

Zdeněk Šmarda

ON AN INITIAL VALUE PROBLEM FOR SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS

Abstract. The purpose of this paper is to study the existence and asymptotic behaviour of solutions of a nonlinear singular integro-differential equation.

1. Introduction

In the past two decades, several papers have been devoted to the study of singular initial value problems for differential and integro-differential equations under various conditions on the nonlinearity and the kernel (see e.g. [1], [3], [4], [6], [7]). Integro-differential equations have different properties from ordinary differential equations even in the simplest cases (see [2]). Therefore known qualitative methods of investigation of ordinary differential equations, e.g. Wazewki's topological method, cannot be applied to integro-differential equations. The fundamental tools used in the existence proofs of all above mentioned works are essentially Schauder-Tychonoff's fixed point theorem and Banach contraction principle.

In this paper we deal with the following problem

$$(1) \quad g(t)y'(t) = a(t)y(t) \left(1 + f \left(t, y(t), \int_{0^+}^t K(t, s, y(s)) ds \right) \right), \quad y(0^+) = 0,$$

where $f \in C^0(J \times R \times R)$, $K \in C^0(J \times J \times R)$, $J = (0, t_0]$, $t_0 > 0$. Let us introduce the following notation:

$$f(t) = o(g(t)) \text{ for } t \rightarrow t_0^+ \text{ if } \lim_{t \rightarrow t_0^+} \frac{f(t)}{g(t)} = 0,$$

$$f(t) \sim g(t) \text{ for } t \rightarrow t_0^+ \text{ if there is valid } \lim_{t \rightarrow t_0^+} \frac{f(t)}{g(t)} = 1.$$

1991 *Mathematics Subject Classification*: 35J05.

Key words and phrases: integro-differential equation, Schauder's fixed point theorem, Wazewki's topological method.

Consider the following assumptions:

I) $g(t) \in C^1(J)$, $g(t) > 0$, $g(0^+) = 0$, $g'(t) \sim \psi_1(t)g^{\lambda_1}(t)$ for $t \rightarrow t_0^+$, $\lambda_1 > 0$, $\psi_1(t)g^\tau(t) = o(1)$ for $t \rightarrow t_0^+$, for each $\tau > 0$.

II) $a(t) \in C^0(J)$, $a(t) > 0$, $a(t) \sim \psi_2(t)g^{\lambda_2}(t)$ for $t \rightarrow t_0^+$, $0 < \lambda_2 < \lambda_1$, $\psi_2(t)g^\tau(t) = o(1)$ for $t \rightarrow t_0^+$.

III) $|f(t, u, v)| \leq a(t)(|u| + |v|)$, $|\int_{0^+}^t K(t, s, y(s))ds| \leq \phi(t, C)|y|$, where $\phi(t, C) = C \exp\{\int_{t_0}^t \frac{a(s)}{g(s)}ds\}$ is the general solution of the equation

$$g(t)y'(t) = a(t)y(t).$$

2. The main result

The technique used for the existence and asymptotic behaviour of solutions of (1) is based on the well-known Schauder's fixed point theorem and Wazewski's topological method for ordinary differential equations (see [5]).

SCHAUDER'S THEOREM. *Let E be Banach space and S its nonempty convex and closed subset. If P is a continuous mapping of S into itself and PS is relatively compact then the mapping P has at least one fixed point.*

THEOREM 1. *Let assumptions I)–III) hold. Then for each $C \neq 0$ there exists one solution $y(t, C)$ of the equation (1) such that*

$$(2) \quad |y^{(i)}(t, C) - \phi^{(i)}(t, C)| \leq \delta(\phi^2(t, C))^{(i)}, \quad i = 0, 1,$$

for $t \in J$, $\delta > 1$ is a constant.

Proof. 1) Denote by E the Banach space of continuous functions $h(t)$ on the interval $[0, t_0]$ with the norm

$$\|h(t)\| = \max_{t \in [0, t_0]} |h(t)|.$$

Let S be the subset of E consisting of all functions $h(t)$ satisfying the inequality

$$(3) \quad |h(t) - \phi(t, C)| \leq \delta\phi^2(t, C).$$

The set S is obviously nonempty, convex and closed.

2) Now we shall construct the mapping P . Let $h_0(t) \in S$ be an arbitrary function. Substituting $h_0(s)$ instead of $y(s)$ into (1) we obtain the differential equation

$$(4) \quad g(t)y'(t) = a(t)y(t) \left(1 + f\left(t, y(t), \int_{0^+}^t K(t, s, h_0(s))ds\right) \right).$$

Set

$$(5_1) \quad y(t) = \phi(t, C) + Y_0(t) \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\}.$$

Then

$$(5_2) \quad y'(t) = \phi'(t, C) + \frac{Y_1(t)}{g(t)} \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\},$$

where $0 < \alpha < 1$ is a constant and functions $Y_0(t)$, $Y_1(t)$ satisfy the differential equation

$$(6) \quad g(t)Y'_0(t) = (\alpha - 1)a(t)Y_0(t) + Y_1(t).$$

From (3) it follows that

$$(7) \quad h_0(t) = \phi(t, C) + H_0(t), \quad |H_0(t)| \leq \delta \phi^2(t, C).$$

Substituting (5₁), (5₂), (7) into (4) we get

$$(8) \quad Y_1(t) = a(t)Y_0(t) + \left(a(t) \exp \left\{ \int_{t_0}^t \frac{\alpha a(s)}{g(s)} ds \right\} + a(t)Y_0(t) \right) \\ \times f \left(t, \phi(t, C) + Y_0(t) \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\}, \int_{0^+}^t K(t, s, \phi(s, C) + H_0(s)) ds \right).$$

In view of (8) the equation (6) can be written in the form

$$(9) \quad g(t)Y'_0(t) = \alpha a(t)Y_0(t) + \left(a(t) \exp \left\{ \int_{t_0}^t \frac{\alpha a(s)}{g(s)} ds \right\} + a(t)Y_0(t) \right) \\ \times f \left(t, \phi(t, C) + \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\} Y_0(t), \int_{0^+}^t K(t, s, \phi(s, C) + H_0(s)) ds \right).$$

In view (5₁), (5₂) it is obvious that any solution of (9) determines a solution of (4).

In the sequel we shall use Wazewki's topological method. We consider the behaviour of integral curves of (9) with respect to the boundary of the set

$$\Omega_0 = \{(t, Y_0) : 0 < t < t_0, u_0(t, Y_0) < 0\},$$

where

$$u_0(t, Y_0) = Y_0^2 - \left(\delta \exp \left\{ \int_{t_0}^t \frac{(1+\alpha)a(s)}{g(s)} ds \right\} \right)^2.$$

Calculating the derivative $u_0(t, Y_0)$ along the trajectories of (9) on the set

$$\partial\Omega_0 = \{(t, Y_0) : 0 < t < t_0, u_0(t, Y_0) = 0\},$$

we obtain

$$(10) \quad \dot{u}_0(t, Y_0) = \frac{2a(t)}{g(t)} \left[\alpha Y_0^2(t) + \left(Y_0(t) \exp \left\{ \int_{t_0}^t \frac{\alpha a(s)}{g(s)} ds \right\} + Y_0^2(t) \right) \right. \\ \times f \left(t, \phi(t, C) + \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\} Y_0(t), \int_{0^+}^t K(t, s, \phi(s, C) + H_0(s)) ds \right) \\ \left. - \delta^2(1+\alpha) \exp \left\{ \int_{t_0}^t \frac{2(1+\alpha)a(s)}{g(s)} ds \right\} \right].$$

It is obvious that $\lim_{t \rightarrow 0^+} \phi(t, C) = 0$ and by de L'Hospital's rule $\phi^\tau(t, C)g^\sigma(t) = o(1)$ for $t \rightarrow 0^+$ and $\sigma \in R$, imply that the powers of $\phi(t, C)$ have effect, in decisive way, to the convergence to zero of the terms in (10).

Using the assumptions of Theorem 1. and the definition of $Y_0(t)$, $\phi(t, C)$, we obtain

$$(11) \quad \operatorname{sgn} \dot{u}_0(t, Y_0) = \operatorname{sgn} \left(-\delta^2(1+\alpha) \exp \left\{ \int_{t_0}^t \frac{2(1+\alpha)a(s)}{g(s)} ds \right\} \right) = -1,$$

for sufficiently small t_0 depending on C, δ .

The relation (11) implies that every point of the set $\partial\Omega_0$ is a strict ingress point with respect to the equation (9). Change the orientation of the axis t into opposite. Now each point of the set $\partial\Omega_0$ is a strict egress point with respect to the new system of coordinates. By Wazewki's topological method, we state that there exists at least one integral curve of (9) lying in Ω_0 . It is obvious that this assertion remains true for an arbitrary function $h_0(t) \in S$.

Now we shall prove the uniqueness of a solution of (9). Let $\bar{Y}_0(t)$ be also the solution of (9). Putting $Z_0 = Y_0 - \bar{Y}_0$ and substituting into (9), we obtain

$$(12) \quad g(t)Z'_0 = \alpha a(t)Z_0 + \left(a(t) \exp \left\{ \int_{t_0}^t \frac{\alpha a(s)}{g(s)} ds \right\} + a(t)Z_0(t) \right) \\ \times \left[f \left(t, \phi(t, C) + \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\} (Z_0(t) + \bar{Y}_0(t)), \right. \right. \\ \left. \left. \int_{0^+}^t K(t, s, \phi(s, C) + H_0(s)) ds \right) \right. \\ \left. - f \left(t, \phi(t, C) + \exp \left\{ \int_{t_0}^t \frac{1-\alpha)a(s)}{g(s)} ds \right\} \bar{Y}_0(t), \int_{0^+}^t K(t, s, \phi(s, C) + H_0(s)) ds \right) \right].$$

Let

$$\Omega_1 = \{(t, Z_0) : 0 < t < t_0, u_1(t, Z_0) < 0\},$$

where

$$u_1(t, Z_0) = Z_0^2 - \left(\delta \exp \left\{ \int_{t_0}^t \frac{(1 + \alpha - \mu)a(s)}{g(s)} ds \right\} \right)^2, \quad 0 < \mu < \alpha.$$

Using the same method as above, we have

$$(13) \quad \operatorname{sgn} \dot{u}_1(t, Z_0) = -1$$

for sufficiently small t_0 . It is obvious that $\Omega_0 \subset \Omega_1$. Let $\overline{Z}_0(t)$ be any nonzero solution of (12) such that $(t_1, \overline{Z}_0(t_1)) \in \Omega_1$ for $0 < t_1 < t_0$. Let $\overline{\delta} \in (0, \delta)$ be such a constant that $(t_1, \overline{Z}_0(t_1)) \in \partial\Omega_1(\overline{\delta})$. If the curve $\overline{Z}_0(t)$ lies in $\Omega_1(\overline{\delta})$ for $0 < t < t_1$, it would have to be valid $(t_1, \overline{Z}_0(t))$ is a strict egress point of $\partial\Omega_1(\overline{\delta})$. This contradicts the relation (13). Hence in the set $\Omega_0 \subset \Omega_1$ there is only the trivial solution $Z_0(t) \equiv 0$ of (12), so $\overline{Y}_0(t)$ is the unique solution of (9).

From (5₁) we obtain

$$(14) \quad |y_0(t, C) - \phi(t, C)| \leq \delta \phi^2(t, C),$$

where $y_0(t, C)$ is the solution of (4) for $t \in (0, t_0]$. Similarly, from (5₂), (8) we have

$$(15) \quad \begin{aligned} |y'_0(t, C) - \phi'(t, C)| &= \left| \frac{1}{g(t)} \exp \left\{ \int_{t_0}^t \frac{(1 - \alpha)a(s)}{g(s)} ds \right\} Y_1(t) \right| \\ &\leq \frac{2\delta a(t)}{g(t)} \exp \left\{ \int_{t_0}^t \frac{a(s)}{g(s)} ds \right\} = (\phi^2(t, C))'. \end{aligned}$$

It is obvious (after a suitable extension of $y_0(t)$ for $t = 0$) that the correspondence $P(h_0) = y_0$ maps S into itself and $PS \subset S$.

3) We shall prove that PS is relatively compact and P is a continuous mapping. It is easy to see, by (14), (15), that PS is the set of uniformly bounded and equicontinuous functions for $t \in [0, t_0]$. By Ascoli's theorem, PS is relatively compact.

Let $(h_r(t))$ be an arbitrary sequence functions in S such that

$$\|h_r(t) - h_0(t)\| = \epsilon_r, \quad \lim_{r \rightarrow \infty} \epsilon_r = 0, \quad h_0(t) \in S.$$

The solution $\overline{Y}_k(t)$ of the equation

$$(16) \quad g(t)Y'_0(t) = \alpha a(t)Y_0(t) + \left(a(t) \exp \left\{ \int_{t_0}^t \frac{\alpha a(s)}{g(s)} ds \right\} + a(t)Y_0(t) \right)$$

$$\times f\left(t, \phi(t, C) + \exp\left\{\int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds\right\} Y_0(t), \int_{0^+}^t K(t, s, \phi(s, C) + H_k(s)) ds\right),$$

corresponds to the function $h_k(t)$ and $\overline{Y}_k(t) \in \Omega_0$. Similarly, the solution $\overline{Y}_0(t)$ of (9) corresponds to the function $h_0(t)$. We shall show that $|\overline{Y}_k(t) - \overline{Y}_0(t)| \rightarrow 0$ uniformly on $[0, t_0]$. Consider the region

$$\Omega_{0k} = \{(t, Y_0) : 0 < t < t_0, u_{0k}(t, Y_0) < 0\},$$

where

$$u_{0k}(t, Y_0) = (Y(t) - \overline{Y}_0(t))^2 - \left(\epsilon_k \exp\left\{\int_{t_0}^t \frac{(1+\alpha-\nu)a(s)}{g(s)} ds\right\}\right)^2,$$

$$0 < \nu < \alpha, k \geq 1.$$

Evidently, $\Omega_0 \subset \Omega_{0k}$ for any k and sufficiently small t_0 . Investigate the behaviour of integral curves of (16) with respect to the boundary $\partial\Omega_{0k}$. Using the same method as above we obtain for trajectory derivatives

$$\operatorname{sgn} \dot{u}_{0k}(t, Y_0) = -1$$

for sufficiently small t_0 and any k . By Wazewki's topological method there exists at least one solution $\overline{Y}_k(t)$ lying in Ω_{0k} . Hence, it follows that

$$|\overline{Y}_k(t) - \overline{Y}_0(t)| \leq \epsilon_k \exp\left\{\int_{t_0}^t \frac{1+\alpha-\nu)a(s)}{g(s)} ds\right\} \leq M\epsilon_k,$$

$M > 0$ is a constant depending on t_0 . From (51) we obtain

$$|y_k(t) - y_0(t)| = \exp\left\{\int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds\right\} |\overline{Y}_k(t) - \overline{Y}_0(t)| \leq m\epsilon_k,$$

$m > 0$ is a constant depending on $t_0, M, t \in [0, t_0]$. This estimate implies that P is continuous.

We have thus proved that the mapping P satisfies the assumptions of Schauder's fixed point theorem and hence there exists a function $h(t) \in S$ with $h(t) = P(h(t))$. The proof of existence of a solution of (1) is complete.

Now we shall prove the uniqueness of a solution of (1). Substituting (51), (52) into (1), we get

$$(17) \quad Y_1(t) = a(t)Y_0(t) + \left(a(t) \exp\left\{\int_{t_0}^t \frac{\alpha a(s)}{g(s)} ds\right\} + a(t)Y_0(t)\right)$$

$$\times f\left(t, \phi(t, C) + Y_0(t) \exp\left\{\int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds\right\}\right),$$

$$\int_{0^+}^t K\left(t, s, \phi(s, C) + Y_0(s) \exp \left\{ \int_{t_0}^s \frac{(1-\alpha)a(u)}{g(u)} du \right\} \right) ds.$$

The equation (6) may be written in the form

$$(18) \quad g(t)Y'_0(t) = \alpha a(t)Y_0(t) + \left(a(t) \exp \left\{ \int_{t_0}^t \frac{\alpha a(s)}{g(s)} ds \right\} + a(t)Y_0(t) \right) \\ \times f\left(t, \phi(t, C) + Y_0(t) \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\}, \right. \\ \left. \int_{0^+}^t K\left(t, s, \phi(s, C) + Y_0(s) \exp \left\{ \int_{t_0}^s \frac{(1-\alpha)a(u)}{g(u)} du \right\} \right) ds \right).$$

Now we know that there exists the solution $y_0(t, C)$ of (1) satisfying (2) such that

$$(19) \quad y_0(t, C) = \phi(t, C) + \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\} U_0(t),$$

where $U_0(t)$ is the solution of (18).

Denoting $W_0(t) = Y_0(t) - U_0(t)$ and substituting it into (18), we obtain

$$(20) \quad g(t)W'_0(t) = \alpha a(t)W_0(t) + a(t) \left(\exp \left\{ \int_{t_0}^t \frac{\alpha a(s)}{g(s)} ds \right\} + W_0(t) \right) \\ \times \left[f\left(t, \phi(t, C) + (W_0(t) + U_0(t)) \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\}, \right. \right. \\ \left. \left. \int_{0^+}^t K(t, s, \phi(s, C) + (W_0(s) + U_0(s)) \exp \left\{ \int_{t_0}^s \frac{(1-\alpha)a(u)}{g(u)} du \right\}) ds \right) \right. \\ - f\left(t, \phi(t, C) + U_0(t) \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\} \right. \\ \left. \left. \int_{0^+}^t K(t, s, \phi(s, C) + U_0(s) \exp \left\{ \int_{t_0}^s \frac{(1-\alpha)a(u)}{g(u)} du \right\}) ds \right) \right].$$

Let

$$\Omega_{00} = \{(t, W_0) : 0 < t < t_0, u_{00}(t, W_0) < 0\},$$

where

$$u_{00}(t, W_0) = W_0^2 - \left(\delta \exp \left\{ \int_{t_0}^t \frac{(1+\alpha-\mu)a(s)}{g(s)} ds \right\} \right)^2, \quad 0 < \mu < \alpha.$$

If the equation (20) had only the trivial solution lying in Ω_{00} then $Y_0(t) = U_0(t)$ would be only solution of (20) and from here, by (19), $y_0(t, C)$ would be only solution of (1) satisfying (2) for $t \in J$.

We shall suppose that there exists a nontrivial solution $\overline{W}_0(t)$ of (20) lying in Ω_{00} . Substitute $\overline{W}_0(s)$ instead of $W_0(t)$ into (20), we obtain the differential equation:

$$(21) \quad g(t)W_0'(t) = \alpha a(t)W_0(t) + a(t) \left(\exp \left\{ \int_{t_0}^t \frac{\alpha a(s)}{g(s)} ds \right\} + W_0(t) \right) \\ \times \left[f \left(t, \phi(t, C) + \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\} (W_0(t) + U_0(t)) \right) \right. \\ \left. + \int_{0^+}^t K(t, s, \phi(s, C) + \exp \left\{ \int_{t_0}^u \frac{(1-\alpha)a(u)}{g(u)} du \right\} (\overline{W}_0(s) + U_0(s)) ds \right) \\ - f \left(t, \phi(t, C) + \exp \left\{ \int_{t_0}^t \frac{(1-\alpha)a(s)}{g(s)} ds \right\} \times \right. \\ \left. \times U_0(t), \int_{0^+}^t K(t, s, \phi(s, C) + \exp \left\{ \int_{t_0}^u \frac{(1-\alpha)a(u)}{g(u)} du \right\} U_0(s)) ds \right].$$

Calculating the derivative $\dot{u}_{00}(t, W_0)$ along the trajectories of (21) on the set $\partial\Omega_{00}$, we get $\operatorname{sgn} \dot{u}_{00}(t, W_0) = -1$ for sufficiently small t_0 .

By the same method as in the proof of the existence of a solution of (1), we obtain that in Ω_{00} there is only the trivial solution of (21). The proof is complete.

Acknowledgment. This work was supported by the Grant No 201/99/0295 of Czech Grant Agency (Prague) and by the plan of investigations MSM 262200013 of the Czech Republic.

References

- [1] M. Benchohra, *On initial value problem for an integro-differential equation*, An. Stiint. Univ. "AL.I.Cuza" IASI, S.I Mat. XLV, (1999), 297-304.
- [2] J. V. Bykov, *Theory of Integro-Differential Equations*, Kirgiz. Gosudar. Univ., Frunze 1957, 325p. (in Russian).

- [3] J. Diblík, *The singular Cauchy-Nicoletti problem for system of two ordinary differential equations*, Math. Bohem. 117(1) (1992), 55–67.
- [4] J. Diblík, *On existence of solutions of singular Cauchy problem for system of differential equations nonsolvable to a derivation*, Publ. Inst. Math. 37(51) (1985), 73–80 (in Russian).
- [5] P. Hartman, *Ordinary Differential Equations*, New York, London, Sydney, 1964, 720p.
- [6] Z. Šmarda, *On solutions of an implicit singular system of integro-differential equations depending on a parameter*, Demonstratio Math. 31 (1998), 125–130.
- [7] Z. Šmarda, *On a behaviour of solutions of integro-differential equations in a neighbourhood of a singular point*, Ukrain. Mat. J. 45 (1993), 1716–1721 (in Russian).

DEPARTMENT OF MATHEMATICS
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
TECHNICAL UNIVERSITY
Technická 8
616 00 BRNO, CZECH REPUBLIC
E-mail:smarda@feec.vutbr.cz

Received December 11, 2001; revised version April 11, 2002.

