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ON SMOOTHNESS AND APPROXIMATION PROPERTIES
OF THE KANTOROVICH TYPE OPERATORS

Abstract. In this paper we present inequalities concerning the weighted moduli of
continuity of Kantorovich type operators Ly, f. Moreover, we give some estimates of the
degree of approximation of f by Ly, f in the Holder type norms.

1. Preliminaries

Let I be a finite or infinite interval and let M(I) be the class of all
measurable complex-valued functions bounded on I. In the case when I is
an infinite interval, denote by Mj,c(I) the class of all functions bounded on
every compact subinterval of I. Given any n € N := {1,2,...}, let J,, be
a set of indices contained in Z := {0,%1,42,...} and let I be the union
of non-overlapping intervals I; ,(j € J,) with increasing left (right) end
points. Introduce, formally, for functions f belonging to M(I) or Mioc(I),
the discrete operators L, defined by

(1'1) Lnf(x) = Z f(ﬁj,n)pj,n(z) (zel,ne N);

JGJn
where §; » € I;, and p; ., are non-negative functions continuous on I. Denote
by L} the Kantorovich type modification of operators (1.1) given by

(1.2) Lyf(z)= Y (mjn)'pin(z) | ft)dt (z€Il,neN),

i€Jn Ijn
with m;, = measl;,. This type modification of the classical Bernstein
polynomials are called the Kantorovich polynomials and are presented e.g.
in [9, Chap. II}. The Kantorovich type modification of some other discrete
operators can be found e.g. in [3], [5], [2].
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Throughout this paper we make the standing assumption that the func-
tions pjn (j € Jn, n € N) are absolutely continuous on every compact
interval contained in I. We say that f € Dom(L?) if the series in the defini-
tion (1.2) converges absolutely at every € I. Assuming that f € Dom(L})
we give the Kratz-Stadtmiiller [7] type inequalities concerning the weighted
moduli of continuity of f and L} f. Moreover, we present an application of
these inequalities to approximation of f by the Kantorowich type operators
in some Holder type norms. Analogous results for the discrete operators
(1.1) are given [11], for the Feller operators in [10] and for the Durrmeyer
type operators in [12].

We adopt the following notation. Given any non-negative function w
defined on the interval I C R and any z,y € I we write

@(z,y) = min{w(z), w(y)}.
For an arbitrary function g defined on I we introduce the quantity

I9llw := sup{lg(z)lw(e) : = € I}.

We denote by A(I) the set of all continuous functions w on I, positive in
the interior of I, with values not greater than 1, which satisfy the inequal-
ity @w(z,y) < w(s) for any three points z,s,y € I such that z < s < y.
(Obviously, this inequality holds if, for example, w is non-decreasing or non-
increasing or concave on I). Given two weights w,p € A(I) we define the
general weighted modulus of continuity of g on I by

Qu,0(g; 6) := sup{|g(z) — g(v)|(z,y)p(z,y) : z,y € I,|z~y| < 6} (6> 0).

If p(z) = 1 on I, we will write Q,,(g; §) instead of 2 ,(g; 6). Further, in the
case w(z) = 1 on I the weighted modulus Q,,(g;6) becomes the ordinary
modulus of continuity w(g;8) of g on I. In this case, w = 1, the symbol ||g]|
will be used instead of ||g||.,. Let Cy(I) denote the class of all functions g
continuous on I, such that ||g||w < oo.

Taking into account a positive non-decreasing function ¢ on the interval
(0,1], such that ¢(1) < 1, we write

l9(z) — g(¥)w(z,y)p(z,y) .
o(jz - yl) '

z,y€l, 0<|:1:—y|$1}.

1918 5= llglhup + sup{

If this quantity is finite we call it the weighted Holder type norm of g on I.

In case p=1 and w = 1 on I, we denote this expression by ||g||(*); if p # 1,

()
p

w = 1, then we will write ||g||;”’ instead of ||g||£ff,2,
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The symbols ¢, (v = 1,2,...) will mean some positive constants depend-
ing only on a given sequence {L,} and eventually on the considered weights
w, p, 7.

2. Inequalities for weighted moduli of continunity
Let L} be the operators defined by (1.2). Consider a function f €
Moc(I) N Dom(L}) for all n > ng, with some fixed positive integer ng.

THEOREM 2.1. Suppose that

(2.1) Z Pin(t)=1+rp(z)<cr forall z€l,n>ng
j€Jn
and that
(22) Z (mj,n)_llpg,n(m)l S ( )
jGJu Ij:"

forn>ng and a.e. z € Int I,

where w € A(I). Suppose, moreover, that there exist the weights p, A € A(I)
such that p, A are positive in I, p < A and

(2.3) L; <§)( )<—(—-)- forallz € I,n > ny,
R St 1A It—'zl C4
(2.4 2 (min) (@] | St < Sy

forn>ng and a.e. x € Int ]
hold. Then, for 6 > 0 and n > ny,
Qup (L £38) < 2erllwl] + ez + csllwll + ca)20(F56) + || Fllwpw(ra; 6).
Proof. Let z,y € I,0 < y —z < § and let £ = (z + y)/2. Then
Lof(y) - Lo f(=)
= (mJ,n) (in(¥) = Pin(2)) | F()at

j€Jn I n
= D (M) T (2in(¥) = Pin(2)) § (F() = F(€))dt + F(E)(Taly) — Tn(2))-
Jj€Jn Ijn
It is easy to check that for all ¢,7 € I there holds the inequality
@%) 10 - 10RE < (1+ e -ml] ) nisio),

where [a] denotes the integer part of the number a. Hence

|L7f () — Lo f ()] < An(z, 9)20(F36) + |F(§)lw(rn; 6),



824 M. Powierska

where
- —¢| 1
Aala9) = 3 (m3) @in) = pin(e)) § (14 15 <
j:L:J,. J Djnl\y) — PjnlZ IJS'n ) A(t,€)
Observing that for every t € I
6 @), Pey)
20 X6e) AW
and applying (2.1), we obtain
A"(may)ﬁ(zay)
<2t 35 ms0)inte) =) | A58 g
Jj€Jn "
+ 3 () §|pjn( as | (14 2220 (28
FjE€EJn Iin

Applying (2.3) we get
An(m> y)ﬁ(ma y)

< 2c1 +2c3 + % 1D (myn) M)l § (1 My ’y)) It — &lx;,n(t) dt ds,

z jeIn s At)
where Is = IN (£ —6,£+6), xjn denotes the characteristic function of the
interval I ,. The inequality |t — §| < 2|t —s| (t € I\ Is,z < s < y) and the
assumptions (2.2) and (2.4) lead to

2 Yds 2 ¥ fz,
An(x)y) ( 1y)<261+263+502§ ()+—C4S ,0(.'13 y)

Hence
An(z,y)p(z, y)W(z,y)

2
< 2(zy + c2)||wl]| + e

< 2(erflw|| + esllw]| + c2 + c4)-

The assertion of Theorem 1.1 is now evident.
If \=1,p=1on I, then the constant c3 in (2.3) becomes ¢; and the
assumption (2.4) reduces to (2.2). Then from Theorem 2.1 we obtain

COROLLARY 2.1. Under assumptions (2.1) and (2.2) we have
Qu(Lr f;6) < 2(cr]lwl] + c2)w(f; 6) + || fllww(rn; 6) for n > ng and § > 0.
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If I is an unbounded interval and X is a plynomial weight of class A(T),
then a slight modification of the proof of Theorem 2.1 (see e.g. [10], Th. 3
or [11], Th. 3) leads to the following

THEOREM 2.2. Let conditions (2.1), (2.2) be satisfied and let A(z) = (1 +
|z|)~? for z € I, where p is a positive parameter. If condition (2.4) holds
with p= A, then for § > 0,n > ng

Qu A (Lnf;6) < csQa(f56) + || fllwaw(rn; 6),
where ¢s = 2(cy|lw]| + 2 - 3P |lw]| + c2 + c4)-

3. Approximation in Holder norms

In order to estimate the weighted norm of the difference L} f — f, let us
introduce the moments

(@)= Y (mjn)'pin(e) | (t-2)’dt (z€l, neN).
JGJ‘n Ij,n

THEOREM 3.1. Let condition (2.1) be satsfied and let

1 Ce
. = < — >
(3.1) p(z)L;, ()\2) (z) £ o) forallz € I,n > ny,
(3.2) p(z)ps n(z) < erMz)62  for all z € I,n > nyg,

where p, A are positive functions on I, such that p < A. If f € C,(I), then
for n > ny,

ILnf = fllo < csQ(f;6a) + [ fllollr=ll,
where cg = ¢; + /C1¢6 + ¢7 + /C1C7.

Since the proof is similar to that of the proof of Theorem 4 in [12] we do
not write them explicitly.

REMARK 3.1. The Cauchy-Schwarz inequality ensures that the fulfilment of
the assumption (3.1) implies (2.3) with c3 = /c6.

REMARK 3.2. It is easily seen that under the assumptions (2.1) and (3.1)
with A(z) =1 and p(z) < 1,

ILnf = fllo < (e1 + en)w(f; 6a) + I Fllplirall-

Taking into account the Holder type norm, we can state that for an
arbitrary v, € (0, 1],
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2
63 1Lf =A< (14 =25 ) Eas = Sl
+ sup {;%(Qw,,\(fﬁ) + Qua(Lnf;0)):0<6< Vn}

(see {11} and [8]). This inequality, Corollary 2.1 and Theorem 3.1 allow us
to state the following

THEOREM 3.2. Let conditions (2.1), (2.2) be satisfied and let (6,)3° be a
sequence of numbers from (0, 1], for which (3.2) holds with p = w, A =1
onI. If f € Cy(I), then for n > ng,

. en(e) w(f;96)
120 = 7y < cosup { 2D

where cg = 6c1 + 3c7 + 3y/c167 + 2¢1||w|| + 2¢2 + ljw]], and

3llral {w(rn;6)
AW = TN 4 gy :0<6< 6, ¢
0(6a) TP Tp(6)

0<6< 5n} T 1fle AW,

4. The method of K-functionals

Let us note that Corollary 2.1 can be applied for every measurable lo-
cally bounded function f, for which the operators (1.2) are meaningful and
w(f;6) < oo for § > 0. Assuming that f is continuous and bounded on
I{f € Co(I)) and applying the K-functional method we can get for certain
operators better estimates. In [1], Anastassiou, Cottin, Gonska obtained the
best estimate of the modulus of continuity of operators (1.1) in the case
where I is a compact interval.

Let f € Co(I). Then its modulus of continuity is equivalent to the K-
functional

K(f;t) =inf{l|lf - gl +tlg'l : g € Co(D)} (¢t>0),

where C3(I) denotes the class of all functions g possessing derivative g,
such that ¢’ € Co(I). This means that there exists a constant M > 0,
independent of f and ¢, such that

(4.1) M™'w(f;6) < K(f;t) < Mw(f;t)
for t > 0 (see [3]).

THEOREM 4.1. Let L : Co(I) — Co(I),L # 0. be bounded linear operator
mapping C3(I) into CY(I) and let w be the weight function of class A(I). If
there eists a positive constant c, such that for every g € C3(I)

(4.2) lw(Lg)'|| < cllg’ll;
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then there exists a constant M > 0, such that for all f € Co(I) and all§ > 0
Qu(Lf;6) < Mw(f; 6).

Proof. Let f € Co(I),6 > 0. It is easy to check that Q,(Lf;6) < 2||L|j || f—
gl + cbllg’|| for 6 > 0, where ||L|| means the norm of the operator L and
g € CA(I). Hence

«3) Qu(L£:8) < ALK (figrpr )

The desired estimate follows by (4.1).

Now, we take into account operators L}, and assume that (2.1) and (2.2)
are satisfied with r,(z) independent of z. For every f € Co(I) we have
sup |L: f(z)] < a1||fll (n € N,n > ng). Moreover assuming that the series
zel

inthe definition (1.1) can be differentiated term by term in I, we get for
g€ Ci(I)

g (IE) Z(mJﬂ pjn ) S g(t)dt

JEJ Ij,n

Using the Taylor expansion with the integral remainder, applying (2.2) and
observing that } .., pj .(z) =0 we get

(20 @) = [5(0) 3 Hy(@)+ 3 (i) msn(a) | (§'06)ds) e

]eJn JeJn Ij,n z

C2 '
< .
oLl
Finally by Theorem 4.1 we obtain
(4.4) Qu(Lyf;6) < crow(f;68) (6 >0),

for every f € Co(I) and n > ng. Hence Theorem 4.1 implies Corollary 2.1.

REMARK 4.1. Let us observe that for certain operators L}, it is convenient
to verify condition (4.2) directly. Sometimes, this conditon is true with the
weight w(z) = 1. Then the inequality (4.4) takes the form

w(Ly f;6) < eaw(f; 6).

In particular, such estimate can be obtained for the Kantorovich polyno-
mials, the Szdsz—Kantorvich operators and for the Baskakov-Kantorovich
ones.
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5. Examples

For many known operators defined by (1.2) the functions r,(z) = 0 for
all z € I,n € N and the quantities

p2n(2) = Y (€jin — 2)?pjn(z)
J€JIn
are finite at every ¢ € I and positive in Int I; moreover
(5.1) P n(@)2,u(z) = Pjpn(@)(n — T)

for all z € I,n € N. In this case the left-hand side of the inequality (2.2)
can be estimated from above by

- 1
je']n Ij,n 2’n jEJn
1
L —F= Mjnléin — 2Pjn(Z) + 1,
#2'71(1:) JEZJn Ty |€.77 'pJ ( )

whenever z € Int I. Further, by the Cauchy-Schwarz inequality, we get

(5:2) Y (myn) M pfa(@)l | 16—zl dt

Je‘]n Ij,n

1

< — m? .pin(z) + 1.
V12,0 (2) ,;:" 7

If, moreover m; n = d, for all j € J,, then condition (2.2) can be replaced
by

dp+/C
3 (i) (@) § 1t - aldt € <Y 4
i€Jn L pi2,n(z)
In particular, for certain discrete operators we have usn(z) = o2(z)/n,
cg=landd,=1/(n+v) (y=00ry=1).
1. The Kantorovich polynomials are defined as
(3+1)/(n+1)

n
Bif(z)=(n+1)> pialx) |  flO)dt,
3=0 j/(n+1)
where p; »(z) = (’;)zJ(l —z" I,z el=1[0,1]
In this case ¢; = 1,d, = 1/(n+1),7,(z) = 0, 2 n(z) = z(1 — z)/n and
the equality (5.1) is fulfilled with §;, = j/n.
Observing that

p_lj,n(z) = n(pj—l,n—l(w) "‘pj,n—l(m)) (] = O, 1, . ,TL),
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where p n-1(z) = 0 if £ < 0 and using the Lagrange mean value theorem
we obtain

n—1 (F+1)/(n+1)
(Brg)'(z)=n ij,n—l(w) S 9'(O1,j,n)dt
=0 i/(n+1)
for g € C'[0,1], where O, ;, € [t + %H,t].
Hence, the condition (4.2) takes the form

(Brg)' ()] < llg'l-
In view of (4.3) and Corollary 6 of [1] we get

w(BLF;8) < 2K (f; g) < 20(f;6) for any f € C(I).

Theorem 3.1 applies with p(z) = Mz) = 1,¢6 = 1,¢7 = 7/12 and 6, =
1/4/n. Namely
n (G+1)/(n+1)
H3a(@) =) (min) 'pin() | (t-2)%dt
3=0 i/(n+1)
z(l=-z)(n—-1) 1 7
= < —_
(n+1)? 3(n+1)2 = 12n
Thus Theorem 3.1 (via Remark 3.2) gives

iBnf—fll < (1+l>w(f;—\/1—ﬁ-) forallz € N.

12

Consequently, from Theorem 3.2 it follows the estimate

(53)  |Bif - fI® < (6+ g) sup{% 0<b< %}

2. The Szasz—Kantorovich operators are defined as

oo G+1)/n
Spf(@)=n) pin(z) | fQ)dt,
j=0 j/n

where p; n(z) = e7"*(nz)?/j!,z € I = [0,00). Now ¢1 = 1,7,(z) = 0,d,, =
1/n, p2,n(z) = z/n and the identity (5.1) is fulfilled with §;, = j/n. In view

of (5.2), condition (2.2) holds with the weight w(z) = 1/z/(1 + z) and with
the constant cy = 2.
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Let us choose the weight A\(x) = (1+4z)~? for z > 0, where p is a positive
parameter. In order to verify assumption (2.4) we first observe that

(J+1)/n 1 11 2p (7+1)/n—z
| +e)rar<2® ((1 + z)"”; + (J——— - m) | du)

: n .
J/n j/n—z

<% ((1 + z)2"% + 22"((% - z) ” + (%)217) %)

By the identity (5.1) and the Cauchy-Schwarz 1nequahty we get, for z €
Int I,

) (i+1)/n _
nY L@ | lt—al(1+)Pde
j=0 iln

py () i j 2 (.’i+§~)/" 1/2
Y2203 (L-0) pinte) | Q+oar)
pan(@) I An ifn
Applying the estimate (13’) given in [7] (p. 332) we have

o

. 2p+2
> (% - x) Pin(z) < c(p)(1 + 2)*P|uz,n(z)],

7=0
where c is a positive constant depending only on p. Hence

) (G+1)/n
Y pia@ | -l +t)rat
j=0

iln

< i3 B @V T+ B TP(L+ 0P

< /15 (@) B2n(2)er2(1 + 2P,

where c;2 is a constant depending only on p. We can easily verify that in
this case,

. 1 1
pan(E) = — + 3z S+

Hence the left-hand side of (2.4) is not greater than ci2(1+z)P/(1 + z)/z.

Thus the assumption (2.4) is satisfied with w(z) = /z/(1+z), p(z) =

Mz) = (14+z)7? and ¢4 = ¢12. In view of Theorem 2.2, given any f € Cy(I)
we have

(54) Qw,z\(s:z.f; 6) _<_ C13QA(f; 6)7 forn € N)
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where ¢13 < 2(3 + 2 - 37 + 2¢;3). The assumptions (3.1), (3.2) remain valid
for A(z) = (14 )77, p(z) = (1 + 2)~+Y and 6, = 1/4/n. Indead,

(7+1)/n

SHU/N)@) =nY pial@) | (1+1)Pdt

Jj=0 i/n

S j 2 1

rd nep

J:
By (2.1) and the mentioned estimate (13’) of [7] we obtain
S21/N)(z) < PP+ P+2PC(142Y 0 Dy n(2) 427 — < cra(1+2).
Consequently

p()S5(1/X%)(2) < c1a(1 + 2)P.
The assumption (3.2) has the form
. 1 -
p)H3n(3) < = (1+2)7.

Hence ¢; = 1,6, = 1/4/n. Applying Theorem 3.1 we get
* 1
I1SHf = fllp < 2(1 4 /c12) (f; %> forne N.

Combining this results and (5.4) with the inequality (3.3) we can easily

get the corresponding estimate for ||S;: f — f||$f,’fz, with w(z) = /z/(1 + z),
p(z) = (1 +2)7P*, Mz) = (1 + )77

3. Analogous results can be obtained for the Baskakov-Kantorovich op-
erators:

) (G+1)/n
Urf(z)=n) pinlz) | f(O)dt,
=0 ifn

where p; .(z) = ("+§_1)xj(1 +1z)~""9, £ € I = [0,00). Since the computa-
tions are similar to the preceding example we omit the details.

4. The generalized Favard-Kantorovich operators are defined by
(G+1)/n

Fif(®=n Y pin(z) | f(t)dt,
j==o0 iln

, 2

where p;n(z) = pjn(7;2) = V#E:exp(— 5%3- (L-2)"),z €eI=R,
v = (vn)$° being a positive null sequence satisfying the assumption: ny2 >
37 2logn for n > 2,42 > n2log?2.
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As is known ([4], p. 388; 7], p. 336), forz € I,n € N,

ra(@)| = Ira(vi)l = | 3 piale) -1] <2

j=-o00
or
Irn (v 2)| < T7yn
and
[e] ] 2
n = n\7i L} = - = jn < 5172
H2,n(2) = p2,n(7; %) j;oo (n w) pjn(z) <51,

Moreover w(r,;6) < 1676 for every § > 0. In [11] we can found the estimate
B2 (27;z) < 2342, where 2y = (27,)%2,. Observing that

1 (3
Pia(vz) = o (— - z) Pin(7; )

n \T

we estimate the left hand side of (2.2) by

1 .
%\/uz,n(ax)\/l +7ra(z) +51 <124 forn > 2.

Thus Corollary 2.1 yields the estimate
w(Fyf;6) <23+ 124)w(f;6) + || fll1676 for n > 2 and f € C(I).

Now, let f € Cx(I), where A(z) = exp(—pz?),p > 0. Then the con-
dition (2.3) is fulfilled for n € N such that 32py, < 3, with p(z) =
exp(—4pz?), \(z) = exp(—pz?) and the constant c; = €*34/15. It is easy
to see that

1
P (27;2) < -577(1 +rn(27; 7))

1
- n(27; 2p;in(27; n(27;
+n\/uz,(7z)\/ Pin (27 %) + 12,0 (27; )

< a2
Hence the condition (2.4) takes the form
x (+1)/n . 2
" Z 1250 (2)] S |t — z|eP* dt < v/102c15%Pe*P”
j==oo i/n

for n € N such that 64py2 < 3. Thus Theorem 2.1 applies with A(z) =
exp(—pz?), p(z) = exp(—4pz?),w(z) = 1 and c3 = 34e??/15,c4 = /102¢;5,
¢co = 124, Theorem 2.1 gives

Qu(Fr f30) < c16Q0(f;6) + || fllp - 1676,
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for all n € N such that 64py2 < 3. We can show that

and

F; (;\%) (z) < 3464”68””2/15

w3 (7 2) < 15873,

Thus Theorem 3.1 is true with A(z) = exp(—pz?),p(z) = exp(—Tpz?),
cs = 34e*/15,c6 = c16 and 6, = 7y, for n € N such that 64p'y,21 < 3.
Consequently, Theorem 3.1 gives

IEZf = fllp < 1@ (F5vm) + [ £ll, 777,

for n such that 64py2 < 3. From these results we see at once that

(9]
[10]

11]

VB2 — FIS9 < (1+ a6 + 3exr) sup{% 0<8< %}

ot (2 o {5 0<50])
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