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THE CAUCHY PROBLEM FOR CERTAIN GENERALIZED
DIFFERENTIAL EQUATIONS OF SECOND ORDER

Abstract. The present paper concerns some generalized differential equations of sec-
ond order for mappings from a subset of Banach space into a Banach space. The subject
matter refers to studies of generalized differential equations of the first order submitted
in [4].

Let X,Y be Banach spaces over the field R and let U, V be open subsets of X and Y,
respectively.

Let hy, ho be mappings from U into X. In this paper we study the Cauchy problem

D*f(z)(ha(z), h1(z)) = F(z, Df (z)(h1(z))), z€U

for mappings from a subset of a Banach space into a Banach space, which are defined in
C? class, at a neighbourhood of nonsingular point (that is, at a neighbourhood of such
point zg for which hj(zg) # 0 and ha(zo) # 0).

1. Introduction

Let a; # 0 and a2 # 0 be linearly independent vectors from a Banach
space X over a field R and let L,, = {ka;; k € R} (i=1, 2).
Any (fixed in further considerations) subspace complementary to Ly, € Lq,
will be denoted by Xig, 4,)-

Let X[f;’l’aﬂ = {z + z0; z € X[q, 4.} Where 2 is a fixed point of X. By

B(z,r) we shall denote the ball with radius » > 0 and centre z € X; let
X[I;OI,OQ] (T) = X[::;(i,azl ﬂ B(:L‘(), T).
DEFINITION 1.1. The mappings Yja; 0] * X = X{a,a9)s Sa1 1 X 2 R, tg,
X — R such that
(1) 2 = Yoy an)(2) + 501 (2)1 + tey (@) for wE X
will be called the projection operators (compare {4}, p.6).
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REMARK 1.1. If X[ ,,] is a closed subspace of X, then the projection oper-
ators are continuous and the space Lq, @ Lo, D X[4, q,) is isomorphic to X
(see e.g. (6], p.372).

REMARK 1.2. Let U be an open subset of X and fj a function from X [?1 az) "
U into a Banach space Y. Such a function will be called differentiable on
X[‘fz“haz] AU if the function fo, where fo(z) = fo(z + o) for x € X5, 4, NU,

is differentiable on X[, ,,) NU.

2. The Cauchy problem for generalized differential equations of
second order, at a neighbourhood of a nonsingular point

Let U and V be open subsets of Banach spaces X and Y over a field R, re-
spectively, k1 and hy mappings from U into X, and F a mapping from U x V
into Y. Let o # 0 be any point of U, hy(zo) # 0 and ha(zo) # 0 linearly in-
dependent vectors from X and X, (z0),ha(zo)) @ Certain (fixed in further con-
siderations) closed space such that X = Ly (3,) ® Lay(z0) D X[h1(z0),h2(z0)]-
Let moreover f; be a function from [Lp, (5,) @ X [zh"l( . (zo)]] NU into V and
f2 a function from [Lp,(4,) B X [“;'Lol (wo),hz(zo)]] NU into V.

With the above notations and assumptions we can formulate the follow-

ing

THEOREM 2.1. Let zg € U. If hy, ho, F, f1, f2 are continuously differentiable
(wherever defined) and the condition Dhy{z)(h2(z)) = Dho(z)(h1(z)) = 0
takes place for x € U. Then there ezists a neighbourhood U1(zo) of the point
zo such that the Cauchy problem

(2)  D*f(z)(ha(z), (z)) = F(z, Df(z)(ha(2))) for = € Unr(zmo)

(2) Df(z)(h1(2)) = fi(e) for @ € [Lny(eo) D X[ (o) ha(eoy] N U1(@0)
(2")  f(2)=falz) for @ € [Lhyae) D X (20)hatean] N U1(zo):
has ezactly one solution f : Ui(zo) — Y in the class C2.

Proof. First, consider the system of equations

—a%v(s,t,:c) = h(v(s,t, 7))
(3) 8
av(s,t, x) = ha(v(s, t,z))

with the initial condition
(3) v(0,0,z) =z, where z€ Xﬁzﬁ(zo),hz(zo)l nU,
forv:RxRx Xiz;lol(zo),h2(10)] - U.
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From the assumptions concerning the mappings h; and hy and the Frobe-
nius - Diéudonne theorem (3] it follows that for any zo € U there ex-
ist numbers €7 > 0,e2 > 0, 7 > 0 such that the problem (3) — (3') has
exactly one continuously differentiable solution on (—¢ej,€1) X (—€2,€2) X

1‘
Kb (z0),ha(ao)) (7)-

Next, consider the function v, where v(s,t,%) =
(s,t,zo + T) € (—€1,€1) X (—€2,€2) X [hl(-TO) ha( zo)]( T).

Notice that

v(s,t,zp + Z) for

(,;9~ (0 0 :Eo) = I
where I is the identity operator on Xy and

d . 0
—a—sv(0,0, zo) = h1(zo) and av(0,0,zo) = ha(z0).

Since hj(zg) # 0 and hy(zg) # O are linearly independent vectors from X,
Dv(0,0, zo) is linear homeomorphism from Rx R x X onto X. By the inverse
function theorem (Theorem 10.2.5 of [2]), there exist e > 0,eq > 0,79 > 0
and a neighbourhood Uy C U of zg such that v is a diffeomorphism of class
C! from (—ef,e0) X (—€0,€0) X X{hy(zo)ha(zo)](T0) onto Up. Set v~}(z) =
(T1(z), T2(z), Y(z)) for = € Up. Then v~! is a continuously differentiable

function from Uy onto (—¢p,€0) X (—€0,€0) X X[j, (5) ha(z0)) (T0)-
Now, set F‘(s,t,m,y) = F(v(s,t,z),y) for y € V and consider the Cauchy

problem

@) { %ﬁ(s,t,m) = F(s,t,z,@(s,t,z) + fi(z + shi(zo)))
w(s,0,z) =0 for (s,z) € (—€0,€0) X X, (20) ha(zo)] (T0)-

From Theorem 10.8.1 and Theorem 10.8.2 [2] it follows that there exist
numbers €3 > 0 (e3 < min(eg,ep)) and 71 > 0 (r; < 7p) such that the
problem (4) has exactly one solution @ = (s,#,z) which is defined and
continuously differentiable on (—¢3,€3) x (—€3,€3) X X[’;l"l (z0),ha(z0)] (r1) and
satisfies w(s,0,z) = 0.

Now set
(5) W(s,t,x) = B(s,t,z) + fi(z + shi(zo))
for (s,t,z) € (—e3,£3) X (—€3,€3) X X[hl(zo) ha(zo)] (r1). Then @ : (—€3,€3) X
(—e3,63)x X [?l(zo),hz (IO)](rl) — X is differentiable and satisfies the equation

(6) %@(s,t,z) = ﬁ'(s,t, z,w(s,t,z))
with the condition
(6") w(s,0,z) = fi(z + shi(zo))-
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Next, consider the function

s

(7) w(s,t,z) = S'&?(T, t,z)dt + fo(z + tha(zo)).
0
The above function satisfies the equation
0.0 0
(8) 5{ ’a_sw(s’taz)] - F(U(S,t,.’E),a'LU(S,t,.’B))
with the conditions
0
(8) &w(s, 0,z) = fi(z + shi(zo))
and
(8") w(0,t,z) = fa(z + tha(zo)).

Now, let Uy(zo) = v({—e€3,€e3) X (—e3,€3) ¥ X[ffl(xo)’hz(mo)](rl)), where v is
the solution of the problem (3) — (3'). Define f : Ui(zo) — X by

(9) f(z) = w(Ti(z), Ta(2), V(z)) for =z € Ui(mo).
We now prove that f fulfils the equation (2). Fix z € Uj(zq). From the
definitions of the mappings T1,Ts,Y it follows that for s € T1(Ui(zo)) and
t € T5(U1(zo)) we have
Ti(v(s,t,Y(z))) = s
(10) Th(v(s,t,Y(z))) =t
Y(v(s,t,V(z))) =Y(z) for z € X.
Differentiating (10) with respect to s for s = Ti(z), t = T(z) and with
respect to t for s = T1(z), t = Tz(z) we obtain
( DTi(z)(hi(z)) = 1
DTy(z)(ha(z)) =0
DTy(z)(ha(z)) =0
DTy(z)(ho(z)) =1
DY(z)(h1(z)) =0
\ DY(z)(h2(z)) = 0.

Therefore, due to the form (9) of the solution f we have

(11)

Dj(z) = 5-w(Ty(2), To(@), Y(@) DTy(2) + gru(Ti @), To(e), (=) DT (z)
(12) + Dyw(Th(z), Ta(z), Y(z)) DY ().

By (11) the equation (12) takes the form

(13) Df(a)(s(@)) = 5-u(T3(2), To(z), Y(z).
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Taking into account the equality (7) we obtain

(14) Df(z)(h1(z)) = W(Ti(z), Ta(z), Y(2)),
hence
(15) D*f(z)(h1(z)) + Df(z)(Dhi(z))

- %G(Tl(m),Tz(z),y(w))DTl(“’)

+ %@(Tl (), Ta(2), V(2)) DT2(z)

+ D3w(Ty(z), Ta(z), Y(2)) DY (z).
By (11) the equation (15) takes the form

(16) D*f(z)(ha(z), ha(2)) = %@(Tl(w),Tz(w),y(w))-

Taking into consideration the equality (6) we have

(17D*f(2)(ha(2), h1(2)) = F(Ti(2), Ta(z), Y(2), @(Ti (=), Ta(), Y(2))).
Then, by (14) we obtain

D f(z)(ha(z), i (2)) = F(Ti(z), Ta(e), Y(z), Df (2)(h1(2))))-

Taking into consideration that v(T1(z), Ta(z), Y(z)) =  for z € Ui(zo) we
have

D%f(z)(ho(z), h1(z)) = F(z, Df(z)(h1(z))) for z € Uy(zo).

Consequently, the function f given by the formula (7) fulfills the equation
(2). Naturally, the conditions (2') and (2") are also fulfilled. The uniqueness
of the solution of the equation (2) with the conditions (2') and (2”) follows
from the method of the construction of this solution (see the form (7) of the
solution f) and from Theorem 10.8.1 and Theorem 10.8.2 [2].

3. Form of solution of certain generalized differential equations of
second order

Let U and V be open subsets of Banach spaces X and Y over a field
R, respectively, h; and hs mappings from U into X. Let 29 # 0 be any
point of U, hy(zo) # 0 and ho(zg) # 0 linearly independent vectors from
X and X[, (z0),ha(z0)) @ Certain (fixed in further considerations) closed space
such ‘that X = Lpy(20) B Lhy(zo) D X|h1(z0),h2(z0))- L€t moreover f1 be a
function from [Lyp, (q) D X [”;'1"1 ( m0)1h2(mo)]] N U into V and f; a function from

[Lha(zo) @Xﬁg(wo),hz(wo)}] NU into V.
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Consider the system of equations (3)

%v(s,t,z) = ha(v(s,¢,z))
%v(s,t,m) = ha(v(s, t,z))

with the initial condition (3')

U(O,O,m) =z, where z€ X[hl(xo) ha(zg)] nvu,

forv: R xR x Xﬁl"l(zo)’hz(wo)l — U (compare the proof of Theorem 2.1).
From the assumptions concerning the mappings h; and h; and the Frobe-
nius - Diéudonne theorem [3] it follows that for any zg € U there exist num-
bers €1 >0,e2 >0, >0 such that the problem (3) — (3’) has exactly one con-
tinuously differentiable solution on (—¢e1,€1) X (—€2,€2) X Xﬁl"l(zo)’hz(mn(r).
By the inverse function theorem (Theorem 10.2.5 of [2]), there exist ey >
0,eq > 0,79 > 0 and a nexghbourhood Us C U of zg such that v is a dif-
feomorph1sm of class C?! from (—ep, g) % (—ep,€8) X X[hl(zo),hz(za)](TO) onto
Up. Set v~1(z) = (T1(z), Tx(z), Y(z)) forz € Up. Then v~ ! is a continuously
differentiable function from Up onto (—€p, £g) X (—€0, €0) X X{g, (24) iz (wo)] (T0)-
With the above notations and assumptions we can formulate the follow-
ing
THEOREM 3.1. Let zg € U. If hy,ha, f1, f2 are continuously differentiable
functions (wherever defined) and the condition

Dhy(z)(h2(z)) = Dha(z)(h1(z)) = 0

takes place for x € U. Then there exists a neighbourhood Us(xzg) of the point
zo such that the Cauchy problem

(18) D?f(x)(ha(z), ha(z)) = f(z) for € Us(xo),
(18") Df(z)(hi(z)) = fi(z) for € [Lp,(z0) @Xﬁﬁ(mo)m(mo)l] N Ua(zo),
(18”) f(z) = fa(z) for z¢€ [th(mo) ®X[a/:‘to1(20),h2(zo)]] N Ua(zo)

has ezactly one solution f : Us(zg) — Y in the class C? and it has the form

(19) f(2) = f2(V(2))Jo(2iy/T1(2)T2(x))

Tl(z)

+ | Jo@iy/(Ti(@) - $)Ta(2) fi(Y() + sha(zo))ds
0

T

+ Jo (2i/T1()(Ta(=) ~ )5, fz(y(:c)—i-thg(zo))dt
0

for z € X, where Jy is the Bessel function of zero order.
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Proof. First, we prove that if f is a solution of (18)—(18"), then it has the
form (19). Consider the equation
2

(20) 5tDs

—w(s,t,z) = w(s,t,z)
with the conditions

(20)  gu(s,0,3) = file + sh(zo)

for (s,z) € (—&g,€p) X X (o) ha(a0)] (T0):
(20")  w(0,¢,7) = fa(z + tha(zo))

for (t,2) € (—€0,€0) X X[, (z0) ha(zo) (T0)-
The Cauchy problem (20)—(20") has exactly one solution and it has the form

(21)  w(s,t,z) = fo(z)Jo(2iVst) + | Jo(2i (s—s)t)gs (3,0, z)ds

0

+§Jo 14/ s( t_T))(fr (0,7, z)dr
0
) %

for (s,t,z) € (—£3,€3) x (—£3,€3) % X[hl(zo) hz(mo)](”) where €5 > 0(€3 <
min(eg,€4)) and ro > 0 (r2 < o) (see [1]). Therefore

(22) w(s,t,z) = fa(z)Jo(2iVst) + § Jo(2i4/ (s = 3)t) fa(z + Shi(zo))ds

0
t
+ 1 Jo(@ir/5(6 = 1) 5l + Tha(ao)) dr.
0

Now, let Us(zq) = v((—&3,&3) x (—£3,€3) ¥ Xﬁlol(zo)th(Io)](rz))’ where v is
the solution of the problem (3) — (3'). Define f : Ua(zo) — X by

(23) f(z) = w(Ti(z), Ta(z), Y(z)) for =z € Us(wo).
We now prove that f fulfils the problem (18)-(18"). Fix z € Uy(zg). From
the definitions of the mappings T7,T%,) it follows that for s € T1(Uz2(zo))

and ¢ € Ty(U2(zo)) the equalities (10) and (11) are true (see the proof of
Theorem 2.1).

The function f given by the formula (19) is twice differentiable because
the function ®y,) defined by the following way

Py(z)(s,t) = fz(y(v(s,t,y(w)))J0(2i\/T1(v(s, t, Y(z))T2(v(s,t, V(2))))
Ty(u(s.£,Y(2)))
+ 1 @iy (Ti(s,t V() ~ HTa(u(s,t, Y(2))) ®

0
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o f1(Y(v(s,t,Y(x))) + 5hi(z0))d5

T2(U(svt:y(z)))

+ o Bo2iyTi(u(s, 6, V(@) (Ta((u(s, 8, V(@) — 7)) »
0

. a% FV0(s,t, V(x))) + Tha(x))dr,

it means the function ®y;(s,t) = f(v(s,t,Y(z)) for s,t € R, is twice
differentiable with respect to s and ¢, successively, for s,t € R. By the
equation (10) (see the proof of Theorem 2.1) we have

(24) @y(o)(s,t) = f2(¥(2))Jo(2iV/st) + | Jo(2i4/ (s — 8)) fi(x + Sha1(=0))d5

0

*]

¢
+ S Jo(2i4/s(t — T))%fg(:c + Thy(xg))dr for s,t€R.
0

From the definition of @y, (taking into consideration the equalities (10)
and (11) in the proof of Theorem 2.1 and the conditions concerning the
mappings h; and hg) it follows that

2
2 f(z) (ha(z), s (2)) = o=y (Ti (2), To(e)).

Simultaneously, by the theorem on differetiating of an integral with respect
to a parameter (see [5]) we obtain

22\/_)f2( Y(z)) + Jo(0) fa(z + shi(zo))

[Jo(2i4/ (s = 8)t)] f1(z + Shy(zo))dS
Jo(2i4/s(t - T))]aa—sz(m + 7ha(xo))dr for s,t € R

Therefore, taking into account that Jo(0) = 1 and Jy(y) = ~J1(y) fory € C
(see [7]) we have

A

0
5;‘1’3)(1-) (s,t) =

6
+

8’!@

+

Ot b O e 0

&’IQJ

2 ayp(st) = -?%zjl(zi@)fz(y(z))
J1(2i4/(s — 5)t)

J1(2i4/s(t — 7))Vt — T——f2(.’L‘ + Tha(zp))dr for s,t € R.

-t

f1 T+ shy (zo))ds

]

NG

(= NI I N e Y
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Then, taking into consideration that J,(y) = 3[Ja—1(y) — Jn+1(y)] for y €
C,n € N (see [7]) we obtain

82
9tds ‘I’y(z)(s t)

= == V) L) + 5 (2iVE) - B2V L)

N e 3 5
—-2—\/2(5)]1(27, (s—;)t)mfl(l‘—f-.‘.?hl(l'o))ds

R

Consequently, taking into account that ﬂlyﬂ = 3[Jo(y)+J2(y)] fory € C\{0}
(see [7]) we have

62
aas Y@ (Y

Jo(2t4/(s — 3)t) f1(z + Shy(zo))ds

t
S[Jo (2i4/s(t — 7)) — J2(214/s(t — T))]%fz(z + Tha(zo))dT
0

i

\/E(S)Jl(Zz\/s )2\/_6 fa(z + Tha(zo))dr.

+

O] - o;,a:n

Therefore
2

(25) s Byey(s,t) = Jo(2iv3D) o (V(a)

S

+ [ Jo(2iy/(s - 8)t) fr(z + Sha(z0))dS
0
)

+ { Jo(2i4/s(t — T))a—i_-fz(z + Tha(zo))dr.

0
Hence from the definition of ®y,) and from (24) and (25) it follows that f
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fulfils the equation (18). The conditions (18')-(18") are also fulfilled because
t

@y(z) (0,t) = fo(V(z)) + S Ea;fz(:l: + Tha(zo))dT = fa(z + tha(zo)),
0
and

[%Qy(z)(:c, t)] ‘ = fi(z + shi(zo))-

t=0
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