

Małgorzata Powierska

ON SMOOTHNESS AND APPROXIMATION PROPERTIES OF THE KANTOROVICH TYPE OPERATORS

Abstract. In this paper we present inequalities concerning the weighted moduli of continuity of Kantorovich type operators L_n^*f . Moreover, we give some estimates of the degree of approximation of f by L_n^*f in the Hölder type norms.

1. Preliminaries

Let I be a finite or infinite interval and let $M(I)$ be the class of all measurable complex-valued functions bounded on I . In the case when I is an infinite interval, denote by $M_{loc}(I)$ the class of all functions bounded on every compact subinterval of I . Given any $n \in N := \{1, 2, \dots\}$, let J_n be a set of indices contained in $Z := \{0, \pm 1, \pm 2, \dots\}$ and let I be the union of non-overlapping intervals $I_{j,n}$ ($j \in J_n$) with increasing left (right) end points. Introduce, formally, for functions f belonging to $M(I)$ or $M_{loc}(I)$, the discrete operators L_n defined by

$$(1.1) \quad L_n f(x) = \sum_{j \in J_n} f(\xi_{j,n}) p_{j,n}(x) \quad (x \in I, n \in N),$$

where $\xi_{j,n} \in I_{j,n}$ and $p_{j,n}$ are non-negative functions continuous on I . Denote by L_n^* the Kantorovich type modification of operators (1.1) given by

$$(1.2) \quad L_n^* f(x) = \sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \int_{I_{j,n}} f(t) dt \quad (x \in I, n \in N),$$

with $m_{j,n} = \text{meas } I_{j,n}$. This type modification of the classical Bernstein polynomials are called the Kantorovich polynomials and are presented e.g. in [9, Chap. II]. The Kantorovich type modification of some other discrete operators can be found e.g. in [3], [5], [2].

1991 *Mathematics Subject Classification*: 41A25.

Key words and phrases: Kantorovich type operator, weighted modulus of continuity, Hölder type norm.

Throughout this paper we make the standing assumption that the functions $p_{j,n}$ ($j \in J_n$, $n \in N$) are absolutely continuous on every compact interval contained in I . We say that $f \in \text{Dom}(L_n^*)$ if the series in the definition (1.2) converges absolutely at every $x \in I$. Assuming that $f \in \text{Dom}(L_n^*)$ we give the Kratz-Stadtmüller [7] type inequalities concerning the weighted moduli of continuity of f and L_n^*f . Moreover, we present an application of these inequalities to approximation of f by the Kantorowich type operators in some Hölder type norms. Analogous results for the discrete operators (1.1) are given [11], for the Feller operators in [10] and for the Durrmeyer type operators in [12].

We adopt the following notation. Given any non-negative function w defined on the interval $I \subseteq R$ and any $x, y \in I$ we write

$$\hat{w}(x, y) = \min\{w(x), w(y)\}.$$

For an arbitrary function g defined on I we introduce the quantity

$$\|g\|_w := \sup\{|g(x)|w(x) : x \in I\}.$$

We denote by $\Lambda(I)$ the set of all continuous functions w on I , positive in the interior of I , with values not greater than 1, which satisfy the inequality $\hat{w}(x, y) \leq w(s)$ for any three points $x, s, y \in I$ such that $x \leq s \leq y$. (Obviously, this inequality holds if, for example, w is non-decreasing or non-increasing or concave on I). Given two weights $w, \rho \in \Lambda(I)$ we define the general weighted modulus of continuity of g on I by

$$\Omega_{w,\rho}(g; \delta) := \sup\{|g(x) - g(y)|\hat{w}(x, y)\hat{\rho}(x, y) : x, y \in I, |x - y| \leq \delta\} \quad (\delta > 0).$$

If $\rho(x) \equiv 1$ on I , we will write $\Omega_w(g; \delta)$ instead of $\Omega_{w,\rho}(g; \delta)$. Further, in the case $w(x) \equiv 1$ on I the weighted modulus $\Omega_w(g; \delta)$ becomes the ordinary modulus of continuity $\omega(g; \delta)$ of g on I . In this case, $w \equiv 1$, the symbol $\|g\|$ will be used instead of $\|g\|_w$. Let $C_w(I)$ denote the class of all functions g continuous on I , such that $\|g\|_w < \infty$.

Taking into account a positive non-decreasing function φ on the interval $(0, 1]$, such that $\varphi(1) \leq 1$, we write

$$\|g\|_{w,\rho}^{(\varphi)} := \|g\|_{w\rho} + \sup \left\{ \frac{|g(x) - g(y)|\hat{w}(x, y)\hat{\rho}(x, y)}{\varphi(|x - y|)} : \right. \\ \left. x, y \in I, 0 < |x - y| \leq 1 \right\}.$$

If this quantity is finite we call it the weighted Hölder type norm of g on I . In case $\rho \equiv 1$ and $w \equiv 1$ on I , we denote this expression by $\|g\|^{(\varphi)}$; if $\rho \neq 1$, $w \equiv 1$, then we will write $\|g\|_\rho^{(\varphi)}$ instead of $\|g\|_{w,\rho}^{(\varphi)}$.

The symbols $c_\nu (\nu = 1, 2, \dots)$ will mean some positive constants depending only on a given sequence $\{L_n\}$ and eventually on the considered weights w, ρ, η .

2. Inequalities for weighted moduli of continuity

Let L_n^* be the operators defined by (1.2). Consider a function $f \in M_{\text{loc}}(I) \cap \text{Dom}(L_n^*)$ for all $n \geq n_0$, with some fixed positive integer n_0 .

THEOREM 2.1. *Suppose that*

$$(2.1) \quad \sum_{j \in J_n} p_{j,n}(x) \equiv 1 + r_n(x) \leq c_1 \quad \text{for all } x \in I, n \geq n_0$$

and that

$$(2.2) \quad \sum_{j \in J_n} (m_{j,n})^{-1} |p'_{j,n}(x)| \int_{I_{j,n}} |t - x| dt \leq \frac{c_2}{w(x)}$$

for $n \geq n_0$ and a.e. $x \in \text{Int } I$,

where $w \in \Lambda(I)$. Suppose, moreover, that there exist the weights $\rho, \lambda \in \Lambda(I)$ such that ρ, λ are positive in I , $\rho \leq \lambda$ and

$$(2.3) \quad L_n^* \left(\frac{1}{\lambda} \right) (x) \leq \frac{c_3}{\rho(x)} \quad \text{for all } x \in I, n \geq n_0,$$

$$(2.4) \quad \sum_{j \in J_n} (m_{j,n})^{-1} |p'_{j,n}(x)| \int_{I_{j,n}} \frac{|t - x|}{\lambda(t)} dt \leq \frac{c_4}{w(x)\rho(x)}$$

for $n \geq n_0$ and a.e. $x \in \text{Int } I$

hold. Then, for $\delta \geq 0$ and $n \geq n_0$,

$$\Omega_{w,\rho}(L_n^* f; \delta) \leq 2(c_1 \|w\| + c_2 + c_3 \|w\| + c_4) \Omega_\lambda(f; \delta) + \|f\|_{w\rho} \omega(r_n; \delta).$$

Proof. Let $x, y \in I$, $0 < y - x \leq \delta$ and let $\xi = (x + y)/2$. Then

$$\begin{aligned} L_n^* f(y) - L_n^* f(x) &= \sum_{j \in J_n} (m_{j,n})^{-1} (p_{j,n}(y) - p_{j,n}(x)) \int_{I_{j,n}} f(t) dt \\ &= \sum_{j \in J_n} (m_{j,n})^{-1} (p_{j,n}(y) - p_{j,n}(x)) \int_{I_{j,n}} (f(t) - f(\xi)) dt + f(\xi) (r_n(y) - r_n(x)). \end{aligned}$$

It is easy to check that for all $t, \tau \in I$ there holds the inequality

$$(2.5) \quad |f(t) - f(\tau)| \widehat{\lambda}(t, \tau) \leq \left(1 + \left[\frac{1}{\delta} |t - \tau| \right] \right) \Omega_\lambda(f; \delta),$$

where $[a]$ denotes the integer part of the number a . Hence

$$|L_n^* f(y) - L_n^* f(x)| \leq A_n(x, y) \Omega_\lambda(f; \delta) + |f(\xi)| \omega(r_n; \delta),$$

where

$$A_n(x, y) = \sum_{j \in J_n} (m_{j,n})^{-1} (p_{j,n}(y) - p_{j,n}(x)) \int_{I_{j,n}} \left(1 + \left[\frac{|t - \xi|}{\delta} \right] \right) \frac{1}{\widehat{\lambda}(t, \xi)} dt.$$

Observing that for every $t \in I$

$$(2.6) \quad \frac{\widehat{\rho}(x, y)}{\widehat{\lambda}(t, \xi)} \leq 1 + \frac{\widehat{\rho}(x, y)}{\lambda(t)}$$

and applying (2.1), we obtain

$$\begin{aligned} A_n(x, y) \widehat{\rho}(x, y) &\leq 2c_1 + \sum_{j \in J_n} (m_{j,n})^{-1} |p_{j,n}(x) - p_{j,n}(y)| \int_{I_{j,n}} \frac{\widehat{\rho}(x, y)}{\lambda(t)} dt \\ &\quad + \sum_{j \in J_n} (m_{j,n})^{-1} \int_x^y |p'_{j,n}(s)| ds \int_{I_{j,n}} \left(1 + \frac{\widehat{\rho}(x, y)}{\lambda(t)} \right) \left[\frac{|t - \xi|}{\delta} \right] dt. \end{aligned}$$

Applying (2.3) we get

$$\begin{aligned} A_n(x, y) \widehat{\rho}(x, y) &\leq 2c_1 + 2c_3 + \frac{1}{\delta} \int_x^y \sum_{j \in J_n} (m_{j,n})^{-1} |p'_{j,n}(s)| \int_{I \setminus I_\delta} \left(1 + \frac{\widehat{\rho}(x, y)}{\lambda(t)} \right) |t - \xi| \chi_{j,n}(t) dt ds, \end{aligned}$$

where $I_\delta = I \cap (\xi - \delta, \xi + \delta)$, $\chi_{j,n}$ denotes the characteristic function of the interval $I_{j,n}$. The inequality $|t - \xi| \leq 2|t - s|$ ($t \in I \setminus I_\delta, x \leq s \leq y$) and the assumptions (2.2) and (2.4) lead to

$$A_n(x, y) \widehat{\rho}(x, y) \leq 2c_1 + 2c_3 + \frac{2}{\delta} c_2 \int_x^y \frac{ds}{w(s)} + \frac{2}{\delta} c_4 \int_x^y \frac{\widehat{\rho}(x, y)}{w(s) \rho(s)} ds.$$

Hence

$$\begin{aligned} A_n(x, y) \widehat{\rho}(x, y) \widehat{w}(x, y) &\leq 2(x_1 + c_2) \|w\| + \frac{2}{\delta} c_2 \int_x^y \frac{\widehat{w}(x, y)}{w(s)} ds + \frac{2}{\delta} c_4 \int_x^y \frac{\widehat{w}(x, y)}{w(s)} ds \\ &\leq 2(c_1 \|w\| + c_3 \|w\| + c_2 + c_4). \end{aligned}$$

The assertion of Theorem 1.1 is now evident.

If $\lambda = 1, \rho = 1$ on I , then the constant c_3 in (2.3) becomes c_1 and the assumption (2.4) reduces to (2.2). Then from Theorem 2.1 we obtain

COROLLARY 2.1. *Under assumptions (2.1) and (2.2) we have*

$$\Omega_w(L_n^* f; \delta) \leq 2(c_1 \|w\| + c_2) \omega(f; \delta) + \|f\|_w \omega(r_n; \delta) \quad \text{for } n \geq n_0 \text{ and } \delta \geq 0.$$

If I is an unbounded interval and λ is a polynomial weight of class $\Lambda(I)$, then a slight modification of the proof of Theorem 2.1 (see e.g. [10], Th. 3 or [11], Th. 3) leads to the following

THEOREM 2.2. *Let conditions (2.1), (2.2) be satisfied and let $\lambda(x) = (1 + |x|)^{-p}$ for $x \in I$, where p is a positive parameter. If condition (2.4) holds with $\rho = \lambda$, then for $\delta \geq 0, n \geq n_0$*

$$\Omega_{w,\lambda}(L_n^* f; \delta) \leq c_5 \Omega_\lambda(f; \delta) + \|f\|_{w\lambda} \omega(r_n; \delta),$$

where $c_5 = 2(c_1\|w\| + 2 \cdot 3^p\|w\| + c_2 + c_4)$.

3. Approximation in Hölder norms

In order to estimate the weighted norm of the difference $L_n^* f - f$, let us introduce the moments

$$\mu_{2,n}^*(x) = \sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \int_{I_{j,n}} (t - x)^2 dt \quad (x \in I, n \in N).$$

THEOREM 3.1. *Let condition (2.1) be satisfied and let*

$$(3.1) \quad \rho(x) L_n^* \left(\frac{1}{\lambda^2} \right) (x) \leq \frac{c_6}{\lambda(x)} \quad \text{for all } x \in I, n \geq n_0,$$

$$(3.2) \quad \rho(x) \mu_{2,n}^*(x) \leq c_7 \lambda(x) \delta_n^2 \quad \text{for all } x \in I, n \geq n_0,$$

where ρ, λ are positive functions on I , such that $\rho \leq \lambda$. If $f \in C_\rho(I)$, then for $n \geq n_0$,

$$\|L_n^* f - f\|_\rho \leq c_8 \Omega_\lambda(f; \delta_n) + \|f\|_\rho \|r_n\|,$$

where $c_8 = c_1 + \sqrt{c_1 c_6} + c_7 + \sqrt{c_1 c_7}$.

Since the proof is similar to that of the proof of Theorem 4 in [12] we do not write them explicitly.

REMARK 3.1. The Cauchy-Schwarz inequality ensures that the fulfilment of the assumption (3.1) implies (2.3) with $c_3 = \sqrt{c_6}$.

REMARK 3.2. It is easily seen that under the assumptions (2.1) and (3.1) with $\lambda(x) = 1$ and $\rho(x) \leq 1$,

$$\|L_n^* f - f\|_\rho \leq (c_1 + c_7) \omega(f; \delta_n) + \|f\|_\rho \|r_n\|.$$

Taking into account the Hölder type norm, we can state that for an arbitrary $\nu_n \in (0, 1]$,

$$(3.3) \quad \|L_n^*f - f\|_{w,\lambda}^{(\varphi)} \leq \left(1 + \frac{2}{\varphi(\nu_n)}\right) \|L_n^*f - f\|_{w\lambda} + \sup \left\{ \frac{1}{\varphi(\delta)} (\Omega_{w,\lambda}(f; \delta) + \Omega_{w,\lambda}(L_n^*f; \delta)) : 0 < \delta \leq \nu_n \right\}$$

(see [11] and [8]). This inequality, Corollary 2.1 and Theorem 3.1 allow us to state the following

THEOREM 3.2. *Let conditions (2.1), (2.2) be satisfied and let $(\delta_n)_1^\infty$ be a sequence of numbers from $(0, 1]$, for which (3.2) holds with $\rho = w$, $\lambda = 1$ on I . If $f \in C_w(I)$, then for $n \geq n_0$,*

$$\|L_n^*f - f\|_w^{(\varphi)} \leq c_9 \sup \left\{ \frac{\omega(f; \delta)}{\varphi(\delta)} : 0 < \delta \leq \delta_n \right\} + \|f\|_w \Delta_n^{(\varphi)},$$

where $c_9 = 6c_1 + 3c_7 + 3\sqrt{c_1 c_7} + 2c_1 \|w\| + 2c_2 + \|w\|$, and

$$\Delta_n^{(\varphi)} = \frac{3\|r_n\|}{\varphi(\delta_n)} + \sup \left\{ \frac{\omega(r_n; \delta)}{\varphi(\delta)} : 0 < \delta \leq \delta_n \right\}.$$

4. The method of K -functionals

Let us note that Corollary 2.1 can be applied for every measurable locally bounded function f , for which the operators (1.2) are meaningful and $\omega(f; \delta) < \infty$ for $\delta > 0$. Assuming that f is continuous and bounded on I ($f \in C_0(I)$) and applying the K -functional method we can get for certain operators better estimates. In [1], Anastassiou, Cottin, Gonska obtained the best estimate of the modulus of continuity of operators (1.1) in the case where I is a compact interval.

Let $f \in C_0(I)$. Then its modulus of continuity is equivalent to the K -functional

$$K(f; t) = \inf \{ \|f - g\| + t\|g'\| : g \in C_0^1(I) \} \quad (t \geq 0),$$

where $C_0^1(I)$ denotes the class of all functions g possessing derivative g' , such that $g' \in C_0(I)$. This means that there exists a constant $M > 0$, independent of f and t , such that

$$(4.1) \quad M^{-1}\omega(f; \delta) \leq K(f; t) \leq M\omega(f; t)$$

for $t \geq 0$ (see [3]).

THEOREM 4.1. *Let $L : C_0(I) \rightarrow C_0(I)$, $L \neq 0$, be bounded linear operator mapping $C_0^1(I)$ into $C_0^1(I)$ and let w be the weight function of class $\Lambda(I)$. If there exists a positive constant c , such that for every $g \in C_0^1(I)$*

$$(4.2) \quad \|w(Lg)'\| \leq c\|g'\|,$$

then there exists a constant $M > 0$, such that for all $f \in C_0(I)$ and all $\delta > 0$

$$\Omega_w(Lf; \delta) \leq M\omega(f; \delta).$$

P r o o f. Let $f \in C_0(I)$, $\delta > 0$. It is easy to check that $\Omega_w(Lf; \delta) \leq 2\|L\| \|f - g\| + c\delta\|g'\|$ for $\delta > 0$, where $\|L\|$ means the norm of the operator L and $g \in C_0^1(I)$. Hence

$$(4.3) \quad \Omega_w(Lf; \delta) \leq 2\|L\|K\left(f; \frac{c\delta}{2\|L\|}\right).$$

The desired estimate follows by (4.1).

Now, we take into account operators L_n^* and assume that (2.1) and (2.2) are satisfied with $r_n(x)$ independent of x . For every $f \in C_0(I)$ we have $\sup_{x \in I} |L_n^*f(x)| \leq c_1\|f\|$ ($n \in N, n \geq n_0$). Moreover assuming that the series in the definition (1.1) can be differentiated term by term in I , we get for $g \in C_0^1(I)$

$$(L_n^*g)'(x) = \sum_{j \in J_n} (m_{j,n})^{-1} p'_{j,n}(x) \int_{I_{j,n}} g(t) dt.$$

Using the Taylor expansion with the integral remainder, applying (2.2) and observing that $\sum_{j \in J_n} p'_{j,n}(x) = 0$ we get

$$\begin{aligned} |(L_n^*g)'(x)| &= \left| g(x) \sum_{j \in J_n} p'_{j,n}(x) + \sum_{j \in J_n} (m_{j,n})^{-1} p_{j,n}(x) \int_{I_{j,n}} \left(\int_x^t g'(s) ds \right) dt \right| \\ &\leq \frac{c_2}{w(x)} \|g'\|. \end{aligned}$$

Finally by Theorem 4.1 we obtain

$$(4.4) \quad \Omega_w(L_n^*f; \delta) \leq c_{10}\omega(f; \delta) \quad (\delta > 0),$$

for every $f \in C_0(I)$ and $n > n_0$. Hence Theorem 4.1 implies Corollary 2.1.

REMARK 4.1. Let us observe that for certain operators L_n^* it is convenient to verify condition (4.2) directly. Sometimes, this condition is true with the weight $w(x) = 1$. Then the inequality (4.4) takes the form

$$\omega(L_n^*f; \delta) \leq c_{11}\omega(f; \delta).$$

In particular, such estimate can be obtained for the Kantorovich polynomials, the Szász–Kantorovich operators and for the Baskakov–Kantorovich ones.

5. Examples

For many known operators defined by (1.2) the functions $r_n(x) = 0$ for all $x \in I, n \in N$ and the quantities

$$\mu_{2,n}(x) = \sum_{j \in J_n} (\xi_{j,n} - x)^2 p_{j,n}(x)$$

are finite at every $x \in I$ and positive in $\text{Int } I$; moreover

$$(5.1) \quad p'_{j,n}(x) \mu_{2,n}(x) = p_{j,n}(x)(\xi_{j,n} - x)$$

for all $x \in I, n \in N$. In this case the left-hand side of the inequality (2.2) can be estimated from above by

$$\begin{aligned} \sum_{j \in J_n} (m_{j,n})^{-1} |p'_{j,n}(x)| \int_{I_{j,n}} |t - \xi_{j,n}| dt + \frac{1}{\mu_{2,n}(x)} \sum_{j \in J_n} (\xi_{j,n} - x)^2 p_{j,n}(x) \\ \leq \frac{1}{\mu_{2,n}(x)} \sum_{j \in J_n} m_{j,n} |\xi_{j,n} - x| p_{j,n}(x) + 1, \end{aligned}$$

whenever $x \in \text{Int } I$. Further, by the Cauchy-Schwarz inequality, we get

$$\begin{aligned} (5.2) \quad \sum_{j \in J_n} (m_{j,n})^{-1} |p'_{j,n}(x)| \int_{I_{j,n}} |t - x| dt \\ \leq \frac{1}{\sqrt{\mu_{2,n}(x)}} \sqrt{\sum_{j \in J_n} m_{j,n}^2 p_{j,n}(x)} + 1. \end{aligned}$$

If, moreover $m_{j,n} = d_n$ for all $j \in J_n$, then condition (2.2) can be replaced by

$$\sum_{j \in J_n} (m_{j,n})^{-1} |p'_{j,n}(x)| \int_{I_{j,n}} |t - x| dt \leq \frac{d_n \sqrt{c_1}}{\sqrt{\mu_{2,n}(x)}} + 1.$$

In particular, for certain discrete operators we have $\mu_{2,n}(x) = \sigma^2(x)/n$, $c_1 = 1$ and $d_n = 1/(n + \gamma)$ ($\gamma = 0$ or $\gamma = 1$).

1. The Kantorovich polynomials are defined as

$$B_n^* f(x) = (n + 1) \sum_{j=0}^n p_{j,n}(x) \int_{j/(n+1)}^{(j+1)/(n+1)} f(t) dt,$$

where $p_{j,n}(x) = \binom{n}{j} x^j (1 - x)^{n-j}$, $x \in I = [0, 1]$.

In this case $c_1 = 1$, $d_n = 1/(n + 1)$, $r_n(x) = 0$, $\mu_{2,n}(x) = x(1 - x)/n$ and the equality (5.1) is fulfilled with $\xi_{j,n} = j/n$.

Observing that

$$p'_{j,n}(x) = n(p_{j-1,n-1}(x) - p_{j,n-1}(x)) \quad (j = 0, 1, \dots, n),$$

where $p_{k,n-1}(x) = 0$ if $k < 0$ and using the Lagrange mean value theorem we obtain

$$(B_n^*g)'(x) = n \sum_{j=0}^{n-1} p_{j,n-1}(x) \int_{j/(n+1)}^{(j+1)/(n+1)} g'(\Theta_{t,j,n}) dt$$

for $g \in C^1[0, 1]$, where $\Theta_{t,j,n} \in \left[t + \frac{1}{n+1}, t\right]$.

Hence, the condition (4.2) takes the form

$$|(B_n^*g)'(x)| \leq \|g'\|.$$

In view of (4.3) and Corollary 6 of [1] we get

$$\omega(B_n^*f; \delta) \leq 2K \left(f; \frac{\delta}{2} \right) \leq 2\omega(f; \delta) \quad \text{for any } f \in C(I).$$

Theorem 3.1 applies with $\rho(x) = \lambda(x) = 1$, $c_6 = 1$, $c_7 = 7/12$ and $\delta_n = 1/\sqrt{n}$. Namely

$$\begin{aligned} \mu_{2,n}^*(x) &= \sum_{j=0}^n (m_{j,n})^{-1} p_{j,n}(x) \int_{j/(n+1)}^{(j+1)/(n+1)} (t-x)^2 dt \\ &= \frac{x(1-x)(n-1)}{(n+1)^2} + \frac{1}{3(n+1)^2} \leq \frac{7}{12n}. \end{aligned}$$

Thus Theorem 3.1 (via Remark 3.2) gives

$$\|B_n^*f - f\| \leq \left(1 + \frac{7}{12} \right) \omega \left(f; \frac{1}{\sqrt{n}} \right) \quad \text{for all } x \in N.$$

Consequently, from Theorem 3.2 it follows the estimate

$$(5.3) \quad \|B_n^*f - f\|^{(\varphi)} \leq \left(6 + \frac{7}{4} \right) \sup \left\{ \frac{\omega(f; \delta)}{\varphi(\delta)} : 0 < \delta \leq \frac{1}{\sqrt{n}} \right\}.$$

2. The Szász–Kantorovich operators are defined as

$$S_n^*f(x) = n \sum_{j=0}^{\infty} p_{j,n}(x) \int_{j/n}^{(j+1)/n} f(t) dt,$$

where $p_{j,n}(x) = e^{-nx}(nx)^j/j!$, $x \in I = [0, \infty)$. Now $c_1 = 1$, $r_n(x) = 0$, $d_n = 1/n$, $\mu_{2,n}(x) = x/n$ and the identity (5.1) is fulfilled with $\xi_{j,n} = j/n$. In view of (5.2), condition (2.2) holds with the weight $w(x) = \sqrt{x/(1+x)}$ and with the constant $c_2 = 2$.

Let us choose the weight $\lambda(x) = (1+x)^{-p}$ for $x > 0$, where p is a positive parameter. In order to verify assumption (2.4) we first observe that

$$\begin{aligned} \int_{j/n}^{(j+1)/n} (1+t)^{2p} dt &\leq 2^{2p} \left((1+x)^{2p} \frac{1}{n} + \left(\frac{j+1}{n} - x \right)^{2p} \int_{j/n-x}^{(j+1)/n} du \right) \\ &\leq 2^{2p} \left((1+x)^{2p} \frac{1}{n} + 2^{2p} \left(\left(\frac{j}{n} - x \right)^{2p} + \left(\frac{1}{n} \right)^{2p} \right) \frac{1}{n} \right). \end{aligned}$$

By the identity (5.1) and the Cauchy–Schwarz inequality we get, for $x \in \text{Int } I$,

$$\begin{aligned} n \sum_{j=0}^{\infty} |p'_{j,n}(x)| \int_{j/n}^{(j+1)/n} |t-x|(1+t)^p dt \\ \leq \frac{\sqrt{\mu_{2,n}^*(x)}}{\mu_{2,n}(x)} \left(n \sum_{j=0}^{\infty} \left(\frac{j}{n} - x \right)^2 p_{j,n}(x) \int_{j/n}^{(j+1)/n} (1+t)^{2p} dt \right)^{1/2}. \end{aligned}$$

Applying the estimate (13') given in [7] (p. 332) we have

$$\sum_{j=0}^{\infty} \left(\frac{j}{n} - x \right)^{2p+2} p_{j,n}(x) \leq c(p)(1+x)^{2p} |\mu_{2,n}(x)|,$$

where c is a positive constant depending only on p . Hence

$$\begin{aligned} n \sum_{j=0}^{\infty} |p'_{j,n}(x)| \int_{j/n}^{(j+1)/n} |t-x|(1+t)^p dt \\ \leq \sqrt{\mu_{2,n}^*(x)/\mu_{2,n}(x)} \sqrt{2^{2p} + 2^{4p}c + 2^{4p}} (1+x)^p \\ \leq \sqrt{\mu_{2,n}^*(x)/\mu_{2,n}(x)} c_{12} (1+x)^p, \end{aligned}$$

where c_{12} is a constant depending only on p . We can easily verify that in this case,

$$\mu_{2,n}^*(x) = \frac{x}{n} + \frac{1}{3n^2} \leq \frac{1}{n}(1+x).$$

Hence the left-hand side of (2.4) is not greater than $c_{12}(1+x)^p \sqrt{(1+x)/x}$. Thus the assumption (2.4) is satisfied with $w(x) = \sqrt{x/(1+x)}$, $\rho(x) = \lambda(x) = (1+x)^{-p}$ and $c_4 = c_{12}$. In view of Theorem 2.2, given any $f \in C_{\lambda}(I)$ we have

$$(5.4) \quad \Omega_{w,\lambda}(S_n^* f; \delta) \leq c_{13} \Omega_{\lambda}(f; \delta), \quad \text{for } n \in N,$$

where $c_{13} \leq 2(3 + 2 \cdot 3^p + 2c_{12})$. The assumptions (3.1), (3.2) remain valid for $\lambda(x) = (1+x)^{-p}$, $\rho(x) = (1+x)^{-(p+1)}$ and $\delta_n = 1/\sqrt{n}$. Indeed,

$$\begin{aligned} S_n^*(1/\lambda^2)(x) &= n \sum_{j=0}^{\infty} p_{j,n}(x) \int_{j/n}^{(j+1)/n} (1+t)^{2p} dt \\ &\leq \sum_{j=0}^{\infty} p_{j,n}(x) \left\{ 2^{2p}(1+x)^{2p} + 2^{4p} \left(\frac{j}{n} - x \right)^{2p} + 2^{4p} \frac{1}{n^{2p}} \right\}. \end{aligned}$$

By (2.1) and the mentioned estimate (13') of [7] we obtain

$$S_n^*(1/\lambda^2)(x) \leq 2^{2p}(1+x)^{2p} + 2^{4p}c(1+x)^{2(p-1)}\mu_{2,n}(x) + 2^{4p} \frac{1}{n^{2p}} \leq c_{14}(1+x)^{2p}.$$

Consequently

$$\rho(x)S_n^*(1/\lambda^2)(x) \leq c_{14}(1+x)^p.$$

The assumption (3.2) has the form

$$\rho(x)\mu_{2,n}^*(x) \leq \frac{1}{n}(1+x)^{-p}.$$

Hence $c_7 = 1$, $\delta_n = 1/\sqrt{n}$. Applying Theorem 3.1 we get

$$\|S_n^*f - f\|_{\rho} \leq 2(1 + \sqrt{c_{14}})\Omega_{\lambda} \left(f; \frac{1}{\sqrt{n}} \right) \quad \text{for } n \in N.$$

Combining this results and (5.4) with the inequality (3.3) we can easily get the corresponding estimate for $\|S_n^*f - f\|_{w,\rho}^{(\varphi)}$ with $w(x) = \sqrt{x/(1+x)}$, $\rho(x) = (1+x)^{-p+1}$, $\lambda(x) = (1+x)^{-p}$.

3. Analogous results can be obtained for the Baskakov–Kantorovich operators:

$$U_n^*f(x) = n \sum_{j=0}^{\infty} p_{j,n}(x) \int_{j/n}^{(j+1)/n} f(t) dt,$$

where $p_{j,n}(x) = \binom{n+j-1}{j} x^j (1+x)^{-n-j}$, $x \in I = [0, \infty)$. Since the computations are similar to the preceding example we omit the details.

4. The generalized Favard–Kantorovich operators are defined by

$$F_n^*f(x) = n \sum_{j=-\infty}^{\infty} p_{j,n}(x) \int_{j/n}^{(j+1)/n} f(t) dt,$$

where $p_{j,n}(x) = p_{j,n}(\gamma; x) = \frac{1}{\sqrt{2\pi n \gamma_n}} \exp \left(-\frac{1}{2\gamma_n^2} \left(\frac{j}{n} - x \right)^2 \right)$, $x \in I = R$, $\gamma = (\gamma_n)_{1}^{\infty}$ being a positive null sequence satisfying the assumption: $n\gamma_n^2 \geq \frac{1}{2}\pi^{-2} \log n$ for $n \geq 2$, $\gamma_1^2 \geq \frac{1}{2}\pi^{-2} \log 2$.

As is known ([4], p. 388; [7], p. 336), for $x \in I, n \in N$,

$$|r_n(x)| \equiv |r_n(\gamma; x)| = \left| \sum_{j=-\infty}^{\infty} p_{j,n}(x) - 1 \right| \leq 2$$

or

$$|r_n(\gamma; x)| \leq 7\pi\gamma_n$$

and

$$\mu_{2,n}(x) \equiv \mu_{2,n}(\gamma; x) = \sum_{j=-\infty}^{\infty} \left(\frac{j}{n} - x \right)^2 p_{j,n}(x) \leq 51\gamma_n^2.$$

Moreover $\omega(r_n; \delta) \leq 16\pi\delta$ for every $\delta \geq 0$. In [11] we can found the estimate $\mu_{2,n}(2\gamma; x) \leq 23\gamma_n^2$, where $2\gamma = (2\gamma_n)_{n=1}^{\infty}$. Observing that

$$p'_{j,n}(\gamma; x) = \frac{1}{\gamma_n^2} \left(\frac{j}{n} - x \right) p_{j,n}(\gamma; x)$$

we estimate the left hand side of (2.2) by

$$\frac{1}{\gamma_n^2 n} \sqrt{\mu_{2,n}(x)} \sqrt{1 + r_n(x)} + 51 \leq 124 \quad \text{for } n \geq 2.$$

Thus Corollary 2.1 yields the estimate

$$\omega(F_n^* f; \delta) \leq 2(3 + 124)\omega(f; \delta) + \|f\| 16\pi\delta \quad \text{for } n \geq 2 \text{ and } f \in C(I).$$

Now, let $f \in C_{\lambda}(I)$, where $\lambda(x) = \exp(-px^2), p > 0$. Then the condition (2.3) is fulfilled for $n \in N$ such that $32p\gamma_n \leq 3$, with $\rho(x) = \exp(-4px^2), \lambda(x) = \exp(-px^2)$ and the constant $c_3 = e^{2p} 34/15$. It is easy to see that

$$\begin{aligned} \mu_{2n}^*(2\gamma; x) &\leq \frac{1}{3n^2} (1 + r_n(2\gamma; x)) \\ &\quad + \frac{1}{n} \sqrt{\mu_{2,n}(2\gamma; x)} \sqrt{\sum p_{j,n}(2\gamma; x)} + \mu_{2,n}(2\gamma; x) \\ &\leq c_{15}\gamma_n^2. \end{aligned}$$

Hence the condition (2.4) takes the form

$$n \sum_{j=-\infty}^{\infty} |p'_{j,n}(x)| \int_{j/n}^{(j+1)/n} |t - x| e^{pt^2} dt \leq \sqrt{102c_{15}} e^{2p} e^{4px^2}$$

for $n \in N$ such that $64p\gamma_n^2 \leq 3$. Thus Theorem 2.1 applies with $\lambda(x) = \exp(-px^2), \rho(x) = \exp(-4px^2), w(x) = 1$ and $c_3 = 34e^{2p}/15, c_4 = \sqrt{102c_{15}}, c_2 = 124$. Theorem 2.1 gives

$$\Omega_{\rho}(F_n^* f; \delta) \leq c_{16}\Omega_{\lambda}(f; \delta) + \|f\|_{\rho} \cdot 16\pi\delta,$$

for all $n \in N$ such that $64p\gamma_n^2 \leq 3$. We can show that

$$F_n^* \left(\frac{1}{\lambda^2} \right) (x) \leq 34e^{4p} e^{8px^2} / 15$$

and

$$\mu_{2,n}^*(\gamma; x) \leq 158\gamma_n^2.$$

Thus Theorem 3.1 is true with $\lambda(x) = \exp(-px^2)$, $\rho(x) = \exp(-7px^2)$, $c_5 = 34e^{4p}/15$, $c_6 = c_{16}$ and $\delta_n = \gamma_n$ for $n \in N$ such that $64p\gamma_n^2 \leq 3$. Consequently, Theorem 3.1 gives

$$\|F_n^* f - f\|_\rho \leq c_{17} \Omega_\lambda(f; \gamma_n) + \|f\|_\rho 7\pi\gamma_n,$$

for n such that $64p\gamma_n^2 \leq 3$. From these results we see at once that

$$\begin{aligned} \|F_n^* f - f\|_\rho^{(\varphi)} &\leq (1 + c_{16} + 3c_{17}) \sup \left\{ \frac{\Omega_\lambda(f; \delta)}{\varphi(\delta)} : 0 < \delta \leq \gamma_n \right\} \\ &\quad + \|f\|_\rho \left(\frac{21\pi\gamma_n}{\varphi(\gamma_n)} + \sup \left\{ \frac{16\pi\delta}{\varphi(\delta)} : 0 < \delta \leq \gamma_n \right\} \right). \end{aligned}$$

References

- [1] G. A. Anastassiou, C. Cottin and H. H. Gonska, *Global smoothness of approximating functions*, Analysis 11 (1991), 43–57.
- [2] G. Aniol, *On the rate of pointwise convergence of the Kantorovich type operators*, Fasc. Math. 29 (1999), 5–15.
- [3] Z. Ditzian and V. Totik, *Moduli of Smoothness*, Springer Series in Computational Mathematics 9, Springer-Verlag, Berlin, Heidelberg, New York 1997.
- [4] W. Gawronski and U. Stadtmüller, *Approximation of continuous functions by generalized Favard operators*, J. Approx. Theory 34 (1982), 384–396.
- [5] S. Guo, *On the rate of convergence of the integrated Meyer-König and Zeller operators for functions of bounded variation*, J. Approx. Theory 56 (1989), 245–255.
- [6] S. Guo and M. K. Khan, *On the rate of convergence of some operators on functions of bounded variation*, J. Approx. Theory 58 (1989), 90–101.
- [7] W. Kratz and U. Stadtmüller, *On the uniform modulus of continuity of certain discrete approximation operators*, J. Approx. Theory 54 (1988), 326–337.
- [8] L. Leindler, A. Meir and V. Totik, *On approximation of continuous functions in Lipschitz norms*, Acta Math. Hung. 45 (3-4) (1985), 441–443.
- [9] G. G. Lorentz, *Bernstein Polynomials*, Toronto 1953.
- [10] M. Powierska and P. Pych-Taberska, *On smoothness and approximation properties of the Feller operators*, Bollettino U.M.I. (7) 10-A, (1996), 385–398.
- [11] P. Pych-Taberska, *Properties of some discrete approximation operators in weighted functions spaces*, Comment. Math. Prace Mat. Ser. I 33 (1993), 159–169.

[12] P. Pych-Taberska, *On the Durrmeyer-type modification of some discrete approximation operators*, Proceedings of the Georgian Academy of Sciences, Math. 1 (1993), 585–599.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
ADAM MICKIEWICZ UNIVERSITY

Matejki 48/49
60-769 POZNAŃ, POLAND
E-mail: mpowier@amu.edu.pl

Received October 9, 2001.