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Zdenék Smarda

ON AN INITIAL VALUE PROBLEM FOR SINGULAR
INTEGRO-DIFFERENTIAL EQUATIONS

Abstract. The purpose of this paper is to study the existence and asymptotic be-
haviour of solutions of a nonlinear singular integro-differential equation.

1. Introduction
In the past two decades, several papers have been devoted to the study of
singular initial value problems for differential and integro-differential equa-
tions under various conditions on the nonlinearity and the kernel (see e.g.
(1], [3], [4], [6], [7])- Integro-differential equations have different properties
from ordinary differential equations even in the simplest cases (see [2]).
Therefore known qualitative methods of investigation of ordinary differential
equations, e.g. Wazewki’s topological method, cannot be applied to integro-
differential equations. The fundamental tools used in the existence proofs of
all above mentioned works are essentially Schauder-Tychonoff’s fixed point
theorem and Banach contraction principle.
In this paper we deal with the following problem
t
(1) 9&)y'(t) = ey (1+ £ (9(8), § K(t,5.9(s))ds)), y(0+) =0,
ot
where f € C°(J x R x R), K € C°(J x J x R), J =(0,%g], to > 0. Let us
introduce the following notation:

F(t) = o(g(t)) for t — tF if lim {8 =,
t—t 9(t)

f(t) ~ g(t) for t — t} if there is valid lim+ ﬁ% =1.

t—t,
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Consider the following assumptions:

I) g(t) € C}(J), g(t) > 0, g(0%) = 0, ¢'(t) ~ ¥1(t)g™ (¢) for t — t,
A1 >0, ¥1(t)g7(t) = o(1) for t — g, for each T > 0.

II) a(t) € C°(J), a(t) > 0, a(t) ~ ¥2(t)g*2(t) for t — tf, 0 < A2 < Ay,
Yo®)g7(®) = o(1) for t— .

) |5 (t,u,v)] < a(t)(jul+ o)), |§os K (t5,9(s))ds| < $(t, C)lyl, where
#(t,C) = Cexp{ S:O g%%ds} is the general solution of the equation

9(t)y'(t) = a(t)y(?)-

2. The main result

The technique used for the existence and asymptotic behaviour of solu-
tions of (1) is based on the well-known Schauder’s fixed point theorem and
Wazewski’s topological method for ordinary differential equations (see [5]).

SCHAUDER’S THEOREM. Let E be Banach space and S its nonempty convex
and closed subset. If P is a continuous mapping of S into itself and PS is
relatively compact then tha mapping P has at least one fized point.

THEOREM 1. Let assumptions I)-1IT) hold. Then for each C # 0 there exists
one solution y(t,C) of the equation (1) such that

(2) ly®(t,C) — oD, C)| < 8(8(t, ), i=0,1,
forte J, § > 1 is a constant.

Proof. 1) Denote by E the Banach space of continuous functions h(t) on
the interval [0, ¢p) with the norm

h(t)|| = h(t)].
IR = max 1A(2)]

Let S be the subset of E consisting of all functions h(t) satisfying the in-
equality
(3) Ih(t) - ¢(t1 C)I < 6¢2(t1 C)
The set S is obviously nonempty, convex and closed.
2) Now we shall construct the mapping P. Let ho(t) € S be an arbitrary

function. Substituting hg(s) instead of y(s) into (1) we obtain the differential

equation
t

@ gew® =ey®(1+ £ (ty), | K(t,s,ho(s))ds)).

o+
Set

(51) ) = 9(6,0) + To exp { | L=as ).
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Then

Y, (i (L= a)a(s)
(5) v(t) =90+ p{t{_g_(s_)_ds}’

where 0 < a < 1 is a constant and functions Yp(t), Y;(t) satisfy the differ-
ential equation

(6) 9(t)¥5(t) = (@ — L)a(t)Yo(t) + Ya ().
From (3) it follows that
(7) ho(t) = ¢(t,C) + Ho(t), |Ho(t)| < 6¢%(t,C).

Substituting (51), (52), (7) into (4) we get

©® %0 = o) + (atep { | 2as} + o000

X f(t b(t,C)+Yo(t) exp{g M } | K(t,s, ¢(s,C)+Ho(s))ds>.

o+

In view of (8) the equation (6) can be written in the form

©) g(t)YO'()—aa(t)m(t)+(a(t)exp{§ 228 ds} + ara(o))

g(
x f(t,¢(t,0)+exp{§(1 ‘()‘s))“(s } §+ (t,s,¢(s,C)+Ho(s))ds).

In view (51), (52) it is obvious that any solution of (9) determines a solution
of (4).
In the sequel we shall use Wazewki’s topological method. We consider

the behaviour of integral curves of (9) with respect to the boundary of the
set

Qo = {(t,)’o) :0 <t <ty, ’u,o(t,lfo) < 0},

where

uo(t, Yo) = ¥ («sexp{s L dle) )’

Calculating the derivative ug(t, Yp) along the trajectories of (9) on the set

g = {(t,Yo) 10 <t <t uO(ta},O) = 0}’
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we obtain
. 2a(t
00) ot %) = 20 |ax3(0) + (¥a(o exp{i 284y +¥300)
<1 (1 60,0 +expf | L= agpyi), § K(,5,005,0)+ Hofoas)
to o+
1+ a)a
-8 (1+a) exp{} —(—g—(c:—;(——)ds}] .

It is obvious that tlix(r)1+ #(t,C) = 0 and by de L’Hospital’s rule ¢" (¢, C)g7(t)

=0(1) for t — 0 and ¢ € R, imply that the powers of ¢(¢,C) have effect,
in decisive way, to the convergence to zero of the terms in (10).

Using the assumptions of Theorem 1. and the definition of Yy(t), ¢(¢,C),
we obtain

(11)  sgnuo(t,Yo) =sgn < (1 +a) exP{S 20 ‘*g‘(a;a(s) }>

for sufficiently small ¢g depending on C, 6.

The relation (11) implies that every point of the set €y is a strict ingress
point with respect to the equation (9). Change the orientation of the axis
t into opposite. Now each point of the set 0€g is a strict egress point with
respect to the new system of coordinates. By Wazewki’s topological method,
we state that there exists at least one integral curve of (9) lying in Q. It is
obvious that this assertion remains true for an arbitrary function ho(t) € S.

Now we shall prove the uniqueness of a solution of (9). Let Yo(t) be also
the solution of (9). Putting Z, = Yy —Yp and substituting into (9), we obtain

(12)  9(t)Zp = ca(t)Zo + (a(t) exp{ | C’;‘t:)

ds} + a(t)Zo(t)>

[f(t 6(t,C) + exp S "‘)“ A -ajals) ;. W Zo(t) + Yo(2)),

to

g K(t,s,¢(s,C) + Ho(s))ds>

o+
—~ f(t, #(t, C)+exp{ | L”;“(g‘;ﬁdsm(t), | K(t,s,¢(s,C)+Ho(s))ds>].
to o+
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Let
Ql = {(t, Zo) :0<it< to, ul(t, Zo) < 0},

where
t

2
uy(t, Zo) = 28 - (6 exp{x (1+ agzs)“)a(s)ds}) , O<p<a.

Using the same method as above, we have

(13) Sgn'l'l,l(t, Zo) = -1

for sufficiently small ¢o. It is obvious that Qg C Q. Let Zo(t) be any nonzero
solution of (12) such that (t1, Zo(t1)) € Q; for 0 < ¢; < to. Let § € (0,8) be

such a constant that (t;, Zo(t1)) € 89, (6). If the curve Zo(t) lies in Q,(8)
for 0 < t < t;, it would have to be valid (t;, Zo(t)) is a strict egress point of

04 (8). This contradicts the relation (13). Hence in the set {lg C Q2 there
is only the trivial solution Zp(t) = 0 of (12), so Yy(t) is the unique solution
of (9).

From (5;) we obtain

(14) I:UO(t: C) - ¢(t7 C)I < 5¢2(t7 C))

where yo(t, C) is the solution of (4) for ¢t € (0, to]. Similarly, from (52), (8)
we have

to

(15) it C) - #(4,C)| = ;%exp{ S “—“fs))—“(—slds}n(t)|

26a(t) {1 als) } 25, O
< —7 =
< 2ol oy { 1) = @eor
It is obvious (after a suitable extension of yo(t) for ¢ = 0 ) that the corre-
spondence P(hg) = yo maps S into itself and PS C S.

3) We shall prove that PS is relatively compact and P is a continuous
mapping. It is easy to see, by (14), (15), that PS is the set of uniformly
bounded and equicontinuous functions for ¢ € [0,tg]. By Ascoli’s theorem,
PS is relatively compact.

Let (h,(t)) be an arbitrary sequence functions in S such that

Ie(8) = ho(®)l] = €, lim € =0, ho(t) € S.

to

The solution Yj(t) of the equation

t

16)  9()¥() = aa(¥e(t) + (at)exp | 225

ds} + a(t)Yo(t)>
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X f(t, ¢(t,C’)+exp{ | (l—_%ds}l’o(t), | K¢, s,¢(s,C)+Hk(s))ds),
to o+

corresponds to the function hy(t) and Yi(t) € Q. Similarly, the solu-
tion Yo(t) of (9) corresponds to the function ho(t). We shall show that
|Y%(t) — Yo(¢)| — O uniformly on [0, ¢p]. Consider the region

Qo = {(t,Y0) : 0 <t < to, uo(t,Yo) <0},
where

O<v<ea, k>1.

Evidently, Q¢ C Qo for any k and sufficiently small ¢y. Investigate the
behaviour of integral curves of (16) with respect to the boundary €.
Using the same method as above we obtain for trajectory derivatives

sgn uOk(ty },0) =-1

for sufficiently small {9 and any k. By Wazewki’s topological method there
exists at least one solution Yi(¢) lying in Qor. Hence, it follows that

§ 14+ a-v)a(s)

Filt) - Fa(0) < evexp { § LHE22

ds} < Meg,

M > 0 is a costant depending on tp. From (5;) we obtain
t

lyk(t) — yo(t)| = exp { S ug—?ﬁf(ﬂds}|ﬁ(t) — Yo(t)| < me,
to

m > 0 is a constant depending on tp, M,t € [0,to]. This estimate implies

that P is continuous.

We have thus proved that the mapping P satisfies the assumptions of
Schauder’s fixed point theorem and hence there exists a function h(t) € S
with h(t) = P(h(t)). The proof of existence of a solution of (1) is complete.

Now we shall prove the uniqueness of a solution of (1). Substituting (51),
(52) into (1), we get

(17)  Yi(t) = a(t)Yo(t) + (a(t) exp{ g 2a(s) } + a(t)Yo(t))

9(s)
xf(t é(t, C) + Yo(t) ex {§ 1"0‘)“ s},
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0§+ K(t, 5,8(s,C) + Yo(s) exp { s a — ;‘J;‘“)du})ds).

The equation (6) may be written in the form

(18) g()Yi(t) = aa(t)Yo(t) + (a(t) exp { { ‘;"é(:)) ds} + a(t)Yo(t))

X f(t, #(t,C) + Yo(t) exp { 50 %da’},

t

S (t s, ¢(s,C) + Yo(s) exp{s Md’u})ds).

or 9(u)

Now we know that there exists the solution yo(t, C) of (1) satisfying (2)
such that

19 w(t0)=ot.0)+esp{ | E=2askui

where Up(t) is the solution of (18).
Denoting Wy(t) = Yo(t) — Up(t) and substituting it into (18), we obtain

(20)  g()YW}(t) = aa(t)Wo(t) + a(t) (exp{ S aga(g;) ds} + Wo(t))

1 (160.0)+ Wt + Do) exp { | L=},
t { (1= a)a(u)

K(t,5,¢(s,C) + +(Wo(s) + Uo(s)) ex du \)ds
0§+ s, (s ol(s ols ep{tso 9w) } )

- f(t 6(t,C) + Uo(t)exP{S ng))a s}

g K(t, s, 6(s,C) + Uo(s) exp{ 1§ “(“ })ds)].

o+

-

0

Let
Qoo = {(t,Wo) : 0<t<tg, ugo(t, Wo) < 0},
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where

§U+a—MMﬂ

no 90)

If the equation (20) had only the trivial solution lying in Qg then Y,(t) =
Up(t) would be only solution of (20) and from here, by (19), yo(t, C) would
be only solution of (1) satisfying (2) for ¢ € J.

We shall suppose that there a exists nontrivial solution Wy(t) of (20)
lying in Qgo. Substitute Wy(s) instead of Wy(t) into (20), we obtain the
differential equation:

2
ugo(t, Wo) = W — (6 exp{ ds}) ,0<pu<a.

(21)  g(t)Wi(t) = aa(t)Wo(t) + a(t) (exp { { "‘g‘z(:)) ds} + Wo(t))

< [#(1.60.0)+ exp | S E=2a b wos) + voto),

t S €ex u—(l—?—am U _S S S
0§+K(t, ,(s,0) + + p{}o ) d }(WO( ) + Uo( ))d)

~f (t, #(t,C) + exp { tgo %ds} X

t u
1—
x Uo(t), | K(t,s,6(s,C) + exp{ | (= aafu) du}Uo(s))ds>].
o o 9w

Calculating the derivative 1go(t, Wy) along the trajectories of (21) on the
set 9o, we get sgnugg(t, Wp) = —1 for sufficiently small ¢o.

By the same method as in the proof of the existence of a solution of (1),
we obtain that in Qgo there is only the trivial solution of (21). The proof is
complete.
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