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ON RICCATI EQUATIONS IN ORDERED 
BANACH ALGEBRAS 

Abstract . We consider Riccati differential equations in ordered Banach algebras A, 
and prove invariance and comparison theorems for the case that the right hand side of a 
Riccati equation is quasimonotone increasing on the set of quasipositive elements (which 
are the quasimonotone increasing linear mappings in case that A is the operator algebra 
of an ordered Banach space). 

1. Introduction 
Let (A, || • ||) be a real Banach algebra with unit 1, let T G (0, oo], let 

a,bi,b2,c\,C2,d € C([0, T), .4), and let / : [0,T) x A -* A be defined as 
(1) f ( t , x) = xa(t)x + bi(t)x + xb2(t) + ci(t)xc2{t) + d(t). 

Riccati equations of the form u'(t) = f(t,u(t)) play a prominent role in 
the theory of transport and scattering and in other areas of technology, and 
especially important are conditions for invariance of an order cone K C A, 
see for example [5], [7] and the references given there. Starting with Reid 
[8] various authors have studied Riccati equations in ordered spaces, see for 
example [1], [4], [6], [7], [12]. 

2. Ordered spaces 
First, let (E, || • ||) be a Banach space with topological dual space E*. A 

wedge W is a nonempty closed convex subset of E with AW C W (A > 0). 
A wedge K is called a cone if in addition K n (—K) = {0}. Now let E be 
ordered by a cone K, that is we consider the ordering defined by x < y 
: <==> y — x € K. For x < y let [x,y] denote the order interval of all z 
with x < z < y. Analogously we define [x, oo) for x € E. A cone K is called 
normal if 0 < x < y ||x|| < a||j/|| for a constant a > 1. If K is normal 
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each order interval [x, y] is bounded, and in a finite dimensional spaces each 
cone is normal. 

Let K* denote the dual wedge of K, that is the set of all <p G E* with 
tp(x) > 0 (x > 0). 

If D is a subset of E, a function g : D —• E is called quasimonotone 
increasing (qmi for short) on D, in the sense of Volkmann [14], if 

x,yeD, x<y, ip € K*, (p(x) = <p(y) =>• <p(g(x)) < <p{g(y)). 

A function g : [0, T) x D —» E is called qmi on D if x i-> g(t, x) is qmi on D 
for each t G [0, T). 

Now, if A is a Banach algebra with unit 1, a cone K is called an algebra 
cone if 1 £ K, and K • K C K. In the sequel let A be ordered by such a 
cone. We define 

Q+ := {a e A : exp(fa) > 0 (f > 0)}, Q± := n ( -Q+) . 

To connect this setting with operator algebras consider a Banach space E 
ordered by a total cone KE, that is Kg — Kg = E. Then the Banach algebra 
L(E) (the continuous endomorphisms on E with 1 = 1= id,E) is ordered 
by the algebra cone 

K = {A € L(E) :Ax> 0 (x > 0)}. 

Moreover, according to classical results on differential inequalities [15], in 
this case A € Q+ if and only if x t—> Ax is qmi. 

3. Results 
Let / be as in (1). Since / is locally Lipschitz continuous in x, each 

initial value problem U'(t) = f(t,u(t)), u(0) = UQ € A is uniquely solvable 
on an interval which is not extendable to the right, that is we have a unique 
solution 

u(-,tto) : [0,u;(iio)) A. 
Note that a closed and convex subset C C A is called invariant for the 
equation u'{t) = f(t,u(t)), if u(t,uo) E C (t € [0,ui(uo))) for each UQ € C. 
We will prove the following invariance theorem. 

THEOREM 1. 1. Let f be as in (1) with 

a(t) € K, h(t),b2{t) £ Q+, ci(t),c2(t) e K, d(t) 6 A, 

for all t & [0,T). Then f is qmi on K. If in addition d(t) € K for all 
t 6 [0,T), then K is invariant. 

2. Let f be as in (1) with 

a(t) eQ±nK, &i(i),&2(t) € Q+, cx(t),c2(t) € K, d(t) € A, 
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for all t G [0,T). Then f is qmi on Q+. If in addition f(t,z) > 0 
(t G [0,T)) for some z G Q+, then [z, oo) is invariant. 

3. Let n G C([0, T),R) with //(£) > 0, and let f be as in (1) with 

a{t) = fi{t)l, h(t),b2(t) e Q±, ci{t),c2{t)eQ±nK, 

(2) 2»(t)d(t)-(bl(t) + bl(t))eQ+, 

for all t G [0,T). Then f is qmi on Q+ (by 2.), and Q+ is invariant. 

By means of Theorem 1 we will prove: 

THEOREM 2. Let f be as in one of the cases in Theorem 1, hence C is in-
variant, with C = K or C = [z, oo) or C — Q+, respectively. 
If uo G C and uo < vo, then u(t,uo) < u(t,vo) as long as both solutions 
exist. In particular, if K is normal u(ui) > minlw^o), w(vo)} for each 
ui € [•uoj'UO]-

We will give a discussion of our results together with some examples in 
the last section of this paper. 

4. Preliminaries 
For an ordered Banach algebra A we define 

H+ := {a G A : 3A e R : a + XI > 0}. 

Note that H+ C Q+ (but i.g. [10]). 

PROPOSITION 1. In A the following assertions are valid: 

1. Q+ is a wedge. 
2. Q± is a closed subspace of A (i.g. not a subalgebra). 
3. Q+ = H 
4. a € Q+ a i a x is qmi on A x i—• xa is qmi on A 

tp(a) > 0 for each tp e K* with y?(l) = 0. 
5. a 6 Q± => a2 6 Q+ (i.g. neither a2 G K nor an G Q+ for n > 2). 
6. a € Q+ [a, oo) C Q+. 
7. x G Q+, a G Q± H K => ax G <5+, and xa G Q+. 
8. x € Q+, a G Q±, (p G K*, <p(x) = <p( 1) = 0 =4> <p(x2/2+ax+a2/2) > 0, 

and y(x2/2 + xa + a2¡2) > 0. 
9. a, ci, C2 > 0 =$• x h-• xax is increasing on K and x h-• c\xc2 is increasing 

on A. 

REMARK. By 5. in Proposition 1, (2) implies d(t) eQ+ (t E [0, T)), whereas 
f(t, z) > 0 as in part 2. of Theorem 1 is possible even if d(t) £ Q+. 

Proof . For 1.-5. see [3], Theorem 1. 
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6. Follows from 4. since if b > a, then <p(b) > <p(a) > 0 for each <p G K* 
with <¿>(1) = 0. 

7. According to 3. there is a sequence (xn) in H+ with limit x as n —> oo. 
Let An > 0 be such that xn + An l > 0. Then, 0 < (x n + Anl)a, hence 
xna > —Ana G Q+. Therefore xna G Q+ by means of 6., and xa G Q+ since 
Q+ is closed. Analogously ax G Q+ 

8. We have exp(ia) exp(ix) > 0 (t > 0). Since tp(a) = 0 w e have 

0 < lim <P(eMta) e M t * ) ) = ^ / 2 + a x + fl2/2) 
~ t—o+ t2 

For the second inequality consider exp(ia) exp(ix). 
9. follows immediately from the properties of an algebra cone. • 

For some further investigations on Q+ and Q± in matrix algebras see [2]. 
Next, let a,bi,b2,ci,c2,d £ A, and let g : A —• A be defined by 

(3) g(x) = xax + b\x + xb2 + C1ZC2 + d. 

PROPOSITION 2. 1. Let a e K, b\,b2 E Q+, ci,c2 G K, and d € A, then g 
defined by (3) is qmi on K. 

2. Let a 6 Q± fl K, 6i, 62 € Q+, ci, G K, and d G A, then g defined by 
(3) is qmi on Q+. 

P r o o f . 1. is an immediate consequence of 4. and 9. in Proposition 1. To 
prove 2. it is sufficient to prove that x h-» xax is qmi on Q+. Let y > x G Q+ 
and ip G K* with ip(x) = <p{y)- Since a > 0 we have ax < ay and xa < ya. 
Since a G Q± part 4. in Proposition 1 gives (p(ax) = tp(ay) and <p(xa) = 
ip(ya). Hence ip(xax) < tp(xay) since x G Q+, and ip(xay) < <p{yay) since 
y G <2+, again by means of 4. in Proposition 1. • 

Now, let E be a Banach space, and let g : [0, T) x E —• E be continuous 
and locally Lipschitz continuous in x in the following sense: To each (TO, XQ) G 
[0, T) x E there exist real constants r, r, L > 0 such that 

\\g{t,x)-g{t,y)\\<L\\x-y\\ (||x - x0 | | , ||y - x0 | | < r, te[t0,r)). 

For such functions the following invariance theorem is valid [15], Satz 1: 

PROPOSITION 3 . If C C E is a closed convex set, and 

<p G E\ cp ± 0, (t,x) G [0, T) x C, <p(x) = inf{<^(y) : y G C} 

=><p(g(t,x))> 0, 

then C is invariant for u'(t) = g(t,u(t)). 



Riccati equations 787 

5. Proofs 
P r o o f of T h e o r e m 1: The quasimonotonicity of / on K or Q+ follows 
from Proposition 2 in all three cases. 

1. We apply Proposition 3. Let 

<p G E\ <p i 0, (t,x) G [0 , r ) x K, v»(x) = i n f M y ) : y G K}. 

We have <p(x) < <p(\k) for each k G K and each real A > 0. Hence <p(k) > 0, 
that is ¡p G K*. In particular 0 < ip(x) < <p(0), that is <p(x) = 0. Now 
x ' • f(t, x) is qmi on K, hence 

ip{f(t,x))><p(f{t,0)) = <p(d{t))>0. 

2. Let 

<p G E*, <p ^ 0, (t, x) G [0, T) x [2, oo), <p{x) = i n f M y ) :ye[z, o o ) } . 

We have <p(\k) > (p(x) — ip(z) for k G K and A > 0. Hence <p 6 K*, and 
<p(x) = <p(z). Since x i—> f(t,x) is qmi on Q+ we have 

¥>(/(i,x)) >*>(/(*,*)) > 0 . 

3. Let 

<p G E\ <p + 0, (t,x) G [0, T) x Q+, <p(x) = M{<p(y) : y G Q + } . 

Again ip G K*. Moreover y(Al) > tp{x) for all A G K. Hence <¿>(1) = 0 and 
<p{x) < 0. Since Ax G Q+ for all A > 0 we have ip(x) < 2<p(x), therefore 
ip(x) = 0. According to 8. in Proposition 1 

Since h(t) := d(t) - (6i(i)2 + b2{t)2)/{2n{t)) G Q+ we get 

V t)x2 + bi(t)x + xb2(t) + + > 0. 

Moreover by 7. in Proposition 1 we have c\(t)xc2{t) G Q+, therefore 

<p(ci{t)xc2{t)) > 0. 

Altogether tp(f(t, x)) > 0 . • 

P r o o f of T h e o r e m 2: We adapt the method in [15], Satz 2, to our case. 
Let uo G C, uo < vo (hence VQ G C), and let u,v be the solutions of the 
corresponding initial value problems. According to Theorem 1 u(t),v(t) G 
C as long as these solutions exist. We set h(t) = v(t) — u(t) (0 < t < 
min{a>(uo),u>(vo)}). Then h(0) > 0 and h solves h'(t) = g(t,h(t)) with 

g(t,x) = f(t,u(t) + x)-f(t,u{t)). 
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Since u(t) e C, x & K implies u(t) + x E C in all three cases, the function 
g is qmi on K. Let 

<p E E\ <p / 0, (t,x) E [0, T) x K, <p(x) = VDf{(p{y) : y E K}. 

Then ip E K*, <p(x) = 0, and therefore 

<p{g(t,x))><p(g{t, 0)) = 0. 

According to Proposition 3 we get h(t) > 0, that is u(t) < v(t) for 0 < t < 
min{a;(uo), If K is normal each solution starting at u\ E [tio, Do] is 
bounded on compact subintervals of [0, min{a;(iio),a;(i;o)}) and by standard 
reasoning co(ui) > min{u;(uo), • 

6. Examples 
1.) First we consider the classical case E = Rn ordered by the natural 

cone KE = {x E Rn : x i , . . . , xn > 0}. Then A = L(Rn) is ordered by the 
corresponding cone K with A — (ojj) G K if and only if a^ > 0. Moreover 
A € Q+ if and only if aij > 0 for i ^ j, and A E Q± if and only if A is 
diagonal. In this case the invariance of K as in part 1. of Theorem 1 is due 
to Reid [8], Theorem 9.2. 

Part 2. of Theorem 1 says that a restriction of the quadratic term lifts 
the area of quasimonotonicity form K to Q+. In this example Q± OK is the 
set of diagonal matrices with nonnegative entries. We admit that in general 
Q±DK is rather small, in many cases Q± fl K = {A1 : A > 0}. On the other 
hand Q+ is always bigger than K. 

Consider for example f(t, W) = W2 — 2 sin(i)V7 and 

Z = 
( - 1 4 4 \ 

4 - 1 4 
\ 4 4 - 1 / 

Then f(t,Z) > 317 > 0 (t > 0). Hence, each solution W : [0,w(Wo)) -
£3) of W'(t) = W2(t) - 2sin(t)W{t), W(0) = W0 > Z stays in [Z, oo). 
2.) Consider R.n ordered by the n-dimensional ice-cream cone 

K = {xE Rn :xn> ^Jxl + ... + xl_1}, 

and A = L(Rn). Here, A — (ajj) 6 Q± if and only if an = a,jj (1 <i,j< n), 
aij = ~aji ( ! < h3 < n - 1> i ^ j), and anj = ajn (1 < j < n - 1), see [11]. 
See also [11] for a characterization of Q+. Thus, if n = 3 we have A E Q± if 
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and only if it is of the form 

( a 0 7 \ 
- 0 a 6 . 

\ 7 8 a ] 

For example, if Bi(t), B2{t) are of this form (t G [0, T)), then Q+ is invariant 
for 

W'(t) = W2(t) + Bi(t)W(t) + W(t)B2(t) + + + r(t)I 

for any function r € C([0,T),R), according to 3. in Theorem 1. 
3.) Consider the (commutative) Banach algebra A = Z), with norm 

and multiplication 

IMI = W ' {x*y)n='52xn-.kyk, 
feez kez 

and unit 1 = (<5o,n)£L_oo- Let A be ordered by the (normal) algebra cone 
K = {x e A : x'n > 0 (n <E Z)}. Then H+ = {x € A : xn > 0 (n / 0)}, 
and this set is closed, hence Q+ — H+ by 3. in Proposition 1 . Consider the 
Riccati equation 

u'{t) = u(t) * u(t) + P(t)u(t) + 6(t)l. 

with 0,6 € C([0,T),R). Here o(i) = l,bx(t) = /3(i)l,62(i) = ci(t) = c2(t) = 
0, and d(t) — S(t) 1. According to 3. in Theorem 1 Q+ is invariant, since 

4.) A well studied case that is not covered by the Banach algebra frame 
is the following. Consider E = Sn, the Banach space of all real symmetric 
matrices (which is not a Banach algebra), ordered by the cone K of all 
positive semidefinite matrices. Then / : [0, T) x Sn —> Sn defined by 

f(t, W) = WA(t)W + Bi(t)W + WB2(t) + C1(t)WC2{t) + D(t) 

is qmi on the whole space Sn if A(t) € 5„, Bi(t) = B$(t) € L{Rn), C\{t) = 
C%{t) e L{Rn), and D(t) € Sn for all t € [0,T). For this setting see for 
example [1], [4], [8], [9], [12], [13], and [7] for symmetric operators in Hilbert 
spaces. 
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