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ON THE SUPERSTABILITY OF CERTAIN
FUNCTIONAL EQUATIONS

Abstract. We investigate the superstability of the functional equations

(1) f@¥) = yf(2),
(2) f(@¥) = y2¥ " f(2),
3) flaz) = laf? f(z).

We prove new results concerning the superstability of the equation (2) (both in the con-
ventional sense and in the sense of R. Ger) and of the equation (3) (in the conventional
sense). Likewise, we provide new simple proofs for stronger versions of already known
results on the superstability of the equation (1) (both in the conventional sense and in the
sense of R. Ger) and of the equation (3) (in the sense of R. Ger).

1. Introduction

The starting point of the present paper is the article [5] by S.-M. Jung,
investigating the functional equation

(1) f(=) = yf(z).

In [5, Theorem 1], it was proved that a differentiable function f: R, — R,
satisfying (1) for all £ € Ry and all y € R, must be of the form f(z) = cln«,
where ¢ = f(e) is an arbitrary real constant (here and throughout the rest
of the paper R, denotes the set of all positive real numbers). It should be
noted that the same conclusion can be achieved under milder assumptions
on the function f.

THEOREM 1. If a continuous function f : Ry — C satisfies f{(z™) = nf(z)
for all z € Ry and all integers n, then it must be of the form f(z) = clnz,
where ¢ = f(e).
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Proof. We have f(z) = nf(z'/™), hence f(z'/") = 1 f(z). Consequently,
f(z™™) = 2f(z), ie., f(z") =rf(z) for all z € R, and all rational num-
bers 7. In particular f(e") = rf(e) = f(e)ln(e") for all rational numbers r.

Now let z be an arbitrary positive real number, and let (4 ) be a sequence
of rational numbers converging to Inz. Then (e™) converges to z, so, by
virtue of the continuity of f, we have

f(z)= lim f(e™) = lim f(e)ln(e™) = f(e)Inz.

REMARK 1. According to a result of J. Milkman (8, Theorem II], the above
theorem remains true if the word ’continuous’ is replaced by 'monotone’ and
the range of f is R.

With some effort, in [5, Theorem 2 and Theorem 8}, S.-M. Jung proved
the superstability of the functional equation (1), in the conventional setting
as well as in the sense of R. Ger. It seems that Jung’s proofs are more
complicated than necessary. This assertion is justified by the very short
proofs presented in the next two sections. Their simple idea is similar to
that one used by S. Czerwik in the proofs of some results stated in his
paper [2]. This simple idea can be also applied to the superstability of other
functional equations, such as

(2) fla¥) = ya¥ "' f(2)
or the homogeneous functional equation
(3) faz) = |af f().

It should be mentioned that the superstability of the equation (3) has
already been investigated, but in different settings, by other authors: J.
Chudziak [1], S. Czerwik [2], S.-M. Jung [6, 7], J. Tabor and J. Tabor {9]
(see also the monograph [4, pp. 70-77]). To our knowledge, the superstability
of the equation (2) is proved here for the first time.

2. Superstability in the conventional sense of the functional equa-
tions (1), (2) and (3)
In [5, Theorem 2], S.-M. Jung gave a long and complicated proof for the
superstability of the equation (1), in the conventional setting:

THEOREM 2. Let 6 > 0. If the function f : Ry — C satisfies
(4) [f(z¥) —yf(@) <6

for all z € Ry and all y € R, then (1) holds true for all z € Ry and all
y € R.

In what follows, we present a different
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Short proof of Theorem 2. Take z = 1in (4) and send y to infinity in
order to see that f(1) = 0. Therefore (1) holds true fory =0and allz € R,..

Replacing y by ty in (4) and then dividing both sides of the obtained
inequality by t|y|, we find that

zt
&) il < L
ty tlyl
This inequality implies that

for all z,t € Ry and all y € R\ {0}.

- f(=%)
lim e = f(z) forallz€ Ry andallye R\ {0}.

t—oo

Taking this into account, for each z € R and each y € R\ {0} we have

t f(zt°
o= i 10D e 1)

=yf(z). =

The above argument can be used to establish the superstability of other
functional equations. Indeed, let us consider the functional equation (2),
inspired by the power derivation formula (u¥)’ = yu¥~!v’. This functional
equation is closely related to the equation (1).

THEOREM 3. A function f : Ry — C satisfies (2) for all z € Ry and all
y € R if and only if there exists a function g : R, — C, satisfying

(5) g9(z¥) =yg(z) and  f(z) = zg(x)
forallze Ry and ally € R.

Proof. Let f : R, — C be a function satisfying (2) for all z € R4 and
y € R; g : Ry — C be the function defined by g(z) := L(Ifl Dividing both
sides of (2) by z¥ we find that g(z¥) = yg(z) for all z € R, and all y € R.

Conversely, let g : R, — C be a function satisfying (5) for all z € R,
and all y € R. Then we have f(z¥) = zVg(z¥) = y2¥~'zg(z) = ya¥~1 f()
forallze Ry andallyeR. »

In the next theorem, the superstability of the functional equation (2) is
proved.

THEOREM 4. Let 6 > 0. If the function f : R, — C satisfies
(6) |f(z¥) —yz¥ " f(z)| < 6

for all z € Ry and all y € R, then (2) holds true for all z € Ry and all
y € R.

Proof. Taking z = 1 in (6) and then sending y to infinity we see that
f(1) = 0. Hence (2) holds truefory =0 and allz € Ry ,as wellasforz =1
and all y € R.
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Replacing y by ty in (6) and then dividing both sides of the obtained

inequality by |ty|z*¥~!, we get
f(=") g
ty.’l:ty T o1 f( ) W forall z € R+ and all y,t € R\ {O}
This inequality implies that
. f(z%) z>1, y>0
(7) tli»oo tycty—1 fla) for all z<1ly<0
and
o f&e) z>1, y<0
(8) t_l}moo P = f(z) for all r<ly>0.

Now let z > 1 and y € R \ {0} be arbitrarily chosen. If y > 0, then z¥ > 1,
whilst if y < 0, then z¥ < 1. So, by virtue of (7), we have

f(z¥) = lim f((z¥)%) = lim yz¥~ 1 f( ty )

y—1
t—oo ty(z¥)ty—1 T 5o ty? tylptvi—1 = yz¥™" f(z).

Consequently, (2) holds true for all z > 1 and all y € R\ {0}. Analogously,

but using (8) instead of (7), it can be proved that (2) holds also for all z < 1
and all y € R\ {0}, completing the proof. =

This approach can be also applied to the superstability of the homoge-
neous functional equation (3).

THEOREM 5. Let p > 0 and p; > 0 with p # p1, let X be a linear space over
the field K of real or complex numbers, let Y be a normed space over K,
and let k : X — [0,00( be given. If a function f : X — Y satisfies

9) £ (az) — lefP f(z)]| < |afP*k(z)

foralla € K and all z € X, then (3) holds true foralla € K and allz € X
(by 0° we mean 1).

Proof. Taking z = 0 in (9) and then sending o to zero for p; > 0, or to
infinity for p; = 0, we get f(0) = 0. Hence (3) holds true for & = 0 and all
zeX.

Replacing a by ta in (9) and then dividing both sides of the obtained
inequality by t?|a|P, we find that

T2 - o) < #vlapr=rkta

for all z € X, all t € Ry, and all @ € K\ {0}. From this inequality we
deduce that if p > p;, then

lim f(taz) = f(z) forallze X andall a € K\ {0},

t—oo tplalp
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whilst if p < p1, then

lim £22)
t\o tPlafP

= f(z) for all x € X and all « € K\ {0}.

Taking these into account, for each € X and each a € K\ {0} we have

flaw) = im L6262 _opp yim LD~ jop (),
 f(tafaz) fta’a)
f(ax) = }{% tplalp I IP t\,O tP| 2|p

lfp > P1,

=lafPf(z), ifp<pi
REMARK 2. The above theorem remains true for p = p, if, in addition, &
satisfies the subhomogeneity condition

k(az) < |af?k(z) foralla € K and all z € X,

with p2 > 0, p2 # p (see [9, Corollary 2]). Moreover, the condition p # po
is indispensable, as it is shown by the followmg example: let f: R — R be
the function defined by f(z) := |z|Pe~ =* Then for all o,z € R it holds that

|f(az) - P f(z)] = |aPlal? |e=>"=" — e=="| < |a?|2P,
but f is not homogeneous.

REMARK 3. Let p,e € R, be fixed. Then there exist functions f : R - R
satisfying

(10) |f(az) — |a|Pf(z)| < €lafP|z|P  forall ¢,z € R
and

(11) sup{|(z) - h(z)| | = € R} = o0

for every function h : R — R such that

(12) h(az) = |a|Ph(z)  for all @,z € R.

Indeed, let f : R — R be the function defined by f(z) := £|z|P arctanz.
Then for all a,z € R it holds that
| arctan(az) — arctan x|

|f(az) = |afP f(2)| = elaf?|z|P -

On the other hand, let & : R — R be an arbitrary function satisfying (12).
Then h(e) = c|a|? for all @ € R, where ¢ = h(1). If ¢ # £, then

< elafPlzf?.

lim |f(z) — h(z)| = hm |z}P | = d arcta.n:c—c = 00,

whilst if ¢ # —£, then lim,, _ |f(z )—h(z)l = 00. Consequently, (11) holds
true.
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REMARK 4. However, if p,e € Ry and f : R — R satisfies (10), then there
exists a function h : R — R, satisfying (12) and

(13) |f(z) — h(z)] < elz|P  forallz € R.

Indeed, the function A : R — R, defined by h(z) := f(1)|z|?, satis-
fies (12). On the other hand, letting = = 1 in (10), we see that h satisfies
also (13).

3. Superstability in the sense of R. Ger of the functional equations

(1), (2) and (3)

In [5, Theorem 8], S.-M. Jung established (also with a long and compli-
cated proof) the superstability of the equation (1) in the sense of R. Ger.
More precisely, he proved that if § > 0 and the function f : Ry — Ry
satisfies

fl=¥) _
yf(z)

for all z,y € R4, then (1) holds true for all z > 1 and all y € R,.. First of
all, it should be noted that in this theorem it must be assumed that (14)
holds only for all z € R, \ {1} and all € R, because there is no function
satisfying (14) for all z,y € R,. Indeed, it suffices to take z = 1 in (14)

and then to let y \, 0 in order to obtain a contradiction. In what follows we
prove a stronger version of Jung’s theorem.

<2

(19 <5

THEOREM 6. Let § > 0 and let f : Ry — C be a function satisfying the
following conditions:

(i) f(z) #0 for allz € Ry \ {1};
(ii) the inequality (14) holds true for all z € R\ {1} and ally € R\ {0}.

Then (1) holds true for all z € Ry \ {1} and ally € R\ {0}.
Proof. Replacing y by ty in (14), we obtain

f@) 4|« foralceR,\ {1} andally,t e R\ {0}
tyf(z) |7 =% * ’ '
This inequality ensures that
. f(z¥) _ z>1,y>0
(15) tl—l.rg ty =) for r<1 y<0

and

ty 1, y<0
) Jm Lo e s o {321050

o0
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Now, let z > 1 and y € R\ {0} be arbitrarily chosen. If y > 0, then
z¥ > 1, whilst if y < 0, then z¥ < 1. So, by virtue of (15), we have

t ty>
f(z¥) = tl-l-.r{.lo f((“;;) Y) _ y}i‘&, f(:/;’ ) =

yf(z).

Consequently, (1) holds true for all z > 1 and all y € R\ {0}. Analogously,
but using (16) instead of (15), it can be proved that (1) holds also for all
z€]0,1[and ally € R\ {0}. m

The superstability of the equation (2) in the sense of R. Ger reduces to
that of equation (1).

THEOREM 7. Let § > 0 and let f : R, — C be a function satisfying the
following conditions:

(i) f(z) #0 for allz € Ry \ {1};
(ii) for allz € Ry \ {1} and all y € R\ {0} it holds that
IACIO NN P
yzv=1f(z) zv’
Then (2) holds true for allx € Ry \ {1} and all y € R\ {0}.
Proof. The function g : R, — C, defined by g(z) := ﬂzﬂ, satisfies g(z) # 0
for all z € Ry \ {1} and
y
9#=¥) 18
y9(z)
By virtue of Theorem 6, we conclude that
g(z¥) =yg(x) forallze R\ {1} andally e R\ {0}.
This implies that (2) holds true forallz € Ry \ {1} and all ye R\ {0}. m
We finish this section with a result on the superstability of the equation
(3). We point out that it is stronger than S.-M. Jung’s theorem [7, Theorem

6], as well as that our proof is shorter and less complicated than that given
in [7].

THEOREM 8. Let p € Ry and py € R\ {0}, let k : C\ {0} — [0,00][ be
a given function, and let f : C — C be a function satisfying the following
conditions:

(i) f(z) #0 for all z € C\ {0},
(ii) for all o,z € C\ {0} it holds that

f(az)
i P (@)
Then (3) holds true for all o,z € C )\ {0}.

for all z € R4 \ {1} and all y € R\ {0}.

ll < lafPrk(z).
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Proof. Replacing a by ta in (17), we get

f(taz) 11 (P
W - ll < Itl |a|P k(.’IJ) for all a,z,te C \ {0}

This inequality ensures that if p; < 0, then

f(tazx)

lti—oo [tP|afP

f(z)  forall a,z € C\ {0},

whilst if p; > 0, then

tl—%{%’lo% = f(z) forall ¢,z € C)\{0}.

Taking these into account, as in the proof of Theorem 5 it is easily seen that
(3) holds true for all o,z € C\ {0}. =

[
(2]
3]
(4]
(5]
(6]
7]
(8]
(9l
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