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ON RICCATI EQUATIONS IN ORDERED
BANACH ALGEBRAS

Abstract. We consider Riccati differential equations in ordered Banach algebras A,
and prove invariance and comparison theorems for the case that the right hand side of a
Riccati equation is quasimonotone increasing on the set of quasipositive elements (which
are the quasimonotone increasing linear mappings in case that 4 is the operator algebra
of an ordered Banach space).

1. Introduction

Let (A,||-||) be a real Banach algebra with unit 1, let T € (0, 00], let
a,by, be,c1,c0,d € C([0,T), A), and let f:[0,T) x A — A be defined as

(1) f(t,z) = za(t)z + by (t)x + xba(t) + c1(t)zca(t) + d(t).

Riccati equations of the form u/(t) = f(¢,u(t)) play a prominent role in
the theory of transport and scattering and in other areas of technology, and
especially important are conditions for invariance of an order cone K C A,
see for example [5], [7] and the references given there. Starting with Reid
[8] various authors have studied Riccati equations in ordered spaces, see for
example [1], [4], [6], [7], [12].

2. Ordered spaces

First, let (E, || - ||) be a Banach space with topological dual space E*. A
wedge W is a nonempty closed convex subset of E with AW C W (A > 0).
A wedge K is called a cone if in addition K N (—K) = {0}. Now let E be
ordered by a cone K, that is we consider the ordering defined by z < y
: <= y—z € K. For ¢ < y let [z,y] denote the order interval of all z
with z < z < y. Analogously we define [z,00) for z € E. A cone K is called
normal if 0 € z < y = ||z|| < al|y|| for a constant a > 1. If K is normal
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each order interval [z, y] is bounded, and in a finite dimensional spaces each
cone is normal.

Let K* denote the dual wedge of K, that is the set of all ¢ € E* with
p(z) 20 (z = 0).

If D is a subset of E, a function g : D — E is called quasimonotone
increasing (qmi for short) on D, in the sense of Volkmann [14], if

,y€D, z<y, p € K, o(z) = o(y) = ¢(9(z)) < ¢(9(¥))-
A function g : [0,T) x D — FE is called qmi on D if £ — g(t,z) is qmi on D
for each t € [0,T).

Now, if A is a Banach algebra with unit 1, a cone K is called an algebra
cone if 1 € K, and K - K C K. In the sequel let A be ordered by such a
cone. We define

Q+:={a€ A:exp(ta) 20 (t > 0)}, Qi :=Q+N(-Q4).

To connect this setting with operator algebras consider a Banach space E

ordered by a total cone Kg, that is Kg — Kg = E. Then the Banach algebra
L(E) (the continuous endomorphisms on E with 1 = I := idg) is ordered
by the algebra cone

K={A€L(E): Az > 0 (z > 0)}.

Moreover, according to classical results on differential inequalities [15], in
this case A € Q4 if and only if z — Az is qmi.

3. Results

Let f be as in (1). Since f is locally Lipschitz continuous in z, each
initial value problem u'(t) = f(¢,u(t)), ©v(0) = up € A is uniquely solvable
on an interval which is not extendable to the right, that is we have a unique
solution

u(- ug) @ [0,w(ug)) — A.

Note that a closed and convex subset C C A is called invariant for the
equation u/(t) = f(¢,u(t)), if u(t,uo) € C (¢t € [0,w(up))) for each ug € C.
We will prove the following invariance theorem.

THEOREM 1. 1. Let f be as in (1) with
a(t) € K’ bl(t)>b2(t) € Q+a cl(t)vCZ(t) € K’ d(t) € A,

for all t € [0,T). Then f is gmi on K. If in addition d(t) € K for all
t € [0,T), then K is invariant.
2. Let f be as in (1) with

at) € Qu N K, bi(t), bao(t) € Qu, cr(t),calt) € K, d(t) € A,
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for all t € [0,T). Then f is gmi on Q4. If in addition f(t,z) > 0
(t €[0,T)) for some z € Q4, then [z,00) is invariant.
3. Let p € C([0,T),R) with u(t) > 0, and let f be as in (1) with

a(t) = u(t)1, bi(t),b2(t) € Qx, ca1(t),c2(t) € QN K,
2) 2u(t)d(t) - (B3(6) + B3(0)) € Qs
for allt € [0,T). Then f is gmi on Q4+ (by 2.), and Q4 is invariant.
By means of Theorem 1 we will prove:

THEOREM 2. Let f be as in one of the cases in Theorem 1, hence C is in-
variant, with C = K or C = [z,00) or C = Q, respectively.

If up € C and wp < vg, then u(t,ug) < u(t,vo) as long as both solutions
exist. In particular, if K s normal w(uy) > min{w(up),w(vy)} for each
uy € [ug, vo).

We will give a discussion of our results together with some examples in
the last section of this paper.

4. Preliminaries
For an ordered Banach algebra A we define

Hi:={acA:3X€R:a+ )1 >0}
Note that H, C Q4 (but i.g. H; # Q4, [10}).
PROPOSITION 1. In A the following assertions are valid:

Q+ is a wedge.

Q+ 15 a closed subspace of A (i.g. not a subalgebra).

Q+=H,.

AEQRy < ararisqgmion A <= zr— zais qmion A <
@(a) > 0 for each ¢ € K* with (1) = 0.

a€ Qs = a’? € Q, (i.g. neither a® € K nor a™ € Q4 forn > 2).
a€Qt = [a,00) C Q4.

z2€QR+,a€QiNK = ax €@y, andza € Q.
T€Q4,a€Qx,p€K* p(x)=p(1)=0= p(z?/2+az+a/2) >0,
and p(z?/2 + za + a?/2) > 0.

a,c1,c2 2 0= = — zax is increasing on K and x — cyzcs is increasing

on A.

REMARK. By 5. in Proposition 1, (2) implies d(t) € Q4 (¢t € [0,T')), whereas
f(t,z) > 0 as in part 2. of Theorem 1 is possible even if d(t) & Q+.

Proof. For 1.-5. see (3], Theorem 1.

T o do

o N> ™

©
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6. Follows from 4. since if b > a, then ¢(b) > ¢(a) > 0 for each p € K*
with ¢(1) = 0.

7. According to 3. there is a sequence (z,) in Hy with limit z as n — oo.
Let A, > 0 be such that z, + A,1 > 0. Then, 0 < (z, + Anl)e, hence
ZTna 2 —Apa € Q4. Therefore z,a € Q4 by means of 6., and za € Q4 since
Q+ is closed. Analogously az € Q4+

8. We have exp(ta) exp(tz) > 0 (¢t > 0). Since p(a) = 0 we have

0< lim ¢(exp(ta) exp(tz))

Jm 22 = p(2%/2 + az + a?/2).

For the second inequality consider exp(ta) exp(tz).
9. follows immediately from the properties of an algebra cone. =

For some further investigations on @ and Q4 in matrix algebras see [2].
Next, let a, b1, b2, c1,c2,d € A, and let g : A — A be defined by

(3) g9(z) = zaz + biz + by + c1zco + d.

PROPOSITION 2. 1. Leta € K, by,bs € Q4, c1,¢c2 € K, andd € A, then g
defined by (3) is gmi on K.

2. Leta€e Qi NK, by,by € Qy, c1,c20 € K, and d € A, then g defined by

(3) is gmi on Q.

Proof. 1. is an immediate consequence of 4. and 9. in Proposition 1. To
prove 2. it is sufficient to prove that z — zaz isqmion Q4. Let y >z € Q4+
and ¢ € K* with ¢(z) = ¢(y). Since a > 0 we have az < ay and za < ya.
Since a € Q4 part 4. in Proposition 1 gives p(az) = ¢(ay) and p(za) =
w(ya). Hence p(zaz) < p(zay) since z € Q4, and p(zay) < p(yay) since
¥y € Q4+, again by means of 4. in Proposition 1. (]

Now, let E be a Banach space, and let g : [0,T) x E — E be continuous
and locally Lipschitz continuous in z in the following sense: To each (to, zo) €
[0,T) x E there exist real constants 7,7, L > 0 such that

llg(t, ) — gt Y| < Lllz —yll - (llz — 2oll, |ly — zol| <7, t € [to,7))-
For such functions the following invariance theorem is valid [15], Satz 1:
ProrosITION 3. If C C E is a closed convex set, and
pEE*, ¢#0, (t,z) €[0,T) x C, ¢(z) =inf{p(y) : y € C}
= ¢(g(t,2)) 2 0,
then C is invariant for u'(t) = g(t, u(t)).
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5. Proofs
Proof of Theorem 1: The quasimonotonicity of f on K or @ follows
from Proposition 2 in all three cases.

1. We apply Proposition 3. Let

peE* p#0, (t,2) € [0,T) x K, ¢(z) =inf{p(y) : y € K}.
We have p(z) < p(Ak) for each k € K and each real A > 0. Hence ¢(k) > 0,
that is ¢ € K*. In particular 0 < ¢(z) < ¢(0), that is p(z) = 0. Now
z — f(t,z) is qmi on K, hence
o(f(t,x)) 2 o(f(t,0)) = ¢(d(t)) = 0.

2. Let

p€E* ¢#0, (t,z) €[0,T) x [z,00), ¢(z) = inf{e(y) : y € [2,00)}.
We have p(Ak) > ¢(z) — ¢(z) for k € K and A > 0. Hence ¢ € K*, and
o(z) = p(2). Since z — f(t,z) is qmi on @+ we have

e(ft,z)) 2 p(f(t,2)) 2 0.
3. Let
pEE", p#0, (t,z) €[0,T) x Q4, ¢(z) = inf{p(y) : y € Q+}.

Again ¢ € K*. Moreover ¢(A1) > ¢(z) for all A € R. Hence (1) = 0 and
¢(z) < 0. Since Az € Q4 for all A > 0 we have p(z) < 2¢(z), therefore
¢(z) = 0. According to 8. in Proposition 1

Bt b(t) | B+ 80
v " T Tum T 220 )

Since A(t) i= d(t) — (b1(8)® + ba(£)2)/(20(2)) € Qs we get
( 22 + b1 (8) -+ zha(t) + AT OO h(t))ZO

OScp(m + —=

2u(t)
Moreover by 7. in Proposition 1 we have ¢ (t)zcy(t) € Q4, therefore
p(c1(t)zea(t)) 2 0.
Altogether o(f(t,z)) > 0. [
Proof of Theorem 2: We adapt the method in [15], Satz 2, to our case.
Let ug € C, up < vp (hence vy € C), and let u,v be the solutions of the
corresponding initial value problems. According to Theorem 1 u(t),v(t) €

C as long as these solutions exist. We set h(t) = v(t) — u(t) (0 < t <
min{w(uo),w(ve)}). Then h(0) > 0 and h solves h'(t) = g(t, h(t)) with

9(t,z) = f(t,u(t) +2) - £(¢,u(t))-
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Since u(t) € C, z € K implies u(t) + = € C in all three cases, the function
¢ is qmi on K. Let

p€E, o #0, (t,2) €[0,T) x K, ¢(z) = inf{p(y) : y € K}.
Then ¢ € K*, ¢(z) = 0, and therefore

p(g(t,z)) > p(g(t,0)) = 0.

According to Proposition 3 we get h(t) > 0, that is u(t) < v(¢) for 0 <t <
min{w(up),w(vp)}. If K is normal each solution starting at u; € [ug, vo) is
bounded on compact subintervals of [0, min{w(up),w(vp)}) and by standard
reasoning w(u;) > min{w(ug),w(vo)}- L]

6. Examples

1.) First we consider the classical case £ = R" ordered by the natural
cone Kp = {x € R® : z1,...,2, > 0}. Then A = L(R"™) is ordered by the
corresponding cone K with A = (a;;) € K if and only if a;; > 0. Moreover
A € Q4 if and only if a;; > 0 for ¢ # j, and A € Q4 if and only if 4 is
diagonal. In this case the invariance of K as in part 1. of Theorem 1 is due
to Reid [8], Theorem 9.2.

Part 2. of Theorem 1 says that a restriction of the quadratic term lifts
the area of quasimonotonicity form K to Q... In this example Q+ N K is the
set of diagonal matrices with nonnegative entries. We admit that in general
Q+ N K is rather small, in many cases @+ NK = {A1: A > 0}. On the other
hand Q4 is always bigger than K.

Consider for example f(t, W) = W? — 2sin(t)W and

-1 4 4
Z = 4 -1 4
4 4 -1

Then f(t,Z) > 311 > 0 (¢t > 0). Hence, each solution W : [0,w(W)) —
L(R®) of W'(t) = W2(t) — 2sin(t)W (t), W(0) = Wy > Z stays in [Z, 00).
2.) Consider R™ ordered by the n-dimensional ice-cream cone

K={zeR":z, >z} +...+2%_,},

and A = L(R™). Here, A = (a;;) € Q1 if and only if a;; = aj; (1 < 4,5 < n),
aij = —aji (1<4,7<n—1,i#j), and anj = ajn (1 < j <n—1), see [11].
See also [11] for a characterization of Q4. Thus, if n = 3 we have A € Q4 if
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and only if it is of the form

a B v
-8 a 6
vy 4 «
For example, if B1(t), Ba(t) are of this form (¢ € [0,T)), then @ is invariant
for
B2(t) + Bi(t
W(t) = WHe) + BOW (D) + W0 B + 2T B |y

for any function r € C([0,T),R), according to 3. in Theorem 1.
3.) Consider the (commutative) Banach algebra A = {}(Z), with norm
and multiplication

lell = 3 _leal,  (@*¥)n =D Tn-kyr,
kEZ keZ
and unit 1 = (8p5)9% ... Let A be ordered by the (normal) algebra cone
K={z€eA:2,>0(n€z} Then H = {z € A:z, >0 (n #0)},
and this set is closed, hence Q4 = H, by 3. in Proposition 1 . Consider the
Riccati equation

u'(t) = u(t) * u(t) + B(t)u(t) + 6(¢)1.
with 3,6 € C([0,T),R). Here a(t) = 1,01(t) = B(t)1,b2(t) = c1(t) = c2(t) =
0, and d(t) = 6(¢)1. According to 3. in Theorem 1 Q; is invariant, since
b1 (t)2 + ba(t)? 2t
ay - 22 (50 - EWy)1e g, eo,m).
4.) A well studied case that is not covered by the Banach algebra frame
is the following. Consider E = S,,, the Banach space of all real symmetric

matrices (which is not a Banach algebra), ordered by the cone K of all
positive semidefinite matrices. Then f : [0,T) x S, — Sy, defined by

@, W) =WAQ)W + Bi(t)W + W Bz(t) + C1(t)WCs(t) + D(t)
is qmi on the whole space S, if A(t) € S,,, Bi(t) = BY (t) € L(R*), C1(t) =
CT(t) € L(R"), and D(t) € Sy, for all t € [0,T). For this setting see for

example (1), 4], [8], [9], [12], [13], and [7] for symmetric operators in Hilbert
spaces.
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