

Gerd Herzog, Roland Lemmert

ON RICCATI EQUATIONS IN ORDERED BANACH ALGEBRAS

Abstract. We consider Riccati differential equations in ordered Banach algebras \mathcal{A} , and prove invariance and comparison theorems for the case that the right hand side of a Riccati equation is quasimonotone increasing on the set of quasipositive elements (which are the quasimonotone increasing linear mappings in case that \mathcal{A} is the operator algebra of an ordered Banach space).

1. Introduction

Let $(\mathcal{A}, \|\cdot\|)$ be a real Banach algebra with unit 1 , let $T \in (0, \infty]$, let $a, b_1, b_2, c_1, c_2, d \in C([0, T), \mathcal{A})$, and let $f : [0, T) \times \mathcal{A} \rightarrow \mathcal{A}$ be defined as

$$(1) \quad f(t, x) = xa(t)x + b_1(t)x + xb_2(t) + c_1(t)xc_2(t) + d(t).$$

Riccati equations of the form $u'(t) = f(t, u(t))$ play a prominent role in the theory of transport and scattering and in other areas of technology, and especially important are conditions for invariance of an order cone $K \subseteq \mathcal{A}$, see for example [5], [7] and the references given there. Starting with Reid [8] various authors have studied Riccati equations in ordered spaces, see for example [1], [4], [6], [7], [12].

2. Ordered spaces

First, let $(E, \|\cdot\|)$ be a Banach space with topological dual space E^* . A wedge W is a nonempty closed convex subset of E with $\lambda W \subseteq W$ ($\lambda \geq 0$). A wedge K is called a cone if in addition $K \cap (-K) = \{0\}$. Now let E be ordered by a cone K , that is we consider the ordering defined by $x \leq y : \iff y - x \in K$. For $x \leq y$ let $[x, y]$ denote the order interval of all z with $x \leq z \leq y$. Analogously we define $[x, \infty)$ for $x \in E$. A cone K is called normal if $0 \leq x \leq y \Rightarrow \|x\| \leq \alpha \|y\|$ for a constant $\alpha \geq 1$. If K is normal

1991 *Mathematics Subject Classification*: 34A40, 34G20.

Key words and phrases: Riccati differential equations, ordered Banach algebras, quasimonotonicity.

each order interval $[x, y]$ is bounded, and in a finite dimensional spaces each cone is normal.

Let K^* denote the dual wedge of K , that is the set of all $\varphi \in E^*$ with $\varphi(x) \geq 0$ ($x \geq 0$).

If D is a subset of E , a function $g : D \rightarrow E$ is called quasimonotone increasing (qmi for short) on D , in the sense of Volkmann [14], if

$$x, y \in D, x \leq y, \varphi \in K^*, \varphi(x) = \varphi(y) \implies \varphi(g(x)) \leq \varphi(g(y)).$$

A function $g : [0, T] \times D \rightarrow E$ is called qmi on D if $x \mapsto g(t, x)$ is qmi on D for each $t \in [0, T]$.

Now, if \mathcal{A} is a Banach algebra with unit $\mathbf{1}$, a cone K is called an algebra cone if $\mathbf{1} \in K$, and $K \cdot K \subseteq K$. In the sequel let \mathcal{A} be ordered by such a cone. We define

$$Q_+ := \{a \in \mathcal{A} : \exp(ta) \geq 0 \ (t \geq 0)\}, \quad Q_\pm := Q_+ \cap (-Q_+).$$

To connect this setting with operator algebras consider a Banach space E ordered by a total cone K_E , that is $\overline{K_E - K_E} = E$. Then the Banach algebra $L(E)$ (the continuous endomorphisms on E with $\mathbf{1} = I := id_E$) is ordered by the algebra cone

$$K = \{A \in L(E) : Ax \geq 0 \ (x \geq 0)\}.$$

Moreover, according to classical results on differential inequalities [15], in this case $A \in Q_+$ if and only if $x \mapsto Ax$ is qmi.

3. Results

Let f be as in (1). Since f is locally Lipschitz continuous in x , each initial value problem $u'(t) = f(t, u(t))$, $u(0) = u_0 \in \mathcal{A}$ is uniquely solvable on an interval which is not extendable to the right, that is we have a unique solution

$$u(\cdot, u_0) : [0, \omega(u_0)) \rightarrow \mathcal{A}.$$

Note that a closed and convex subset $C \subseteq \mathcal{A}$ is called invariant for the equation $u'(t) = f(t, u(t))$, if $u(t, u_0) \in C$ ($t \in [0, \omega(u_0))$) for each $u_0 \in C$. We will prove the following invariance theorem.

THEOREM 1. 1. *Let f be as in (1) with*

$$a(t) \in K, b_1(t), b_2(t) \in Q_+, c_1(t), c_2(t) \in K, d(t) \in \mathcal{A},$$

for all $t \in [0, T]$. Then f is qmi on K . If in addition $d(t) \in K$ for all $t \in [0, T]$, then K is invariant.

2. *Let f be as in (1) with*

$$a(t) \in Q_\pm \cap K, b_1(t), b_2(t) \in Q_+, c_1(t), c_2(t) \in K, d(t) \in \mathcal{A},$$

for all $t \in [0, T]$. Then f is qmi on Q_+ . If in addition $f(t, z) \geq 0$ ($t \in [0, T]$) for some $z \in Q_+$, then $[z, \infty)$ is invariant.

3. Let $\mu \in C([0, T], \mathbb{R})$ with $\mu(t) > 0$, and let f be as in (1) with

$$a(t) = \mu(t)\mathbf{1}, \quad b_1(t), b_2(t) \in Q_{\pm}, \quad c_1(t), c_2(t) \in Q_{\pm} \cap K,$$

$$(2) \quad 2\mu(t)d(t) - (b_1^2(t) + b_2^2(t)) \in Q_+,$$

for all $t \in [0, T]$. Then f is qmi on Q_+ (by 2.), and Q_+ is invariant.

By means of Theorem 1 we will prove:

THEOREM 2. Let f be as in one of the cases in Theorem 1, hence C is invariant, with $C = K$ or $C = [z, \infty)$ or $C = Q_+$, respectively.

If $u_0 \in C$ and $u_0 \leq v_0$, then $u(t, u_0) \leq u(t, v_0)$ as long as both solutions exist. In particular, if K is normal $\omega(u_1) \geq \min\{\omega(u_0), \omega(v_0)\}$ for each $u_1 \in [u_0, v_0]$.

We will give a discussion of our results together with some examples in the last section of this paper.

4. Preliminaries

For an ordered Banach algebra \mathcal{A} we define

$$H_+ := \{a \in \mathcal{A} : \exists \lambda \in \mathbb{R} : a + \lambda\mathbf{1} \geq 0\}.$$

Note that $H_+ \subseteq Q_+$ (but i.g. $H_+ \neq Q_+$, [10]).

PROPOSITION 1. In \mathcal{A} the following assertions are valid:

1. Q_+ is a wedge.
2. Q_{\pm} is a closed subspace of \mathcal{A} (i.g. not a subalgebra).
3. $Q_+ = \overline{H_+}$.
4. $a \in Q_+ \iff a \mapsto ax$ is qmi on $\mathcal{A} \iff x \mapsto xa$ is qmi on $\mathcal{A} \iff \varphi(a) \geq 0$ for each $\varphi \in K^*$ with $\varphi(\mathbf{1}) = 0$.
5. $a \in Q_{\pm} \Rightarrow a^2 \in Q_+$ (i.g. neither $a^2 \in K$ nor $a^n \in Q_+$ for $n > 2$).
6. $a \in Q_+ \Rightarrow [a, \infty) \subseteq Q_+$.
7. $x \in Q_+, a \in Q_{\pm} \cap K \Rightarrow ax \in Q_+, \text{ and } xa \in Q_+$.
8. $x \in Q_+, a \in Q_{\pm}, \varphi \in K^*, \varphi(x) = \varphi(\mathbf{1}) = 0 \Rightarrow \varphi(x^2/2 + ax + a^2/2) \geq 0, \text{ and } \varphi(x^2/2 + xa + a^2/2) \geq 0$.
9. $a, c_1, c_2 \geq 0 \Rightarrow x \mapsto xax$ is increasing on K and $x \mapsto c_1 x c_2$ is increasing on \mathcal{A} .

REMARK. By 5. in Proposition 1, (2) implies $d(t) \in Q_+$ ($t \in [0, T]$), whereas $f(t, z) \geq 0$ as in part 2. of Theorem 1 is possible even if $d(t) \notin Q_+$.

Proof. For 1.-5. see [3], Theorem 1.

6. Follows from 4. since if $b \geq a$, then $\varphi(b) \geq \varphi(a) \geq 0$ for each $\varphi \in K^*$ with $\varphi(\mathbf{1}) = 0$.

7. According to 3. there is a sequence (x_n) in H_+ with limit x as $n \rightarrow \infty$. Let $\lambda_n > 0$ be such that $x_n + \lambda_n \mathbf{1} \geq 0$. Then, $0 \leq (x_n + \lambda_n \mathbf{1})a$, hence $x_n a \geq -\lambda_n a \in Q_+$. Therefore $x_n a \in Q_+$ by means of 6., and $xa \in Q_+$ since Q_+ is closed. Analogously $ax \in Q_+$.

8. We have $\exp(ta) \exp(tx) \geq 0$ ($t \geq 0$). Since $\varphi(a) = 0$ we have

$$0 \leq \lim_{t \rightarrow 0^+} \frac{\varphi(\exp(ta) \exp(tx))}{t^2} = \varphi(x^2/2 + ax + a^2/2).$$

For the second inequality consider $\exp(ta) \exp(tx)$.

9. follows immediately from the properties of an algebra cone. ■

For some further investigations on Q_+ and Q_\pm in matrix algebras see [2].

Next, let $a, b_1, b_2, c_1, c_2, d \in \mathcal{A}$, and let $g : \mathcal{A} \rightarrow \mathcal{A}$ be defined by

$$(3) \quad g(x) = xax + b_1x + xb_2 + c_1xc_2 + d.$$

PROPOSITION 2. 1. Let $a \in K$, $b_1, b_2 \in Q_+$, $c_1, c_2 \in K$, and $d \in \mathcal{A}$, then g defined by (3) is qmi on K .

2. Let $a \in Q_\pm \cap K$, $b_1, b_2 \in Q_+$, $c_1, c_2 \in K$, and $d \in \mathcal{A}$, then g defined by (3) is qmi on Q_+ .

Proof. 1. is an immediate consequence of 4. and 9. in Proposition 1. To prove 2. it is sufficient to prove that $x \mapsto xax$ is qmi on Q_+ . Let $y \geq x \in Q_+$ and $\varphi \in K^*$ with $\varphi(x) = \varphi(y)$. Since $a \geq 0$ we have $ax \leq ay$ and $xa \leq ya$. Since $a \in Q_\pm$ part 4. in Proposition 1 gives $\varphi(ax) = \varphi(ay)$ and $\varphi(xa) = \varphi(ya)$. Hence $\varphi(xax) \leq \varphi(xay)$ since $x \in Q_+$, and $\varphi(xay) \leq \varphi(yay)$ since $y \in Q_+$, again by means of 4. in Proposition 1. ■

Now, let E be a Banach space, and let $g : [0, T) \times E \rightarrow E$ be continuous and locally Lipschitz continuous in x in the following sense: To each $(t_0, x_0) \in [0, T) \times E$ there exist real constants $\tau, r, L > 0$ such that

$$\|g(t, x) - g(t, y)\| \leq L\|x - y\| \quad (\|x - x_0\|, \|y - x_0\| < r, t \in [t_0, \tau]).$$

For such functions the following invariance theorem is valid [15], Satz 1:

PROPOSITION 3. If $C \subseteq E$ is a closed convex set, and

$$\begin{aligned} \varphi \in E^*, \varphi \neq 0, (t, x) \in [0, T) \times C, \varphi(x) &= \inf\{\varphi(y) : y \in C\} \\ &\implies \varphi(g(t, x)) \geq 0, \end{aligned}$$

then C is invariant for $u'(t) = g(t, u(t))$.

5. Proofs

Proof of Theorem 1: The quasimonotonicity of f on K or Q_+ follows from Proposition 2 in all three cases.

1. We apply Proposition 3. Let

$$\varphi \in E^*, \varphi \neq 0, (t, x) \in [0, T) \times K, \varphi(x) = \inf\{\varphi(y) : y \in K\}.$$

We have $\varphi(x) \leq \varphi(\lambda k)$ for each $k \in K$ and each real $\lambda \geq 0$. Hence $\varphi(k) \geq 0$, that is $\varphi \in K^*$. In particular $0 \leq \varphi(x) \leq \varphi(0)$, that is $\varphi(x) = 0$. Now $x \mapsto f(t, x)$ is qmi on K , hence

$$\varphi(f(t, x)) \geq \varphi(f(t, 0)) = \varphi(d(t)) \geq 0.$$

2. Let

$$\varphi \in E^*, \varphi \neq 0, (t, x) \in [0, T) \times [z, \infty), \varphi(x) = \inf\{\varphi(y) : y \in [z, \infty)\}.$$

We have $\varphi(\lambda k) \geq \varphi(x) - \varphi(z)$ for $k \in K$ and $\lambda \geq 0$. Hence $\varphi \in K^*$, and $\varphi(x) = \varphi(z)$. Since $x \mapsto f(t, x)$ is qmi on Q_+ we have

$$\varphi(f(t, x)) \geq \varphi(f(t, z)) \geq 0.$$

3. Let

$$\varphi \in E^*, \varphi \neq 0, (t, x) \in [0, T) \times Q_+, \varphi(x) = \inf\{\varphi(y) : y \in Q_+\}.$$

Again $\varphi \in K^*$. Moreover $\varphi(\lambda \mathbf{1}) \geq \varphi(x)$ for all $\lambda \in \mathbb{R}$. Hence $\varphi(\mathbf{1}) = 0$ and $\varphi(x) \leq 0$. Since $\lambda x \in Q_+$ for all $\lambda \geq 0$ we have $\varphi(x) \leq 2\varphi(x)$, therefore $\varphi(x) = 0$. According to 8. in Proposition 1

$$0 \leq \varphi \left(x^2 + \frac{b_1(t)}{\mu(t)}x + x \frac{b_2(t)}{\mu(t)} + \frac{b_1^2(t) + b_2^2(t)}{2\mu^2(t)} \right).$$

Since $h(t) := d(t) - (b_1(t)^2 + b_2(t)^2)/(2\mu(t)) \in Q_+$ we get

$$\varphi \left(\mu(t)x^2 + b_1(t)x + xb_2(t) + \frac{b_1^2(t) + b_2^2(t)}{2\mu(t)} + h(t) \right) \geq 0.$$

Moreover by 7. in Proposition 1 we have $c_1(t)xc_2(t) \in Q_+$, therefore

$$\varphi(c_1(t)xc_2(t)) \geq 0.$$

Altogether $\varphi(f(t, x)) \geq 0$. ■

Proof of Theorem 2: We adapt the method in [15], Satz 2, to our case. Let $u_0 \in C$, $u_0 \leq v_0$ (hence $v_0 \in C$), and let u, v be the solutions of the corresponding initial value problems. According to Theorem 1 $u(t), v(t) \in C$ as long as these solutions exist. We set $h(t) = v(t) - u(t)$ ($0 \leq t < \min\{\omega(u_0), \omega(v_0)\}$). Then $h(0) \geq 0$ and h solves $h'(t) = g(t, h(t))$ with

$$g(t, x) = f(t, u(t) + x) - f(t, u(t)).$$

Since $u(t) \in C$, $x \in K$ implies $u(t) + x \in C$ in all three cases, the function g is qmi on K . Let

$$\varphi \in E^*, \varphi \neq 0, (t, x) \in [0, T] \times K, \varphi(x) = \inf\{\varphi(y) : y \in K\}.$$

Then $\varphi \in K^*$, $\varphi(x) = 0$, and therefore

$$\varphi(g(t, x)) \geq \varphi(g(t, 0)) = 0.$$

According to Proposition 3 we get $h(t) \geq 0$, that is $u(t) \leq v(t)$ for $0 \leq t < \min\{\omega(u_0), \omega(v_0)\}$. If K is normal each solution starting at $u_1 \in [u_0, v_0]$ is bounded on compact subintervals of $[0, \min\{\omega(u_0), \omega(v_0)\})$ and by standard reasoning $\omega(u_1) \geq \min\{\omega(u_0), \omega(v_0)\}$. ■

6. Examples

1.) First we consider the classical case $E = \mathbb{R}^n$ ordered by the natural cone $K_E = \{x \in \mathbb{R}^n : x_1, \dots, x_n \geq 0\}$. Then $\mathcal{A} = L(\mathbb{R}^n)$ is ordered by the corresponding cone K with $A = (a_{ij}) \in K$ if and only if $a_{ij} \geq 0$. Moreover $A \in Q_+$ if and only if $a_{ij} \geq 0$ for $i \neq j$, and $A \in Q_\pm$ if and only if A is diagonal. In this case the invariance of K as in part 1. of Theorem 1 is due to Reid [8], Theorem 9.2.

Part 2. of Theorem 1 says that a restriction of the quadratic term lifts the area of quasimonotonicity from K to Q_+ . In this example $Q_\pm \cap K$ is the set of diagonal matrices with nonnegative entries. We admit that in general $Q_\pm \cap K$ is rather small, in many cases $Q_\pm \cap K = \{\lambda \mathbf{1} : \lambda \geq 0\}$. On the other hand Q_+ is always bigger than K .

Consider for example $f(t, W) = W^2 - 2 \sin(t)W$ and

$$Z = \begin{pmatrix} -1 & 4 & 4 \\ 4 & -1 & 4 \\ 4 & 4 & -1 \end{pmatrix}.$$

Then $f(t, Z) \geq 31I \geq 0$ ($t \geq 0$). Hence, each solution $W : [0, \omega(W_0)) \rightarrow L(\mathbb{R}^3)$ of $W'(t) = W^2(t) - 2 \sin(t)W(t)$, $W(0) = W_0 \geq Z$ stays in $[Z, \infty)$.

2.) Consider \mathbb{R}^n ordered by the n -dimensional ice-cream cone

$$K = \{x \in \mathbb{R}^n : x_n \geq \sqrt{x_1^2 + \dots + x_{n-1}^2}\},$$

and $\mathcal{A} = L(\mathbb{R}^n)$. Here, $A = (a_{ij}) \in Q_\pm$ if and only if $a_{ii} = a_{jj}$ ($1 \leq i, j \leq n$), $a_{ij} = -a_{ji}$ ($1 \leq i, j \leq n-1$, $i \neq j$), and $a_{nj} = a_{jn}$ ($1 \leq j \leq n-1$), see [11]. See also [11] for a characterization of Q_+ . Thus, if $n = 3$ we have $A \in Q_\pm$ if

and only if it is of the form

$$\begin{pmatrix} \alpha & \beta & \gamma \\ -\beta & \alpha & \delta \\ \gamma & \delta & \alpha \end{pmatrix}.$$

For example, if $B_1(t), B_2(t)$ are of this form ($t \in [0, T]$), then Q_+ is invariant for

$$W'(t) = W^2(t) + B_1(t)W(t) + W(t)B_2(t) + \frac{B_1^2(t) + B_2^2(t)}{2} + r(t)I$$

for any function $r \in C([0, T], \mathbb{R})$, according to 3. in Theorem 1.

3.) Consider the (commutative) Banach algebra $\mathcal{A} = l^1(\mathbb{Z})$, with norm and multiplication

$$\|x\| = \sum_{k \in \mathbb{Z}} |x_n|, \quad (x * y)_n = \sum_{k \in \mathbb{Z}} x_{n-k} y_k,$$

and unit $\mathbf{1} = (\delta_{0,n})_{n=-\infty}^{\infty}$. Let \mathcal{A} be ordered by the (normal) algebra cone $K = \{x \in \mathcal{A} : x_n \geq 0 \ (n \in \mathbb{Z})\}$. Then $H_+ = \{x \in \mathcal{A} : x_n \geq 0 \ (n \neq 0)\}$, and this set is closed, hence $Q_+ = H_+$ by 3. in Proposition 1. Consider the Riccati equation

$$u'(t) = u(t) * u(t) + \beta(t)u(t) + \delta(t)\mathbf{1}.$$

with $\beta, \delta \in C([0, T], \mathbb{R})$. Here $a(t) = \mathbf{1}, b_1(t) = \beta(t)\mathbf{1}, b_2(t) = c_1(t) = c_2(t) = 0$, and $d(t) = \delta(t)\mathbf{1}$. According to 3. in Theorem 1 Q_+ is invariant, since

$$d(t) - \frac{b_1(t)^2 + b_2(t)^2}{2} = \left(\delta(t) - \frac{\beta^2(t)}{2}\right)\mathbf{1} \in Q_+ \quad (t \in [0, T]).$$

4.) A well studied case that is not covered by the Banach algebra frame is the following. Consider $E = S_n$, the Banach space of all real symmetric matrices (which is not a Banach algebra), ordered by the cone K of all positive semidefinite matrices. Then $f : [0, T] \times S_n \rightarrow S_n$ defined by

$$f(t, W) = WA(t)W + B_1(t)W + WB_2(t) + C_1(t)WC_2(t) + D(t)$$

is qmi on the whole space S_n if $A(t) \in S_n$, $B_1(t) = B_2^T(t) \in L(\mathbb{R}^n)$, $C_1(t) = C_2^T(t) \in L(\mathbb{R}^n)$, and $D(t) \in S_n$ for all $t \in [0, T]$. For this setting see for example [1], [4], [8], [9], [12], [13], and [7] for symmetric operators in Hilbert spaces.

References

- [1] W. A. Coppel, *Disconjugacy*, Lect. Notes Math. 220, Springer, Berlin, 1971.
- [2] P. Gritzmann, V. Klee, B.-S. Tam, *Cross-positive matrices revisited*, Linear Algebra Appl. 223/224 (1995), 285–305.

- [3] G. Herzog, R. Llemert, *On quasipositive elements in ordered Banach algebras*, Stud. Math. 129 (1998), 59–65.
- [4] D. H. Jacobson, *New conditions for boundedness of the solution of a matrix Riccati differential equation*, J. Diff. Eq. 8 (1970), 258–263.
- [5] R. Redheffer, *On the relation of transmission-line theory to scattering and transfer*, J. Math. Phys. 41 (1962), 1–41.
- [6] R. Redheffer, *Matrix differential equations*, Bull. Amer. Math. Soc. 81 (1975), 485–488.
- [7] R. Redheffer, P. Volkmann, *Differential equations in operator algebras II. Invariance of the order cone*, J. Diff. Eq. 130 (1996), 356–367.
- [8] W. T. Reid, *Riccati Differential Equations*, Academic Press, New York, 1972.
- [9] H. Schneider, *Positive operators and an inertia theorem*, Numerische Math. 7 (1965), 11–17.
- [10] R. J. Stern, *Generalized M-matrices*, Linear Algebra Appl. 41 (1981), 201–208.
- [11] R. J. Stern, H. Wolkowicz, *Exponential nonnegativity on the ice cream cone*, SIAM J. Matrix Anal. Appl. 12 (1991), 160–165.
- [12] A. N. Stokes, *Differential inequalities and the matrix Riccati equation*, Bull. Austral. Math. Soc. 9 (1973), 315–317.
- [13] A. N. Stokes, *A special property of the matrix Riccati equation*, Bull. Austral. Math. Soc. 10 (1974), 245–253.
- [14] P. Volkmann, *Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen*, Math. Z. 127 (1972), 157–164.
- [15] P. Volkmann, *Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raum*, Math. Ann. 203 (1973), 201–210.

MATHEMATISCHES INSTITUT I
 UNIVERSITÄT KARLSRUHE
 D-76128 KARLSRUHE, GERMANY
 e-mail: Gerd.Herzog@math.uni-karlsruhe.de
 e-mail: Roland.Lemmert@math.uni-karlsruhe.de

Received November 9, 2001.