators we refer
to papers (5], [8] and [9].

Urbanik in [5] considered so-called Lusin measurable linear functionals as
limits of sequences of continuous linear functionals with respect to the con-
vergence p—almost everywhere. Therefore p-measurable linear functional
f on X is a Lusin functional if there is a sequence {f,} of continuous lin-
ear functionals on X such that f, — f u — a.e. (or equivalently in the
measure ).
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Analogously we can define Lusin measurable linear operators (see [8]).
Namely, if A is a y—measurable linear operator from X into Y then we say
that A is a Lusin operator if there exists a sequence {A,} of continuous
linear operators from X into Y such that A, — A x4 — a.e..

A particular meaning in the theory of measurable linear operators possess
so—called strongly measurable linear operators. Let X = Y and let A be a
p—measurable linear operator on X (i.e. from D4 C X) into X. Denote by
14 an image of p under the operator A, i.e. the measure on X given by
the formula pa(B) = p(A~1(B)) for B € B(X). We will say that A is a
strongly measurable linear operator if A is an one-to-one mapping and
the measures pand p4 are equivalent, (i.e u(B) = 0 iff pa(B) = 0).

The aim of the present paper is to investigate the structure of strongly
measurable linear Lusin operators for probability measures on the L?-space
over the unit interval, induced by symmetric, homogeneous, separable and
continuous in probability stochastic processes with independent increments.
It is well known that the probability measure induced by such process is
in fact concentrated on the subset of L? consisting of bounded functions
having no discontinuities of the second kind (see [1, Theorem 7.2]).

Let therefore {z(t) : 0 < t < 1} be a symmetric, homogeneous, sep-
arable and continuous in probability stochastic process with independent
increments satisfying the initial condition z(0) = 0. This process defines
a random measure M with independent values by means of the formula
M((a,b]) = z(b) — z(a).

For the definition of an integral with respect to the random measure M
we refer to paper [6]. In the sequel we shall use the notation

1 1
fe(t)da(t) = () M(a2)
0 0

The algebraic and topological structure of the space of all M-integrable
functions was determined in [6]. Namely, this space is homeomorphic and
linearly isomorphic to the Orlicz space L(1) of all Borel functions ¢ on [0,1]
satisfying the condition

§v(le@))dt < 0o
0

where
1/t

and G is the Lévy—Khinchine function of the process in question determined
by means of the formula for the characteristic function v of the increment

P(t) =
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z(b) — z(a):
¥(t) = exp(b - a) S (costu — 1) ! :2 dG(u)
0

and the condition G(0) = 0.
Urbanik in [5) and Nguen Chi Bao in [3] showed the following theorem
about the structure of Lusin functionals in the considered case.

THEOREM 1. ([3], [5]). If u is a probability measure on the L2-space over
the unit interval, induced by a symmetric, homogeneous, separable and con-
tinuous in probability stochastic process with independent increments, then
each Lusin functional f on L? is of the form
1
§(@) = {p(t)da(t)

0
where ¢ belongs to the Orlicz space L().

It is remarkable that the assumption in the above theorem, that f is
a Lusin functional is essential, i.e. this theorem is not true for any p-
measurable linear functional on L? (see [2]).

2. The main results

In this section we will extend the Theorem 1 to the case of measurable
linear operators. We prove the theorem which describes the structure of
strongly measurable linear Lusin operators on L2.

In the first place we must nevertheless define a quantity, which for almost
all functions z € L? and for any t € [0,1] can be regarded as the value of a
function X at the point ¢.

Let thus, just in Sect.1, 1 be a probability measure on the L?-space over
the unit interval induced by the the stochastic process in question. Let D be
the subset of L? consisting of bounded functions having no discontinuities
of the second kind, that is

D = {z e L*: z(t — 0),z(t + 0) exist for every t ¢ [0,1]}

where z(t — 0) and z(t + 0) denote the left—-hand and the right-hand limit
of a function z at the point ¢.
As mentioned in Sect.1 u(D) = 1. For £ € D we put

z*(t) = %[m(t —-0)+z(t+0)] for te0,1]

For almost all trajectories of the process in question the set of point of their
discontinuities is countable (see [4, Sect.11]). Hence for p—almost all func-
tions z € L? z*(t) = z(t) almost everywhere with respect to the Lebesgue
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measure on [0,1]. Therefore for y—almost all functions 2 € L? the quantity
z*(t) we can in fact consider as a value of a function z at the point ¢, for
any t € [0,1].

Our main results reads as follows.

THEOREM 2. Let u be a probability measure on the L*~space over the unit
interval, induced by a symmetric, homogeneous, separable and continuous in
probability stochastic process with independent increments. If A is strongly
measurable Lusin operator on L? then there exists a function K(s,t) : [0,1]x
[0,1] — R such that

1
Az(t) = | K (s, t)dz(s)
0

where K (-,t) € L(v) for every t € 0,1} (L(3) is the Orlicz space defined in
Sect.1).

Proof. Let a point ¢ € [0,1] be fixed and define a functional f; : L? — R
by the formula

(1) fi(z) = Az(t) = y*(¢)
where y = Ax.

Let us remark that the functional f; is correctly defined on a set of the
full measure. Indeed, let Dy = A~!(D) N D4, where D4 is a domain of the
operator A (From the definition, D 4 is a linear subset of L2 and u(D4) = 1).
Since D is a linear set then the set A~1(D) is also linear. Moreover, since
A is a strongly measurable linear operator and u(D) = 1 then pa(D) =1,
ie. u(A~Y(D)) = 1. Therefore Dy is a linear set and u(Dg) = 1. If now
z € Dy, then Az is defined (since z € D4) and Az € D (since z € A~(D))
and consequently there exists a quantity y*(¢), where y = Az. Therefore the
functional f;, given by the formula (1), is in fact correctly defined and its
domain is the set Dy.

Now we show that f; is a p—measurable linear functional . The linearity
of this functional is obvious. We prove that f; is a y—measurable mapping.

Let {e, : 1,2,...} be an orthonormal trigonometric basis in the L?-space,
and denote by (z,y) the scalar product in L2. By Fejér’s theorem ([7, Sect.
9.4]), it follows that if z € D then the Fourier series ) o, (en, Z)en(t) of a
function z is convergent in the sense of Cesaro (see [7, Sect. 8.43)) for every
t € [0,1] and has the sum 3[z(t — 0) + z(¢ + 0)] = z*(¢), that is

n k

2'(0) = Jim Y[ es,2)es0)]

k=1 j=1

for every z € D and every t € [0, 1].
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Therefore from Fejér’s theorem we obtain if z € Dy then

2) £i@) = (A2)* = lm fu(o),
where
1 n k
3) fal@) = =3[ Y ey, An)es (1)].
k=1 j=1
Since A is a p—measurable linear operator then for any j = 1,2,...
(e, Az) is a p—measurable linear functional. Hence and from (3) it follows
that for every n = 1,2,... f,(z) is also a u-measurable linear functional.

Thus, by virtue of (2), the functional f; as a limit (in the sense of the
p-a.e. convergence) of a sequence {f,} of p—measurable mappings is also p-
measurable. This completes the proof of the fact that f; is a y—measurable
linear functional.

Now we will show that f; is a Lusin functional. To prove this fact it
is enough to show that for every ¢ > 0 and every g > 0 there exists a
continuous linear functional f on L? such that

(4) plz | fe(z) - f(z)] > e} <o

Indeed, if we show (4) then choosing the sequences ¢ — 0 and p — 0 we
can construct a sequence of continuous linear functional on L? which is
convergent in the measure p to f, and from this sequence we may choose a
subsequence which is convergent to f u-a.e..

To prove (4) let us remark that since A is a Lusin operator then for any
7=1,2,... (ej, Az) is a Lusin functional. Hence for every n =1,2,... the
functional f, defined by the formula (3) is also a Lusin functional.

Since now f, — f: p-a.e., we have that there is ng € N such that

(5) p{z : | fiz) — fao(2)] > €/2} < 0/2.

But fn, is a Lusin functional. Thus there exists a continuous linear functional
f on L? such that

(6) p{z : |fro(2) — f(2)] > €/2} < 0/2.

From (5) and (6) we receive

plz : |fe(z) — f(@)| > e} < plz - |fe(2) — fao ()] > €/2}+
p{z : | fro(2) = f(2)| > €/2} < o/2+0/2=0
This completes the proof of the condition (4).
Recapitulating, we have proved that for every ¢ € [0, 1] the mapping f;

defined by the formula (2) is a Lusin functional on L?. Therefore from the
Theorem 1 we have that for any ¢ € [0, 1] there exists a function ¢, € L(¢)
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such that
1
fo(z) = | pi(s)da(s).
0

Let K(s,t) = p¢(s). Then

1
Az(t) = SK(s,t)dm(s).
0

The theorem is thus proved.

(5]
(6]

(8]
(9]
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