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ON THE SUPERSTABILITY OF CERTAIN 
FUNCTIONAL EQUATIONS 

A b s t r a c t . We investigate the superstability of the functional equations 

(1) 

(2) 

(3) 

/ ( * " ) = y / (x) , 

f ( x y ) = yxy~lf(x), 

/ ( o x ) = \a\pf(x). 

We prove new results concerning the superstability of the equation (2) (both in the con-
ventional sense and in the sense of R. Ger) and of the equation (3) (in the conventional 
sense). Likewise, we provide new simple proofs for stronger versions of already known 
results on the superstability of the equation (1) (both in the conventional sense and in the 
sense of R. Ger) and of the equation (3) (in the sense of R. Ger). 

1. Introduction 
The starting point of the present paper is the article [5] by S.-M. Jung, 

investigating the functional equation 

In [5, Theorem 1], it was proved that a differentiable function / : R + —• R, 
satisfying (1) for all x € R+ and all y G R, must be of the form / ( x ) = clnx, 
where c = /(e) is an arbitrary real constant (here and throughout the rest 
of the paper R+ denotes the set of all positive real numbers). It should be 
noted that the same conclusion can be achieved under milder assumptions 
on the function / . 

THEOREM 1. If a continuous function f : R + —• C satisfies f(xn) = nf(x) 
for all x € R+ and all integers n, then it must be of the form, f(x) = clnx, 
where c = /(e). 

( 1 ) / (z") = y/(s) . 
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P r o o f . We have f(x) = nf(xl/n)) hence f{xx!n) = ^ f ( x ) . Consequently, 
/(x

m/n) = —f(x), i.e., f(xr) = rf(x) for all x € R+ and all rational num-
bers r. In particular f(er) = rf(e) = /(e) ln(er) for all rational numbers r. 

Now let x be an arbitrary positive real number, and let (r^) be a sequence 
of rational numbers converging to Inx. Then (erfc) converges to x, so, by 
virtue of the continuity of / , we have 

f(x) = lim f(er") = lim /(e)ln(e r fc) = /(e) lnx. • fc—>00 k—*oo 
REMARK 1. According to a result of J. Milkman [8, Theorem II], the above 
theorem remains true if the word 'continuous' is replaced by 'monotone' and 
the range of / is R. 

With some effort, in [5, Theorem 2 and Theorem 8], S.-M. Jung proved 
the superstability of the functional equation (1), in the conventional setting 
as well as in the sense of R. Ger. It seems that Jung's proofs are more 
complicated than necessary. This assertion is justified by the very short 
proofs presented in the next two sections. Their simple idea is similar to 
that one used by S. Czerwik in the proofs of some results stated in his 
paper [2]. This simple idea can be also applied to the superstability of other 
functional equations, such as 

(2) f(xy) = yxy-'fix) 

or the homogeneous functional equation 

(3) f ( a x ) = | Q | " / ( X ) . 

It should be mentioned that the superstability of the equation (3) has 
already been investigated, but in different settings, by other authors: J. 
Chudziak [1], S. Czerwik [2], S.-M. Jung [6, 7], J. Tabor and J. Tabor [9] 
(see also the monograph [4, pp. 70-77]). To our knowledge, the superstability 
of the equation (2) is proved here for the first time. 

2. Superstability in the conventional sense of the functional equa-
tions (1), (2) and (3) 
In [5, Theorem 2], S.-M. Jung gave a long and complicated proof for the 

superstability of the equation (1), in the conventional setting: 

THEOREM 2. Let S > 0. If the function f : R + —> C satisfies 

(4) \f(xy)-yf(x)\<6 

for all x € R+ and all y € R, then (1) holds true for all x 6 R + and all 
Z / 6 R . 

In what follows, we present a different 
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S h o r t p r o o f of T h e o r e m 2. Take x = 1 in (4) and send y to infinity in 
order to see that / (1) = 0. Therefore (1) holds true for y = 0 and all x G R + . 

Replacing y by ty in (4) and then dividing both sides of the obtained 
inequality by t\y\, we find that 

ty 
< — for all x, t G R+ and all y G R \ {0}. 

MVI 
This inequality implies that 

lim ^ = fix) for all x G R+ and all y G R \ {0}. t—»oo ty 
Taking this into account, for each and each y G R \ {0} we have 

/ ( (*")*)_. .
 fiXty2) f(xy) = lim = y lim — ^ — = yf(x). m t-+ oo ty t-* oo tyz 

The above argument can be used to establish the superstability of other 
functional equations. Indeed, let us consider the functional equation (2), 
inspired by the power derivation formula (u y) ' = yuv~lu'. This functional 
equation is closely related to the equation (1). 

THEOREM 3. A function f : R + —> C satisfies (2) for all x G R + and all 
y € R if and only if there exists a function g : R + —> C, satisfying 

(5) g(xy) = yg(x) and /(x) = xg(x) 

for all x € R + and all y 6 R . 

P r o o f . Let / : R + —> C be a function satisfying (2) for all x € R+ and 
y G R; g : R+ —» C be the function defined by g(x) := Dividing both 
sides of (2) by xy we find that g(xy) = yg(x) for all x G R+ and all y G R. 

Conversely, let g : R + —> C be a function satisfying (5) for all x G R+ 
and all y G R. Then we have f{xy) = xyg(xy) = yxy~1xg(x) = yxy~1f(x) 
for all x G R+ and all y G R. • 

In the next theorem, the superstability of the functional equation (2) is 
proved. 

THEOREM 4. Let S > 0. If the function f : R + —> C satisfies 

(6) \ f { x y ) - y x y - 1 f ( x ) \ < 5 

for all x G R+ and all y G R, then (2) holds true for all x G R+ and all 
2/GR. 

P r o o f . Taking x = 1 in (6) and then sending y to infinity we see that 
/(1) = 0. Hence (2) holds true for y = 0 and all x G R+, as well as for x = 1 
and all y G R. 
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Replacing y by ty in (6) and then dividing both sides of the obtained 
inequality by \ty\xiy~x, we get 

< - . — ¡ - t — f o r all i e R + and all y, t E R \ {0}. 
~ \ty\xly-1 + * x 1 1 

(7) lim P^Xr = f ( x ) for all fX> }' v ' t-oo tyxty~l K ' \x<l,; 

tyxiy 

This inequality implies that 

/ ( * * ) ^ „ n / ® > 1 , y > 0 
,y< o 

and 

(8) lim ^ p r = f ( x ) f o r a l l i ^ i ' ^ . 0 

Now let x > 1 and y € R \ {0} be arbitrarily chosen. If y > 0, then xy > 1, 
whilst if y < 0, then xy < 1. So, by virtue of (7), we have 

f(xy) -- lim f((xV)tV) = l i m Vxy~1 ^ = vxy~l fix) 

Consequently, (2) holds true for all x > 1 and all y 6 R \ {0}. Analogously, 
but using (8) instead of (7), it can be proved that (2) holds also for all x < 1 
and all y 6 R \ {0}, completing the proof. • 

This approach can be also applied to the superstability of the homoge-
neous functional equation (3). 

THEOREM 5. Let p> 0 and pi > 0 with p ^ pi, let X be a linear space over 
the field K of real or complex numbers, let Y be a normed space over K , 
and let k : X [0, oo[ be given. If a function f : X —*Y satisfies 

(9) \\f(ax)-\cx\r>f(x)\\<\ark(x) 

for all a € K and all x G X, then (3) holds true for all a 6 K and all x € X 
(by 0° we mean 1). 

P r o o f . Taking x = 0 in (9) and then sending a to zero for pi > 0, or to 
infinity for p\ = 0, we get / (0) = 0. Hence (3) holds true for a = 0 and all 
i e l 

Replacing a by ta. in (9) and then dividing both sides of the obtained 
inequality by i p | a | p , we find that 

fjtax) 
tP\a\P 

for all x € X, all t € R+ , and all a £ K \ {0}. From this inequality we 
deduce that if p > pi, then 

- f i x ) < tpi-p\a\pi~pk(x) 

lim Z i ^ f l = f ( x ) for all x € X and all a € K \ {0}, 
t -°o tp\a\p ' 
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whilst if p < pi, then 

lim = f ( x ) for all x G X and all a € K \ {0}. 
t \ o tP\a\P J K ' N 1 J 

Taking these into account, for each x G X and each a G K \ {0} we have 

/ ( q x ) = i i m IM^R = | a |p l i m = | a | p / ( x ) , i f v > P l , 
J K ' t—*oo tP\a\P t-»oo tP\a2\P r ^ ' 

f ( a x ) = lim IM^R = |a |P l i m Z i ^ l = |a | p / (x) , if p < Pl. . J y ' t \ o tP\a\P 1 1 t \ o t p |a 2 | p ^ ^ 

REMARK 2. The above theorem remains true for p = pi if, in addition, k 
satisfies the subhomogeneity condition 

k(ax) < \a\P2k{x) for all a € K and all x € X, 

with p2 > 0, P2 p (see [9, Corollary 2]). Moreover, the condition p ^ P2 
is indispensable, as it is shown by the following example: let / : R —• R be 
the function defined by f(x) := |x|pe—x . Then for all a, x G R it holds that 

| / ( a x ) - | a | p / (x ) | = |a|p |x |p |e-Q2ac2 - e -* 2 | < |a|p |x|p , 

but / is not homogeneous. 

R E M A R K 3 . Let p, e G R+ be fixed. Then there exist functions / : R —> R 
satisfying 

(10) | f ( a x ) - | a | p / (x ) | < e\a\p\x\p for all a, x G R 

and 

(11) sup{| / (x) - h(x)| | x G R } = oo 

for every function h : R —> R such that 

(12) h(ax) = \a\ph{x) for all a,x G R. 

Indeed, let / : R —> R be the function defined by / ( x ) := ^|x|parctanx. 
Then for all a, x G R it holds that 

• _, . , „. , ._, .„ I arctan(ax) — arctanxl . .„, .„ 
|f{ax) - | a | p / (x ) | = e |a|p |x |p- ^— !• < £|a|p |x|p . 

7r 
On the other hand, let h : R —• R be an arbitrary function satisfying (12). 
Then h(a) = c|a|p for all a G R, where c = h( 1). If c ^ §, then 

£ 
— arctan x — c 
7T 

= OO, lim | / (x ) -h(x)\ = lim |x|p 

X—»OO I—»OO 

whilst if c ^ - § , then l i m I _ _ 0 0 \ f(x)-h(x)\ = oo. Consequently, (11) holds 
true. 
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REMARK 4 . However, if p, e e R+ and / : R —• R satisfies (10) , then there 
exists a function h : R —> R, satisfying (12) and 

(13) \f(x) - h(x)\ < s\x\p for all a; € R. 

Indeed, the function h : R —• R, defined by h(x) := / ( l ) | i | p , satis-
fies (12). On the other hand, letting x = 1 in (10), we see that h satisfies 
also (13). 

3. Superstability in the sense of R. Ger of the functional equations 
(1), (2) and (3) 
In [5, Theorem 8], S.-M. Jung established (also with a long and compli-

cated proof) the superstability of the equation (1) in the sense of R. Ger. 
More precisely, he proved that if S > 0 and the function / : R+ —> R + 
satisfies 

/(*") _ x < J L 
~ ~ xy ( 1 4 ) , / < » ) 

for all x, y 6 R+, then (1) holds true for all x > 1 and all y € R+. First of 
all, it should be noted that in this theorem it must be assumed that (14) 
holds only for all x e R+ \ {1} and all € R+, because there is no function 
satisfying (14) for all x, y € R+. Indeed, it suffices to take x = 1 in (14) 
and then to let y \ 0 in order to obtain a contradiction. In what follows we 
prove a stronger version of Jung's theorem. 

THEOREM 6. Let Ô > 0 and let / : R + —• C be a function satisfying the 
following conditions: 

(i) f(x) ± 0 for all xeR+\ {1}; 
(ii) the inequality (14) holds true for all x € R+\{1} and all y 6 R\{0}. 

Then (1) holds true for all x G R+ \ {1} and all y € R \ {0}. 
P r o o f . Replacing y by ty in (14), we obtain 

tyf(x) 
This inequality ensures that 

< —¿j for all x e R+ \ {1} and all y,t € R \ {0}. 

( M ) B m ^ . / W f o r i 1 ; ; ' * ^ 
v ' t - o o ty v ' \x <1, y <0 

and 

( i e ) u m i £ 2 - / < « ) 
v ' t — o o ty K ' \ x < 1, y > 0. 
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Now, let x > 1 and y G R \ {0} be arbitrarily chosen. If y > 0, then 
xy > 1, whilst if y < 0, then xy < 1. So, by virtue of (15), we have 

f(xy) = lim 
f((xy)ty) 

: y lim 
t—too 

f(xty2) 
= yf(x)-t—>oo ty " t—>oo ty2 

Consequently, (1) holds true for all i > 1 and all y G R \ {0}. Analogously, 
but using (16) instead of (15), it can be proved that (1) holds also for all 
x G ]0,1[ and all y G R \ {0}. • 

The superstability of the equation (2) in the sense of R. Ger reduces to 
that of equation (1). 

THEOREM 7. Let 5 > 0 and let f : R + —> C be a function satisfying the 
following conditions: 

(i) /(®) ^ 0 for all xeR+\ {1}; 
(ii) for all x G R + \ {1} and all y € R \ {0} it holds that 

f(xy) 
- 1 

Ô < — . 

~ xy yxy~xf(x) 
Then (2) holds true for all x € R + \ {1} and all y € R \ {0}. 

P r o o f . The function g : R+ —• C, defined by g(x) := , satisfies g(x) / 0 
for all x G R + \ {1} and 

9(xy) 
V9{x) 

- 1 < 
xy for all x G R+ \ {1} and all y € R \ {0}. 

By virtue of Theorem 6, we conclude that 

g(xy) = yg{x) for all x G R + \ {1} and all y e R \ {0}. 

This implies that (2) holds true for all x G R+ \ {1} and all y G R \ {0}. • 

We finish this section with a result on the superstability of the equation 
(3). We point out that it is stronger than S.-M. Jung's theorem [7, Theorem 
6], as well as that our proof is shorter and less complicated than that given 
in [7], 

THEOREM 8. Let p e R + and Pi e R \ { 0 } , let k : C \ { 0 } [0, oo[ be 
a given function, and let f : C —> C be a function satisfying the following 
conditions: 

(i) f ( x ) ^ 0 for all x G C \ {0}; 
(ii) for all a, x € C \ {0} it holds that 

/ ( a x ) 
(17) - 1 

Hpf(x) 
Then (3) holds true for all a, x G C \ {0}. 

< | a | P l f c ( i ) . 
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P r o o f . Replacing a by ta in (17), we get 
f ( t a x ) 

- 1 
\t\P\a\Pf(x) 

This inequality ensures that if pi < 0, then 

l i m ^ 

whilst if pi > 0, then 

l i m ' < t e > 

< |t|Pl HPlfc(:r) for all a, x, t € C \ {0}. 

if pi < 0, then 

= f { x ) for all a, x € C \ {0}, 

= f{x) for all a,x e C \ {0}. 
t->o \t\P\a\P 

Taking these into account, as in the proof of Theorem 5 it is easily seen that 
(3) holds true for all a, x e C \ {0}. • 
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