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Abstract. We investigate properties of 4-dimensional warped product manifolds sat-
isfying a particular set of curvature conditions. As an application, we obtain a generaliza-
tion of a pseudosymmetric property for Ricci-flat warped product spacetimes which was
established previously in some special cases, including the Schwarzschild metric.

1. Introduction

Curvature properties of four-dimensional semi-Riemannian manifolds
(M, g), in relation to a semiintegrable almost Grassmann structure (see [1}),
were investigated recently in [13]. Among other results, it was shown that
the metric g from Example 3.5 in [1] satisfies the following relations

(1) (i) rank § <2, (i) 82=0, (ii)x=0, (iv)S-C=0,
(2) w(X)R(Y, Z) + w(Y)R(Z, X) + w(Z)R(X,Y) = 0.

We note that if (2) is satisfied at a point z € M and the 1-form w is nonzero
at this point, then the relation

(3) R-R=Q(S,R)

holds at z (see [10]). Thus (3) is a necessary condition for (2) to hold; however
this condition is not sufficient. For precise definitions of the symbols used,
we refer to Section 2.

In the present paper we broaden the scope of the investigations in [13]
and obtain generalizations of the results for all four-dimensional warped
products M xp N and for all possible dimensions of the base manifold.
In doing so, the level of technical complexity increases considerably. More
precisely, we study curvature properties of four-dimensional warped prod-
ucts, subject to the conditions (1)(ii)-(iv) and (3). It was shown in [13]
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that the Ricci tensor S of a four-dimensional warped product M x g N, with
dim M = 1 or dim M = 3, satisfying (1)(ii) and (1)(iii), has the rank at most
one at every point. We prove that this statement is also true when the base
(M,9) is a two-dimensional manifold. Furthermore, it was also shown in [13]
that if (1)(i4) and (1)(iii) are satisfied on a four-dimensional warped product
MxpN,dimM =1, then M xp Nisa semisymmetric manifold, which is a
particular case of a pseudosymmetrlc manifold. We extend this result to the
case when the base (M,3) is two- or three-dimensional. More precisely, we
prove that if (1)(ii)-(1)(iv) are satisfied on a 4-dimensional warped product
M xp N dim M =2, then M xp Nisa pseudosymmetric manifold. In the
case when the base (M g) is a three-dimensional manifold, the warped prod-
uct M xp N is a semisymmetric manifold. However, in order to prove this,
we must assume additionally that such warped product satisfies also (3).

In Section 2 we define the symbols and comment on the concepts we use.
In Section 3 we present the main results. Finally, in Section 4 we give an
example of a warped product manifold satisfying (1) and (3). However, this
manifold does not satisfy (2).

2. Preliminaries
Let (M, g) be a connected n-dimensional, semi-Riemannian manifold of
class C* and let V be its Levi-Civita connection. We define on M the
endomorphisms X A4 Y, R(X,Y), and C(X,Y) by
(XN Y)Z = A(Y,2)X — A(X, 2)Y,
R(X,Y)Z =[Vx,Vy]|Z - Vixy\Z,

C(X,Y) =R(X,Y) - ;—1—2 (X NgSY +SX A, Y = E‘i’—X /\gY),

respectively, where A is a (0,2)-tensor on M, X,Y,Z € Z(M), and E(M)
is the Lie algebra of vector fields of M. The Ricci operator S is defined by
S(X,Y) = g(X,8Y), where S is the Ricci tensor and & the scalar curvature
of (M, g), respectively. We define the tensor G, the Riemann-Christoffel
curvature tensor R, and the Weyl conformal tensor C of (M, g) by

G(X1, Xa, X3, X4) = g((X1 Ng X2) X3, X4),
R(X1, X2, X3, X4) = 9(R(X1, X2) X3, X4),
C(X11X21X3)X4) = g(C(Xl,X2)X3,X4),

respectively. For (0, 2)-tensors A and B, we define their Kulkarni-Nomizu
product A A B by

(AN B)(X1, X2; X,Y) = A(X1,Y)B(Xq, X) + A(Xz, X)B(X1,Y)
— A(X1,X)B(X,,Y) - A(X3,Y)B(X3, X).
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For a (0, k)-tensor T, k > 1, and a symmetric (0, 2)-tensor A, we define the
(0, k)-tensor A - T and the (0,k + 2)-tensors R- T and Q(A,T) by

(A-T)(X1,...,Xk) = —T(AX1, Xo,..., Xp) — -+ = T (X1, Xo,..., AX}),
(R T)(X17 . 3Xk;X)Y) = (R(X$ Y) ' T)(Xh . an)
“T(R(X,Y)X1, X2, Xp) = - = T(X1, ., Xnet, ROX, V) Xa),

A T)(Xh . )Xk;X)Y) = ((X Na Y) 'T)(XI)"')X’C)
—T((X NA Y)Xl,Xz,...,Xk) — e —T(Xl,...,Xk_l,(X Aa Y)Xk),

II,-\II

where A is the endomorphism of the algebra Z(M) corresponding to A,
defined by g(AX,Y) = A(X,Y). In particular, taking in the above formulas
T=R,T=8T=C,A=g,and A = S, we obtain the tensors R - R,
R-S,R-C,S-C,Q(g,R), Q(g,85), and Q(S, R), respectively.

A semi-Riemannian manifold (M, g), n > 3, is said to be pseudosymmet-
ric (see 7], [15]) if at every point of M the following condition is satisfied:

(*)1 the tensors R - R and Q(g, R) are linearly dependent.

Equivalently, the manifold (M, g) is pseudosymmetric if and only if the
following

(4) R-R=LpQ(g,R)

holds on the set Up = {zx € M | R ~ e G # 0 at z}, where Lp is some
function on Ug. It is clear that any semisymmetric manifold (R- R = 0—see
[14]) is pseudosymmetric. For more information on the geometric motivation
for the introduction of the concept of pseudosymmetry and a survey of
various applications, we refer to the papers [7], [9] and [15); in particular,
for connections with the general theory of relativity, see e.g. [12].

The curvature condition (3) is a particular case of the situation when

(*)2 the tensors R - R and Q(S, R) are linearly dependent.

According to 3] (see also [4]) a semi-Riemannian manifold (M, g), dim M
=n > 3, where ()2 is satisfied, is said to be Ricci-generalized pseudosym-
metric. As it was shown in [10], if at a point z € M, (2) is satisfied and w
is nonzero at this point, then (3) holds at z. Note also that every hypersur-
face M of an (n + 1)-dimensional semi-Euclidean space E?*! with signature
(n+1-—s,s), n > 3, satisfies (3) (see [11]). Examples of warped products
satisfying (3) can be found in [4].

Let now (M,3) and (]V,Zj), dimM = p, dimN =n-p, 1 < p < n,
be semi-Riemannian manifolds covered by systems of charts {U;z®} and
{V y*}, , respectively. Let F be a positive smooth function on M. The warped
product M x g N of (M,g) and (N, §) is the product manifold M x N with
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the metric ¢ = § X g defined by
g xp g =g+ (Fom)rig,

where 71 : I/f x N — M and 7y : M x N —> N are the natural projections
on M and N, respectively. Let {UxV;z!,...,aP, 2Pt =yl ... 2" =y7P}
be a product chart for M x N. The local components of the metric g = Gxpg
with respect to this chart are grs = Gy, if r = @ and s = b, grs = Fgqag if
r = a and s = B, and g,; = O otherwise, where a,b,¢,... € {1,...,p},
a,B,7,...€{p+1,...,n} and r,s,t,... € {1,2,...,n}. We denote by bars
(resp., by tildes) tensors formed from g (resp., §). The local components I',
of the Levi-Civita connection V of M xp N are

= = 1 - 1
bo=Toer T3y =Th, Tap=—59"Fudep, Top=55Falf,
oF

oz

r%, =T% =0 F,=0,F=

The local components

_ 0

© Ozv’
of the Riemann—Christoffel curvature tensor R and the local components
S;s of the Ricci tensor S of the warped product M xr N which may not
vanish identically are

Rrstu = grngéu = grw(aurisl:‘, - 8trg)u + Pztrgu - qurft y au

1 ~ A F ~
(5) Rabed = Rabed, Roatp = ~5Tab9ap) Ropys = FRopyp — —%‘"Gaﬂ'yé,

— n— ~ 1 n—p-—1 -
(6)  Sap = Sap — —2—F—pTab7 Soag = Sap — 3 (trT + -—;%,—AJ“) Gafs

where
= 1
(1) Top=VoFa — gFaFyy 01T =7%Ty, AF = AgF = 3" FoF,

and T is the (0, 2)-tensor with the local components Ty;. The scalar curva-
ture k of M X g N satisfies the relation
K n—p

_ -, E _n-p n-p-1
(8) n—n+F 7 (trT—{— AP A1F>.

3. Main results

We now proceed to the proof of the main results. We will show that any
four-dimensional warped product subject to the conditions (1)(ii)—(1)(iv)
and (3) bears the same features: rank(S) < 1 and the manifold is pseudosym-
metric. The proof proceeds case by case and is established in Proposition
3.1 for dim M = 1, in Proposition 3.2 for dim M = 2, and in Proposition 3.3
for dim M = 3. However, before proving these results we collect in Lemma
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3.1 a few usefull formulas, which will be invoked repeatedly. The proof of
these formulas consists of a carefull calculation and comparison of the left-
and right-hand sides by using definitions of Section 2.

LEMMA 3.1. Let (M, g) be a four-dimensional semi-Riemannian manifold
satisfying (1)(ii), (1)(iil), and (1)(iv). Then the following relations are sat-
isfied on M :
(9) (S R)rstu = (S A S)rstu,
(10) (R S)rstu = S* Rpspu = 0,
(11) SrsRivvw + Sts Rurvw + SusRrtvw + SroRtuws + Sto Rurws

+ SuvBrtws + SrwRiusw + StwRursv + SuwRrtsv = grs(S A S)tuvw

+ gts(S A S)uruw + gus(s A S)rt'vw + grv(s A S)tuws + Gtv (S A S)urws

+ guv (S A S)rtws + rw(S A Stusv + 91w (S A S)ursy + Guw(S A S)rtsv.
PROPOSITION 3.1 ([13], Lemma 3.1). If the conditions (1)(ii) and (1)(iii) are

f_citisﬁe@v on a four-dimensional warped product M xgp N, dim M =1, then
M xg N is a semisymmetric manifold and rank S < 1.

PROPOSITION 3.2. Let M xp N, dimM = 2, be a four-dimensional warped
product manifold. Then

(i) If the conditions (1)(ii) and (1)(iii) are satisfied on M xp N, then
rank S < 1.

(ii) If the conditions (1)(ii), (1)(iii), and (1)(iv) are satisfied on M xp N,
then it is a pseudosymmetric manifold.

Proof. (i) From (6) we have

1 /. AF\\
(12) Saﬁ = 5 (K, - (tl‘T + —2?)> gaﬁ-
Further, (1)(ii) yields Sgﬂ = 0. Applying this to (12), we obtain
(13) R=trT + AZLFF,

which reduces (12) to
(14) Sap = 0.

Now (1)(iii) and (1)(ii) turn into g/ S = 0 and g8/ S, Sy = 0, respectively.
Set Toped = SadSpe — SacSpd. We can easily check that the identity

(15) Tabed = K(T)

TGabcda
where &(T) = g%4¢*Typeq = (gefS'ef)2 — g%dgbcS, Spq, is satisfied From the
last relation, by making use of the definitions of S? and x and (14), (1)(ii)
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and (1)(iii), we obtain x(T) = &% — tr §? = 0. But this reduces (15) to
SadSbc — SacSba = 0, whence rank S < 1, completing the proof of (i).

(ii) Since rank S < 1, (9) reduces to S- R = 0. In particular, we have
(S R)aabs = 0, which by (5) and (14), leads to g&/ (SeeTvs + SpeTus) = 0.
By (6), this turns into

2

(16) Rl = FT,E,,.
On the other hand, (1)(ii) yields ££g,, — 28Ty +
(16), we obtain

(17) E (Tab - ——ﬁab> =0.

We assume that at a point € M xp N we have & # 0. Now (17) gives
T = E—Zp—gab. We put L = ——% and Hy, = % ab + FLG,,. Applying this to
(17), we obtain Hgy = 0. Now Corollary 2.1 of [8] implies R- R = LQ(g, R).
We assume that at a point £ € M xp N we have § = 0. Next we note that
by our assumptions, (8) turns into

£T2 = 0 whence, by

(18) E:%uﬂ

which gives trT = 0. Thus (13) reduces to kK = %AI,L—F- Now, in view of
Corollary 2.1 of [8], we can state that R - R = 0 is satisfied at z if and only
if
(19) TocToa — TopTea =0 and T2, = g% TeyTy, = 0
hold at z. Since rank § = rank T < 1 and 0 = §2, = T3 hold at z, we see
that (19) is satisfied at z, i.e., R- R = 0 holds at z. This completes the proof
of (ii).
PROPOSITION 3.3. Let M xg N, dim M = 3, be a four-dimensional warped
product manifold.
(i) If the conditions (1)(ii) and (1)(iii) are satisfied on M xp N, dim M =
3, then rank S < 1.
(i) If the conditions (1)(ii), (1)(iil), (1)(iv), and (3) are satisfied on
M xg N, then it is a semisymmetric manifold.
Proof. (i) The proof of this subcase was covered by Lemma 3.2 of [13].
(ii) Let z be a point of M x z N. From (1)(ii) we get 52, = g%*S14S44 = 0,
and
(20) Su=0.
Further, by (20), equations (6) yields
(21) trT=0.



Four-dimensional warped products 859

Applying (21) to (8), we obtain
(22) & =0.

It is clear that if S vanishes at z, then (3) reduces to R - R = 0. Therefore,
we assume that rank S = 1 holds at z. Thus we have

(23) Sed = pdada, pER,
whence
(24) oor=0, ¢ =g%¢,

where ¢, are the local components of a covector ¢ at z. Applying (23) to
(6), we obtain

_ 1
(25) Sad = pPadq + ﬁTad-

Further, takingr =s=4andt =qa,u=0b, v =c¢, w =d in (11), we find
that
—SacCrasd + SpcCatsd + SadCrasc — SpdCassc = 0,

which, by (i), reduces to
—SacRbaad + SpcRaaad + SaaRbssc — SpaRoaac = 0.
Applying this to (5) and (25), we obtain
(26) PabdaToc — PaPcTod + PoPcTad — PpPaTac = 0.
Contracting (26) with §*¢ and making use of (21) and (24), we find that
¢ad’ Tpp + ppd Tga = 0,
whence it follows that

(27) ¢/ Ty = 0.
Contracting (26) with 7% = g%/ T}, and using (27), we find that
(28) Tezc = p1¢e¢c, p1 € R.

Using (5), (23) and (25), we get from (9) and (10) that
(29) 009’ Rived — 9607 Riaca + et Rpdas — $ad’ Rpcap = 0

and ¢°¢f Rep. ¢ = 0. Contracting now (29) with g” and using the last equality
we obtain

¢4’ S o+ 68’ Ssa = 0,
whence
(30) ¢fSp=0.
Applying (30) to (29), we find that
(31) $adaSbc — PaPcSsd + odcSad — PoPaSac = 0.
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Contracting (31) with S°, = g*f5}, and using (30), we obtain

(32) g?ec = p2gede, p2 €R.

From Proposition 6.1 of [5] it follows that (3) is satisfied at z if and only if
Q(T, R) = 0 and the relation

— 1 —
(33) /514 = 39T} cbud
holds at z. Applying (33) to (25) and (28), we find that

1 —
p16atba = gg”CT’;Sfcgad,

whence p; = 0 and

(34) ¢*T 5. = 0.
Thus (28) and (33) are reduced to

(35) T!Sta=0
and

(36) ng = 07

respectively. Similarly, using (25), (32) and (34), from (33) we find that
P2 = 0 and

2

(37) _gad = O
In view of Lemma 2 of [10], it follows that the relation
(38) R-5=0

holds at z. We note that by Lemma 2 of [10], (38) is equivalent at z to
R-R = 0. Now from Theorem 2.1 of [8] it follows that the condition R-R =0
is satisfied at z if and only if the relation

1
T 2F
holds at z. Further, using (21) and (36) and applying Lemma 2.1(iz) of [6},
we deduce that T,4Tp. — TecTpg = 0, whence the relation

(40) Toa = 1¥a¥Pe, 71 ER

holds at z, where 9, are the local components of the covector 7 at : z. From
Lemma 2.1(i%) of {6} and from (22) and (37), we find that S;4Ssc — SacSbed =
0, whence the relation

(39) TeaSab — ToaSac (TacTvd — TopTea)

(41) Sad = Towawy, T2 ER
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holds at z, where w, are the local components of the covector w at z. Now
by (40) and (41), equations (39) reduce to

(42) T172(YcPawawp ~ Yp¥dwawc) = 0.

By Lemma 2.1(ii) of [6], we deduce from (34) and (35) that
gad§bc - §acgbd + gbc-‘_s'—ad - _gbd_gac =0,

which, by (40) and (41), turns into

(43) T (YaYawswe — Yatbewswd + YpPcwawd — PpPwawe) = 0.

Evidently, if 4 or w is a zero covector, then (42) is satisfied at z and R-R =0
holds at z. Assume that 9 is nonzero covector at z. We can choose a vector
V at z such that Vf¢; = 1. Contracting now (43) with V2 and V¢, we
obtain

niTa(wp — Tp) (we — Te) =0, T =V/wy,

whence 1379wy = T1T2Y,. Now we see that (42) holds at z. Thus Proposition
3.3 is proved.

From Proposition 3.1 and Proposition 3.2(ii) we have the following

COROLLARY 3.1. Every Ricci flat warped product solution Mx g N, dim M <
2, of FEinstein’s field equations is a pseudosymmetric manifold.

Corollary 3.1 generalizes Proposition 2 of [12] where this was shown for
the Schwarzschild metric. We finish this section with the following

REMARK 3.1. It is well known that the Kerr metric is also Ricci flat. How-
ever, it is not a pseudosymmetric metric [7]. It follows that the Kerr metric
satisfies (1)(¢) — (1)(4v), but cannot satisfy (3). In addition, we mention that
the Kerr metric is a nonwarped product metric [2].

4. Examples

Let (]V, 9), dim N = n—p>1,n2>4,p> 1, beasemi-Riemannian space
of constant curvature. Further, let M be a nonempty open connected subset
of R?, equipped with the standard metric g, §,, = €404, €a = £1. We put
F = F(z},...,2P) = kexp(£,z®), where k,&1,...,& €R, &2 + ... +§§ >0
and k£ > 0. Now (6)—(8) turn into

n—p K trT n—-p-1 )~
Spp = ————E0kp,  Spg = - - A1F ) Gas,
(44) b 4 £ 8 (n B iF 14" | ag

F F
Tab = Efafba trT = nggﬂ

_(n—pn—-p+1
4

AVF =F%l¢;, k= U7

M| &
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respectively, where ¢/ = g°/¢.. We note that

1 —-p—1
(45) FSu+ 5Tos = ~——2—Ftata
(i) The manifold M x p N  satisfies (3) (see [4]). We can easily check that

if (2) is satisfied on M xg N, for some 1-form w, then it must vanish on
M xp N. Indeed, let z € M xp N.Ifin the formula

(46) Wr Rspuy + Ws Ripyy + Wi Rrsuw = 0,

we take r = a, s = o, t = B, u = 7, v = §, then we get w,Rypy = 0,
whence, by our assumptions and (5), it follows that at the point z we have
we = 0. Further, taking in (46) r = a, s =f8,t =a, u = b, v = v, we find
that (waggy — Wgdary)Tas = 0, which implies wy = 0.

(i) If p = 1 then the warped product M xz N is a conformally flat
manifold. Therefore in the following we assume that p > 2.

From Corollary 2.1 of [8] it follows that if & # 0, then M x F N is
a nonpseudosymmetric manifold. However, if & = 0, then M xp Nis a
semisymmetric manifold. In addition, if the constants £, and &, satisfy
¢7¢; =0, then from (44) it follows that the warped product M x N satis-
fies the following relations: rank S = 1, (1)(4¢) and (1)(44¢). Furthermore, by
making use of (5) and (44), we can state that the local components of the
Weyl tensor C, which may not vanish identically, are

Cabed =

4(7;——;02) (9adbplc + 9vc€abd — 9ackv€d — goaale),

Caaﬁd = —&%;%gaédgaﬁ-
Now, in virtue of (44), we get easily (1)(sv). Furthermore, in view of Lemma
3.1 and (44), we obtain S- R =0.

(iii) The manifold M x r N cannot be realized as a hypersurface of a semi-
Riemannian space of nonzero constant curvature. This is a consequence of
Proposition 3.1 of [11] and the fact that M x p N satisfies (3). We prove now
that M xpN,n—p > 2, can be realized as a hypersurface of a semi-Euclidean
space. Let 7 be a funct1on on M x g N such that the relation

_ K Ll _
72—5((n_p)(n-p—1)F 26 gf>, £ =41,

holds on M x FJV . It is clear that there exist constants €, €, and &, such that
the function 7 is nonzero at every point z of M xp N and the right-hand
side of the last relation is positive at every point z. Further, let H be the
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(0, 2)-tensor on M xp N with local components H,; defined by
1
Hyp = _Eéagb, Hoy =0, Hyp = €Tgag

We can check that the following relations are satisfied on M x p N:

R(X1, X2, X3, X4) = e(H(X1, X4)H (X2, X3) — H(X1, X3)H(X2, X4)),
VxH(Y,Z) = VyH(X, Z),

where X,Y, Z, X3, ..., Xy are vectors fields on M xp N. Thus we see that
the manifold M x g N can be realized as a hypersurface of a semi-Euclidean
space EP*! with signature (n + 1 — s, 5).

REMARK 4.1. All known examples of manifolds satisfying (3) are either
warped products, hypersurfaces of semi-Euclidean spaces, or manifolds sat-
isfying (2) (see e.g. [10]). Example 3.5 of {1} is an example of a semi-
Riemannian nonwarped product manifold satisfying (2), but which cannot
be realized as a hypersurface of a semi-Euclidean space [13]. Example 4.1
gives an example of a manifold which is a warped product and a hypersur-
face of a semi-Euclidean space, but does not satisfy (2). Explicit examples
realizing (3), which do not belong to one of the above mentioned classes, are
hitherto unknown.
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