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Zdenek S mar da 

ON AN INITIAL VALUE PROBLEM FOR SINGULAR 
INTEGRO-DIFFERENTIAL EQUATIONS 

Abstract. The purpose of this paper is to study the existence and asymptotic be-
haviour of solutions of a nonlinear singular integro-differential equation. 

1. Introduction 
In the past two decades, several papers have been devoted to the study of 

singular initial value problems for differential and integro-differential equa-
tions under various conditions on the nonlinearity and the kernel (see e.g. 
[1], [3], [4], [6], [7]). Integro-differential equations have different properties 
from ordinary differential equations even in the simplest cases (see [2]). 
Therefore known qualitative methods of investigation of ordinary differential 
equations, e.g. Wazewki's topological method, cannot be applied to integro-
differential equations. The fundamental tools used in the existence proofs of 
all above mentioned works are essentially Schauder-Tychonoff's fixed point 
theorem and Banach contraction principle. 

In this paper we deal with the following problem 
t 

(1) g(t)y'(t) = a(t)y(t){l + f{t,y(t),\K(t,s,y(s))ds)), y( 0 + ) = 0, 
o+ 

where / G C°(J x Rx R), K € C°(J x J x R), J = (0,io], t0 > 0. Let us 
introduce the following notation: 

f ( t ) = o(g(t)) for t - 4 if lim+ $ } = (>, 
t—>t0 

f ( t ) ~ g(t) for t 4 if there is valid l i m $$ = 1-
t—•t0 
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Consider the following assumptions: 

1) g(t) 6 C\J), g(t) > 0, 5(0+) = 0, g'(t) ~ Vi(i)sAl(t) for t - t+ 
Ai > 0, ipi{t)gT(t) = o(l) for t -» i j , for each r > 0. 

II) a(t) e C°(J)> o(t) > 0, a(t) ~ Mt)9X2(t) ^ * -» 4, 0 < A2 < Ai, 
^2(i)ffT(i) = o(l) /o r t - i + . 

III) | /( t , t t ,«) | < o(i)(|«| + M), | K(t, s,y(s))ds\ < 4>(t,C)\y\, where 
<l>(t, C) = Cexp{Jjo ^ j d s } is the general solution of the equation 

g(t)y'(t) = a(t)y(t). 

2. The main result 
The technique used for the existence and asymptotic behaviour of solu-

tions of (1) is based on the well-known Schauder's fixed point theorem and 
Wazewski's topological method for ordinary differential equations (see [5]). 

SCHAUDER'S THEOREM. Let E be Banach space and S its nonempty convex 
and closed subset. If P is a continuous mapping of S into itself and PS is 
relatively compact then tha mapping P has at least one fixed point. 

THEOREM 1 . Let assumptions I)—III) hold. Then for each C ^ 0 there exists 
one solution y(t, C) of the equation (1) such that 

(2) - < < = 0,1, 

for t € J, 6 > 1 is a constant. 

P r o o f . 1) Denote by E the Banach space of continuous functions h(t) on 
the interval [0, io] with the norm 

\\h(t)\\=max\h{t)\. 
te[o,t0] 

Let S be the subset of E consisting of sill functions h(t) satisfying the in-
equality 

(3) \h(t)-<fi(t,C)\<6<p2(t,C). 
The set 5 is obviously nonempty, convex and closed. 

2) Now we shall construct the mapping P. Let ho(t) e S be an arbitrary 
function. Substituting ho(s) instead of y(s) into (1) we obtain the differential 
equation 

(4) g(t)y'{t) = a(t)y(t){l + f{t,y(t), j K(t,syh0(s))ds^. 
o+ 

Set 

(5i) y(t) = t(t, C) + Y0(t) exp | J • 
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Then 

«w v ' M ^ + I M i ^ ^ 
where 0 < a < 1 is a constant and functions Yo(t), Yi(t) satisfy the differ-
ential equation 

(6) 9{t)r0(t) = (a - l)a(i)F0(i) + *(*)• 

Prom (3) it follows that 

( 7 ) h0(t) = <Kt,C) + H0(t), \HQ(t)\<6<f>2(t,C). 

Substituting (5i), (52), (7) into (4) we get 

(8) n ( t ) = a(t)Y0(t) + i a ( t ) exp i J + a(i)F0( i)) 
to 

x / ^ ( i , C ) + y 0 ( i ) e x p | S ( 1 ' g ^ ) 1 ^ ^ } ' i K ( t , * , t ( * , C ) + # o ( s ) ) d s ) . 

In view of (8) the equation (6) can be written in the form 

(9) g(t)Y^(t) = aa(t)Y0(t) + ( a ( t ) exp{ J ^ d s } + a(i)*o(i)) 

x / ^ ( i , C ) + e x p | j ^ ' g ^ s ) ^ d s } Y o ^ 5 K( t , s ,4>(s ,C)+H 0 (s ) )d s y 

In view (5x), (52) it is obvious that any solution of (9) determines a solution 
of (4). 

In the sequel we shall use Wazewki's topological method. We consider 
the behaviour of integral curves of (9) with respect to the boundary of the 
set 

fto = {(*, *o) : 0 < t < t0, u0{t, Y0) < 0}, 
where 

u0(*,y0) = I ? - (*exp{ j i i ± ^ d S } ) 2 . 
to 

Calculating the derivative uo(t, Fo) along the trajectories of (9) on the set 

dCl0 = { ( i , F 0 ) : 0 < t < tQ, uQ(t, Y0) = 0 } , 
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we obtain 

| aa(s) 

to 

(10) «0( t ,y 0 ) = ^ aY02(t) + (V 0(t) exp{ \ ^ d s } + Y 0 2( i)) 

x f ( t , <^(i,C) + exp{ j j K(t,s,<l>(s,C) + Ho(s))ds^ 

r i , . ^ r r 2(1 + a)a(s) , - 6 (1 + a ) exp{ \ - i v 

to '<«> 

It is obvious that lim+ <j)(t, C) = 0 and by de L'Hospital's rule 4>T(t, C)g a(t) 

= o(l) for t —> 0 + and a € R, imply that the powers of (f)(t, C) have effect, 
in decisive way, to the convergence to zero of the terms in (10). 

Using the assumptions of Theorem 1. and the definition of Y0(i), 4>(t, C), 
we obtain 

(11) sgnu0(i ,Yo) = s g n ( - ( 5 2 ( l + a ) e x p { j 2 ( 1 + = - 1 , 
to 

for sufficiently small to depending on C, 6. 
The relation (11) implies that every point of the set dflo is a strict ingress 

point with respect to the equation (9). Change the orientation of the axis 
t into opposite. Now each point of the set dflo is a strict egress point with 
respect to the new system of coordinates. By Wazewki's topological method, 
we state that there exists at least one integral curve of (9) lying in iio- It is 
obvious that this assertion remains true for an arbitrary function ho (t) 6 S. 

Now we shall prove the uniqueness of a solution of (9). Let Y0(i) be also 
the solution of (9). Putting Z0 = Y0 — Yo and substituting into (9), we obtain 

(12) g{t)Z'o = aa(t)Z0 + (a(t) exp{ J ^ ^ d s } + a{t)Z0{tfj 

f i t , (f)(t, C) + exp{ | ( 1 ~ " ) Q ( s ) d S } ( Z o ( f ) + ^ ) ) , 
L v i 9{s) 

t 

\ K(t,s,<t>{s,C) + H0{s))ds 
o+ 

- f ( t , <f>(t,C)+exp{J lds}Y0(t), J K(t,s,cl>(s,C) + H
to 
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Let 

i i i = {(*, Zo): 0 < t < t0, Ul{t, Zo) < 0 } , 

where 

Ul(t,Z0) = Zl - ( ¿ e x p i j ( 1 + a " M ) a ( s ) ^ } V , 0 < n < a. 

to 

Using the same method as above, we have 

(13) s g n « i ( i J Z 0 ) = - l 

for sufficiently small to. It is obvious that fig C iii- Let Zo(t) be any nonzero 
solution of (12) such that (ii, Zo(ti)) € th for 0 < t\ < to^Let 6 € (0 ,6) be 
such a constant that ( i i ,Zo(i i ) ) € dfii(<5). If the curve Zo(t) lies in £l\(6) 

for 0 < t < ¿i, it would have to be valid (t\,Zo(t)) is a strict egress point of 
diii(<5). This contradicts the relation (13). Hence in the set fio C fii there 
is only the trivial solution Zo(t) = 0 of (12), so Yo(t) is the unique solution 
of (9). 

Prom (5i) we obtain 

( 1 4 ) \yo(t, C) — <f>(t, C)\ < 6<f>2(t, C), 

where yo(t,C) is the solution of (4) for t G (0,io]- Similarly, from (52), (8) 
we have 

( 1 5 ) \y'o(t, C) — <j>(t, C)\ = 
9(t) n t J 0 sis) 

< 

{i 
k to 

$ } . « . } = W W 

It is obvious (after a suitable extension of yo{t) for t = 0 ) that the corre-
spondence P(h0) = yo maps S into itself and PS C S. 

3) We shall prove that PS is relatively compact and P is a continuous 
mapping. It is easy to see, by (14), (15), that PS is the set of uniformly 
bounded and equicontinuous functions for t € [0,to]. By Ascoli's theorem, 
PS is relatively compact. 

Let (h r { t ) ) be an arbitrary sequence functions in S such that 

HMO - M*)ll = er, lim e r = 0, ho(t) € S. r—»00 

The solution Yk (i) of the equation 

(16) g(t)Yi{t) = aa(t)Y0(t) + ( a ( i ) e x p { J ^ d s } + a(t)Y0(tfj 
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x / ( t , 0 ( i ,C)+exp{ 5 ( 1 ! K(t,s,4>(s,c)+Hk(s))dsy 

corresponds to the function hk{t) and Yk(t) € iio- Similarly, the solu-
tion Yo(t) of (9) corresponds to the function ho(t). We shall show that 
|Yk(t) — Yo(i)| —0 uniformly on [0,to]- Consider the region 

iiok = {(i,*o) : 0 < t < t0, uofc(t,*o) < 0}, 
where 

u0k(t,Y0) = (Y(t)-%(t))2 - (efcexp { \ i l + ^ M f l d s } ) 2 , 

0 < i/ < a, fc > 1. 

Evidently, fio c fiofc for any k and sufficiently small to- Investigate the 
behaviour of integral curves of (16) with respect to the boundary dflo/c-
Using the same method as above we obtain for trajectory derivatives 

sgnuok(t,Yo) = - 1 

for sufficiently small to and any k. By Wazewki's topological method there 
exists at least one solution Yk(t) lying in Qo/c- Hence, it follows that 

| n ( t ) - Yo(t)I < Cfe exp | J < Met, 
to 

M > 0 is a costant depending on io- From (5i) we obtain 

IVk(t) - y0(t)\ = exp | j < mek, 

m > 0 is a constant depending on to, M, t e [0, io]- This estimate implies 
that P is continuous. 

We have thus proved that the mapping P satisfies the assumptions of 
Schauder's fixed point theorem and hence there exists a function h(t) G S 
with h(t) = P(h(t)). The proof of existence of a solution of (1) is complete. 

Now we shall prove the uniqueness of a solution of (1). Substituting (5i), 
(52) into (1), we get 

(17) Yx(t) = a(t)Y0(t) + (a(t) exp j J ^ ^ d s j + a(t)Y0(t) 
to 

x f ( t , <j>{t, C) + Yo(t) exp | j 



Integro-differential equations 809 

$ K^t,s,<f>(s,C) + Y0(s)exp j J Ì L - S j ^ ^ J ) ^ . 

0+ N K to 

The equation (6) may be written in the form 

( 1 8 ) g{t)Yi(t) = aa(t)Y0(t) + (a(t) e x p j J + a(t)Y0{t)j 

x f(t, 0(t ,C) + y o ( t )exp| j 
to 

5 K (t, s, cj>(S, C ) + Y0(a) e x p { J . 
0+ ^ t 0 ' 

Now we know that there exists the solution yo{t, C) of (1) satisfying (2) 
such that 

( 1 9 ) y0(t,C) = <P(t,C) + exp{ j ( 1 ~ ds}u0(t), 

where Uo(t) is the solution of (18). 
Denoting Wo(i) = Yo(t) — Uo(t) and substituting it into (18), we obtain 

(20) g{t)W(>{t) = aa(t)W0(t) + a(t) (exp { \ + W 0( t ) ) 

x f ^ t , <j>(t, C) + (Wo(i) + Uo(t)) exp I j ( 1 ~g^s){S)ds}' 
to 

\ K(t, s, <f>(s, C) + +(W 0(s) + U0{s)) exp | j ( 1 

- / ( i , 4>(t,C) + U0(t)exp { j 
to 

S K(t, s, C) + Uo{s) exp j j i L z ^ M d t i . 

iioo = {(t, Wo) : 0 < t < t0, u00{t, WQ) < 0}, 

Let 
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where 

u0o(t,W0) = W0
2 - (6exp{\ {1 + a

g 7 f a { S ) d s } ] \ 0 < /x < a . 
to 

If the equation (20) had only the trivial solution lying in iioo then Yo(i) = 
Uo(t) would be only solution of (20) and from here, by (19), yo(t,C) would 
be only solution of (1) satisfying (2) for t £ J. 

We shall suppose that there a exists nontrivial solution Wo{t) of (20) 
lying in iloo- Substitute Wo(s) instead of Wo(t) into (20), we obtain the 
differential equation: 

t 
(21) g(t)W^t) = aa(t)W0(t) + a(t) ( e x p j j + W0(t) 

x / i t , (f>{t, C) + e x p | j ( 1 ds\(W0(t) + Uo(t)), 
to 

J K(t, s, <j>(s, C) + + exp | j (Wo(s) + UQ(s))d 
0+ t 0 > 

x U0(t), S K(t, s, ¿(a, C) + e x p | \ ( 1 dv)jUo(s))ds 

Calculating the derivative uoo(t, Wo) along the trajectories of (21) on the 
set 90oo, we get sgnuoo(t, Wo) = — 1 for sufficiently small to-

By the same method as in the proof of the existence of a solution of (1), 
we obtain that in floo there is only the trivial solution of (21). The proof is 
complete. 
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