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Abstract . We investigate properties of 4-dimensional warped product manifolds sat-
isfying a particular set of curvature conditions. As an application, we obtain a generaliza-
tion of a pseudosymmetric property for Ricci-flat waxped product spacetimes which was 
established previously in some special cases, including the Schwarzschild metric. 

1. Introduction 
Curvature properties of four-dimensional semi-Riemannian manifolds 

(M,g), in relation to a semiintegrable almost Grassmann structure (see [1]), 
were investigated recently in [13]. Among other results, it was shown that 
the metric g from Example 3.5 in [1] satisfies the following relations 
(1) (i) rank S < 2 , (ii) S2 = 0, (iii) k = 0, (iv) S • C = 0, 
(2) u{X)U(Y, Z) + u>{Y)Tl{Z, X) + u{Z)H(X, Y) = 0. 
We note that if (2) is satisfied at a point x € M and the 1-form u is nonzero 
at this point, then the relation 

(3) R R = Q(S, R) 
holds at x (see [10]). Thus (3) is a necessary condition for (2) to hold; however 
this condition is not sufficient. For precise definitions of the symbols used, 
we refer to Section 2. 

In the present paper we broaden the scope of the investigations in [13] 
and obtain generalizations of the results for all four-dimensional warped 
products M Xp N and for all possible dimensions of the base manifold. 
In doing so, the level of technical complexity increases considerably. More 
precisely, we study curvature properties of four-dimensional warped prod-
ucts, subject to the conditions (l)(ii)-(iv) and (3). It was shown in [13] 
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that the Ricci tensor S of a four-dimensional warped product M XpN, with 
d imM = 1 or d imM = 3, satisfying (1)(ii) and (l)(iii), has the rank at most 
one at every point. We prove that this statement is also true when the base 
(M,g) is a two-dimensional manifold. Furthermore, it was also shown in [13] 
that if (l)(w) and (l)(iii) are satisfied on a four-dimensional warped product 
M XpN, dimM = 1, then M XpN is a semisymmetric manifold, which is a 
particular case of a pseudosymmetric manifold. We extend this result to the 
case when the base (M,g ) is two- or three-dimensional. More precisely, we 
prove that if (l)(ii)-(l)(iv) are satisfied on a 4-dimensional warped product 
M xp N, d imM = 2, then M xp N is a pseudosymmetric manifold. In the 
case when the base (M,g ) is a three-dimensional manifold, the warped prod-
uct M Xp N is a semisymmetric manifold. However, in order to prove this, 
we must assume additionally that such warped product satisfies also (3). 

In Section 2 we define the symbols and comment on the concepts we use. 
In Section 3 we present the main results. Finally, in Section 4 we give an 
example of a warped product manifold satisfying (1) and (3). However, this 
manifold does not satisfy (2). 

2. Preliminaries 
Let (M, g) be a connected «-dimensional, semi-Riemannian manifold of 

class C°° and let V be its Levi-Civita connection. We define on M the 
endomorphisms X Aa Y, K{X, Y), and C{X, Y) by 

{X AA Y)Z = A(Y, Z)X - A{X, Z)Y, 

K(X,Y)Z = [ V x , V y ] Z - V[XtY]Z, 

C(X,Y) = n { X , Y ) - ( x AG SY + S X A g Y - ^ - j X AG Y^J , 

respectively, where A is a (0,2)-tensor on M, X,Y,Z G S(M), and E(M) 
is the Lie algebra of vector fields of M. The Ricci operator S is defined by 
S(X, Y ) = g(X,SY), where S is the Ricci tensor and k the scalar curvature 
of (M,g) , respectively. We define the tensor G, the Riemann-Christoffel 
curvature tensor R, and the Weyl conformal tensor C of (M, g) by 

G(Xi,X2, X3, X4) = gHXi AG X2)X3, X4), 

R(Xi,X2,X3, XA) = g(K(Xx, X2)X3, X4), 

C(X i, X2, X3t X4) = g(C(XuX2)X3, X4), 

respectively. For (0,2)-tensors A and B, we define their Kulkarni-Nomizu 
product A A B by 

(A A B)(X!, X2] X, Y ) = A(XltY)B(X2, X ) + A(X2, X ) B ( X l , Y ) 

- A ( X u X ) B ( X 2 , Y ) - A(X2,Y)B(Xl,X). 
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For a (0, A;)-tensor T, k > 1, and a symmetric (0,2)-tensor A, we define the 
(0, fc)-tensor A-T and the (0, k + 2)-tensors RT and Q(A, T) by 

(A • T ) ( X i , . . . , Xk) = -T(AXi , X 2 , . . . , X k ) T { X U X 2 , . . . , AXk), 

( R . T ) ( X U . . . , X, Y ) = (U(X, Y ) • T ) ( X l t . . . , X k ) 

= - T ( K ( X , Y ) X l , X 2 , . . . , X k ) T(XU . . . , Xfc_i, K ( X , Y ) X k ) , 

Q(A, T)(XU . . . , Xk; X , Y ) = ( ( X A * F ) • T ) ( X l y . . . , Xk) 

= —T((X AA Y)X1,X2> . . . , X k ) T ( X \ , . . . , Xfc_lt (X AA Y ) X k ) , 

where A is the endomorphism of the algebra E(M) corresponding to A, 
defined by g(AX, Y) = A{X, y) . In particular, taking in the above formulas 
T = R, T = S, T = C, A = g, and A = 5, we obtain the tensors R • R, 
R -S, R C, S C, Q(g, R), Q(g, 5), and Q(S, R), respectively. 

A semi-Riemannian manifold ( M , g ) , n > 3, is said to be pseudosymrnet-
ric (see [7], [15]) if at every point of M the following condition is satisfied: 

(*)i the tensors R • R and Q(g, R) are linearly dependent. 
Equivalently, the manifold (M,g) is pseudosymmetric if and only if the 
following 

( 4 ) R R = LrQ(9,R) 

holds on the set UR = {x E M \ R — ^ 0 at x}, where LR is some 
function on UR. It is clear that any semisymmetric manifold (R • R = 0—see 
[14]) is pseudosymmetric. For more information on the geometric motivation 
for the introduction of the concept of pseudosymmetry and a survey of 
various applications, we refer to the papers [7], [9] and [15]; in particular, 
for connections with the general theory of relativity, see e.g. [12]. 

The curvature condition (3) is a particular case of the situation when 

(*)2 the tensors R • R and Q(S, R) are linearly dependent. 
According to [3] (see also [4]) a semi-Riemannian manifold (M, g), dim M 

= n > 3, where (*)2 is satisfied, is said to be Ricci-generalized pseudosym-
metric. As it was shown in [10], if at a point x G M, (2) is satisfied and u> 
is nonzero at this point, then (3) holds at x. Note also that every hypersur-
face M of an (n + l)-dimensional semi-Euclidean space E£+1 with signature 
(n + 1 — s, s), n > 3, satisfies (3) (see [11]). Examples of warped products 
satisfying (3) can be found in [4]. 

Let now ( M , g ) and ( N , g ) , d im M = p, dim N — n — p, l < p < n , 
be semi-Riemannian manifolds covered by systems of charts {U;XA} and 
{V\ya}, respectively. Let F be a positive smooth function on M. The warped 
product M Xj? N of {M,g) and (N,g) is the product manifold M x N with 
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the metric g = g x p g defined by 

g Xp g = 7Ti5 + (F o ni^g, 

where TTI : M x N —• M and 7r2 : M x N —> N are the natural projections 
on M and N , respectively. Let {UxV^x1, . . . , x p , xp+1 = y1,..., xn = y n ' p } 
be a product chart for M x N . The local components of the metric g — gxpg 
with respect to this chart are gTS = gab if r = o and s = b, grs = Fgai3 if 
r — a and s = ß, and gTS = 0 otherwise, where a, b, c,... G {1, ...,p}, 
ot,ß, 7, • •. G {p + 1 , . . . ,n} and r, s, t,... € {1, 2 , . . . ,n}. We denote by bars 
(resp., by tildes) tensors formed from g (resp., g). The local components 
of the Levi-Civita connection V of M Xp N are 

OF 
ra6 = rab = 0> Fa = d a F = — . 

The local components Q 

Rrstu = 9ru)R™tu ' 9rwißvX™t ~~ + I ^ r ^ — T ^ r ^ ) , du = > 

of the Riemann-Christoffel curvature tensor R and the local components 
Sts of the Ricci tensor S of the warped product M Xp N which may not 
vanish identically are 

— 1 ~ Ai F ~ 
(5) Rabcd = Rabcdi Raabß = Tab9aß, RaßfS = FRaß-yß Gaß-y6> 

(6) Sab = Sab Jp?-Tab, Saß = Saß - - ^tr T H ^ — A i F ^ gaß, 

where 

(7 ) Tab= V b F a - ^ F a F b , tvT = gabTab, AiF = AigF — g^FaFb, 

and T is the (0,2j-tensor with the local components Tab• The scalar curva-
ture «of M Xp N satisfies the relation 

(8) * = k + - - ( t r T + — ¿ r - A x F j • 

3. Main results 
We now proceed to the proof of the main results. We will show that any 

four-dimensional warped product subject to the conditions (l)(ii)-(l)(iv) 
and (3) bears the same features: rank(5) < 1 and the manifold is pseudosym-
metric. The proof proceeds case by case and is established in Proposition 
3.1 for dim M = 1, in Proposition 3.2 for dim M = 2, and in Proposition 3.3 
for dim M = 3. However, before proving these results we collect in Lemma 
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3.1 a few usefull formulas, which will be invoked repeatedly. The proof of 
these formulas consists of a carefull calculation and comparison of the left-
and right-hand sides by using definitions of Section 2. 

L E M M A 3 . 1 . Let (M,g) be a four-dimensional semi-Riemannian manifold 
satisfying (1)(ii), (l)(iii), and (l)(iv). Then the following relations are sat-
isfied on M: 

(9) (S • R)rstu = {S A S)rstu, 
(10) gSt{R • S)rstu = SStRrstu = 0, 

(11) SrsRtuvui StgRwrvw S^Rrtyw SrvRtuws ~t~ StvRurws 
~t~ SuvRrtws STWRtusv ^tw-Rursv ^uw^rtsv — 9rs{,^ A S^jtuynj 

+ 9ts{S A S) urvw "I" 9us{S A S^jrtvw 9rv{S A S')tutt)s + 9tv{S A S)Urws 
"I" 9uv{S A S)rtws 9ru>{S A S)tusv + 9tw{S A S^ursu "I" 9uw{S A S)rtsv-

P R O P O S I T I O N 3.1 ([13], Lemma 3.1). If the conditions (1)(ii) and (l)(iii) are 
satisfied on a four-dimensional warped product M Xp N, d imM = 1, then 
M Xp N is a semisymmetric manifold and rank S < 1. 

P R O P O S I T I O N 3 . 2 . Let M Xp N, d i m M = 2, be a four-dimensional warped 
product manifold. Then 

(i) If the conditions (1)(¿¿) and (l)(iii) are satisfied on M xp N, then 
rank 5 < 1. 

(ii) If the conditions (l)(ii), (l)(iii), and (l)(iv) are satisfied on M XpN, 
then it is a pseudosymmetric manifold. 

P r o o f , (i) From (6) we have 

(12) Saß = 1 - (tr T + gaß. 

Further, (1) (ii) yields S^ß — 0. Applying this to (12), we obtain 

A I F 
(13) K = + 

which reduces (12) to 

(14) Saß = 0. 

Now (l)(iii) and (1) (ii) turn into gef Sef — 0 and gef SaeSbf = 0, respectively. 
Set Tabcd = SadSbc — SacSbd• We can easily check that the identity 

( 1 5 ) Tabcd = 2 ^ Gabed, 

where k(T) = gadgbcTabcd = (gefSef)2 - gadgbcSacSbd, is satisfied From the 
last relation, by making use of the definitions of S2 and K and (14), (1) (ii) 
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and (l)(iii), we obtain K(T) = /c2 - t rS 2 = 0. But this reduces (15) to 
SadSbc ~ SacSbd — 0, whence rank S < 1, completing the proof of (i). 

(ii) Since rank S < 1, (9) reduces to S • R = 0. In particular, we have 
(S • R)aab0 = 0, which by (5) and (14), leads to gef(5aeT6/ + SbeTaf) = 0. 
By (6), this turns into 

( i s ) KTab = | r a V 

On the other hand, (1)(M) yields ^fgab - 2KTab + pT2
6 = 0 whence, by 

(16), we obtain 

(17) 

We assume that at a point x € M Xp N we have it / 0. Now (17) gives 
Tab = *fgab. We put L = - f and Hab = \Tab + FLgab. Applying this to 
(17), we obtain Hab = 0. Now Corollary_2.1 of [8] implies R R = LQ(g, R). 
We assume that at a point x € M Xp N we have K = 0. Next we note that 
by our assumptions, (8) turns into 

(18) K = ^ t v T , 

which gives t r T = 0. Thus (13) reduces to K = Now, in view of 
Corollary 2.1 of [8], we can state that R • R = 0 is satisfied at x if and only 
if 
(19) TacTbd - TabTcd = 0 and Tja = gefTedTfa = 0 
hold at x. Since rank S = rank T < 1 and 0 = S\a = T%b hold at x, we see 
that (19) is satisfied at x, i.e., R- R = 0 holds at x. This completes the proof 
of(ii). _ _ 
PROPOSITION 3.3. Let M x? N, dimM = 3 , be a four-dimensional warped 
product manifold. 

(i) If the conditions (1) (ii) and (l)(iii) are satisfied on MxpN, dim M = 
3, then rank S < 1. 

(ii) If the conditions (1)(ii), (l)(iii), (l)(iv), and (3) are satisfied on 
M Xp N, then it is a semisymmetric manifold. 
Proof , (i) The proof of this subcase was covered by Lemma 3.2 of [13]. 

(ii) Let x be a point of ~MxFN. From (l)(ii) we get 5 |4 = g44544544 = 0, 
and 
(20) S44 = 0. 
Further, by (20), equations (6) yields 
(21) tr T = 0. 
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Applying (21) to (8), we obtain 

(22) 7c = 0. 

It is clear that if S vanishes at x, then (3) reduces to R • R = 0. Therefore, 
we assume that rank S = 1 holds at x. Thus we have 

(23) Sad = P<t>a<t>d, P e R, 

whence 

(24) = <i>}=rf<t>e, 

where <fia are the local components of a covector <f> at x. Applying (23) to 
(6), we obtain 

(25) Sad - P<l>a<f>d + ^pTad-

Further, taking r = s — 4 and t = a, u = b, v = c, w = d in (11), we find 
that 

—SacCbi4d + SbcCa44d + SadCbiic ~ SbdCaUc = 0, 

which, by (i), reduces to 

—SacRb44d + SbcRaAAd + SadRb44c ~ Sbd^aUc = 0. 

Applying this to (5) and (25), we obtain 

(26) MdTbc - McTbd + <f>b<j>cTad ~ MdTac = 0. 

Contracting (26) with gAC and making use of (21) and (24), we find that 

<t>d<t>fTfb + M f T f d = 0, 

whence it follows that 

(27) 4>fTfb = 0. 

Contracting (26) with T% = ^fT}e and using (27), we find that 

(28) Te2c = Pi4>e4>c, P i G R -

Using (5), (23) and (25), we get from (9) and (10) that 

(29) <t>a<t>fRfbcd - MfRfacd + <t>c<t>fRfdab ~ 4>d<f>fRfcab = 0 

and <f>e<f>f Rebcf = 0. Contracting now (29) with gbc and using the last equality 
we obtain 

<Pd<t>fSfb + <Pb4>fSfd = 0, 

whence 

(30) tfSfb = 0. 

Applying (30) to (29), we find that 

(31) <i>a4>dSbc - 4>a4>cSbd + <f>b<PcSad ~ MdSac = 0. 
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Contracting (31) with Sae = gafSfe and using (30), we obtain 
2 

(32) Sec = P2(f>e(t>c, P2 e K. 

FromJProposition 6.1 of [5] it follows that (3) is satisfied at x if and only if 
Q(T,R) = 0 and the relation 

(33) T { S f d = \gbcTfbSfcgad 

holds at x. Applying (33) to (25) and (28), we find that 

PiMd = ^9bcTfbSfcgad, 

whence p\ — 0 and 

(34) gbcTfbSfc = 0. 

Thus (28) and (33) are reduced to 

(35) TfdSfa = 0 

and 

(36) T l = 0, 

respectively. Similarly, using (25), (32) and (34), from (33) we find that 
P2 = 0 and 

(37) S2ad = 0. 

In view of Lemma 2 of [10], it follows that the relation 

(38) R S = 0 

holds at x. We note that by Lemma 2 of [10], (38) is equivalent at x to 
R R = 0. Now from Theorem 2.1 of [8] it follows that the condition R R = 0 
is satisfied at x if and only if the relation 

(39) TcdSab - TbdSac — ypiTacTbd ~ TabTcd) 

holds at x. Further, using (21) and (36) and applying Lemma 2.1(H) of [6], 
we deduce that TadTf,c — TacTid — 0, whence the relation 

(40) Tad = Tii/>aV>d, n 6 R 

holds at x, where tpa are the local components of the covector ip at x. From 
Lemma 2.1(m) of [6] and from (22) and (37), we find that SadSbc — SacSbd = 
0, whence the relation 

(41) Sad = T2U>aVd, T2 G R 
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holds at x, where uja are the local components of the covector ui at x. Now 
by (40) and (41), equations (39) reduce to 

which, by (40) and (41), turns into 

(43 ) TiTlilpalpdLJbUc - lj)all)cLOhUd + ^b^Pc^a^d ~ A^d^a^c) = 0 . 

Evidently, if ip or u> is a zero covector, then (42) is satisfied at x and R R = 0 
holds at x. Assume that ip is nonzero covector at x. We can choose a vector 
V at x such that V^ipf = 1. Contracting now (43) with y a and Vd, we 
obtain 

whence r ^ u j b = T^ipb- Now we see that (42) holds at x. Thus Proposition 
3.3 is proved. 

Prom Proposition 3.1 and Proposition 3.2(ii) we have the following 

COROLLARY 3 .1 . Every Ricci flat warped product solution M x pN, d i m M < 
2 , of Einstein's field equations is a pseudosymmetric manifold. 

Corollary 3.1 generalizes Proposition 2 of [12] where this was shown for 
the Schwarzschild metric. We finish this section with the following 

REMARK 3.1. It is well known that the Kerr metric is also Ricci flat. How-
ever, it is not a pseudosymmetric metric [7]. It follows that the Kerr metric 
satisfies (l)(z) — (l)(iv), but cannot satisfy (3). In addition, we mention that 
the Kerr metric is a nonwarped product metric [2]. 

4. Examples 
Let (N,g) , dim N = n—p > 1, n > 4, p > 1, be a semi-Riemannian space 

of constant curvature. Further, let M be a nonempty open connected subset 
of Rp, equipped with the standard metric g, gab = sa6ab, £a = ±1- We put 
F = Fix1, ...,xP) = kexp(£axa), where fc.fc,... G R, g + . . . + $ > 0 
and k > 0. Now (6)-(8) turn into 

(42) TlT2(ipc^dUaVb - Ipb^dVaUc) = 0. 

By Lemma 2.1(H) of [6], we deduce from (34) and (35) that 

Sad^bc ~ SacSbd + SbcSad — SbdSac = 0, 

TlT2(üJb - T1pb)(üJc - Tlpc) = 0 , T = V f U f , 

F 4 
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respectively, where tf = g e f W e note that 

(45) F S ad + ~Tad = ^ FÇaÇd. 

(i) The manifold Mxp iV_satisfies (3) (see [4]). We can easily check that 
if (2) is_satisfied on M x p N, for some 1-form u, then it must vanish on 
M xF N. Indeed, let x € M xF N. If in the formula 

we take r = a, s = a, t — ¡3, u — 7, v = 6, then we get u)aRa/3-yS = Oi 
whence, by our assumptions and (5), it follows that at the point x we have 
uja = 0. Further, taking in (46) r — a, s = P, t = a, u = b, v = 7, we find 
that — iOpgai)Tah — 0, which implies u a = 0. 

(ii) If p — 1 then the warped product M x p N is a conformally flat 
manifold. Therefore in the following we assume that p > 2. 

From Corollary 2.1 of [8] it follows that if k / 0, then M xF N is 
a nonpseudosymmetric manifold. However, if k = 0, then M x p N is a 
semisymmetric manifold. In addition, if the constants ea and £a satisfy 

= 0> then from (44) it follows that the warped product M XpN satis-
fies the following relations: rankS = 1, (1)(m) and (l)(m). Furthermore, by 
making use of (5) and (44), we can state that the local components of the 
Weyl tensor C, which may not vanish identically, are 

Now, in virtue of (44), we get easily (l)(iu). Furthermore, in view of Lemma 
3.1 and (44), we obtain 5 - ^ = 0. 

(iii) The manifold MxpN cannot be realized as a hypersurface of a semi-
Riemannian space of nonzero constant curvature. This is a consequence of 
Proposition 3.1 of [11] and the fact that M x p N satisfies (3). We prove now 
that MxpN, n—p > 2, can be realized as a hypersurface of a semi-Euclidean 
space. Let r be a function on M Xp N such that the relation 

holds on M xpN. It is clear that there exist constants e, ea, and £a such that 
the function r is nonzero at every point x of M x p N and the right-hand 
side of the last relation is positive at every point x. Further, let H be the 

(46) ft-truv + U)tRrsuv — 0, 

Cubed = 77 (9adÇbÇc + 9bc(aÙ ~ 9acCbÙ ~ ÇbdCaîc) 
4(ra — ¿) 

p-2 
Caafid = ~ T7 7Tï£,a.£,d9a/3-
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(0,2)-tensor on M Xp N with local components Hrs defined by 

= Haa = 0 , Haß = £Tgaß. 

We can check that the following relations are satisfied on M xp N: 

R ( X 1 , X 2 l X 3 ì X A ) = e { H ( X l ì X 4 ) H { X 2 , X 3 ) - H { X 1 , X 3 ) H ( X 2 , X A ) ) , 

V x H ( Y , Z ) = V y H ( X , Z ) , 

where X, Y, Z, X i , . . . , X4 are vectors fields on M Xp N. Thus we see that 
the manifold M XpN can be realized as a hypersurface of a semi-Euclidean 
space with signature (n + 1 — s, s). 

R E M A R K 4.1. All known examples of manifolds satisfying (3) are either 
warped products, hypersurfaces of semi-Euclidean spaces, or manifolds sat-
isfying (2) (see e.g. [10]). Example 3.5 of [1] is an example of a semi-
Riemannian nonwarped product manifold satisfying (2), but which cannot 
be realized as a hypersurface of a semi-Euclidean space [13]. Example 4.1 
gives an example of a manifold which is a warped product and a hypersur-
face of a semi-Euclidean space, but does not satisfy (2). Explicit examples 
realizing (3), which do not belong to one of the above mentioned classes, are 
hitherto unknown. 
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