
DEMONSTRATIO MATHEMATICA 
Vol. XXXV No 4 2002 

Francesca Papalini, Nikolaos S. Papageorgiou 

ON THE SOLUTION SET 
OF A VECTOR DUFFING EQUATION 

Abstract. In this paper we consider a vector Duffing equation with periodic bound-
ary conditions. First we prove an existence result assuming on f(t,x) Caratheodory type 
conditions. Then by imposing also a monotonicity assumption we show that the solution 
set is acyclic. 

1. Introduction 
In this paper we study the following vector Duffing equation with peri-

odic boundary conditions 

This problem has been studied extensively in the scalar case. We refer 
to the works of J. Bebernes - M. Martelli [1], S. Fucik - V. Lovicar [2], 
C. Gupta [4], C. Gupta - J. Nieto - L. Sanchez [5], J. Mawhin - J. R. Ward 
[6], J. Nieto [7], J. Nieto - V.Rao [8], [9] and S. Tersian [10]. In almost all 
of these works / is assumed to be continuous and only C. Gupta - J. Nieto 
- L. Sanchez and J. Mawhin - J. R. Ward allow / to be a Caratheodory 
function. 

In this paper we consider the vector valued version of (1). Assuming a 
one-sided growth restriction in x on the Caratheodory function f(t, x) , we 
prove the existence of a solution for (1) using the Leray-Schauder alternative 
theorem. Then by imposing an additional restriction on / ( t , . ) we prove a 
structural result for the solution set of (1). Namely we show that is acyclic 
in the Sobolev space W M (T ,R N ) . 

( 1 ) 
x"(t) + cx'{t) = f{t, x(i)), a.e. on T = [0, ò] 

x(0) = x(b),x'(0) = x'(b) 
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Moreover, in contrast to C. Gupta - J . Nieto - L. Sanchez who worked 
with the Hilbert space L2(T, R + ) , here we develop the ¿^existence theory 
for the problem. We should point out that on the structural properties of 
the solution set of the scalar version of (1), the most general results can be 
found in the works of C. Gupta - J . Nieto - L. Sanchez [5], J . Nieto [7], and 
J.Nieto- V. Rao [8], [9]. 

2. Exis tence result 
First we prove an existence result for problem (1). We will need the 

following hypotheses on the function f . 

H{f) i : / : T x RN -> RN is a function such that 

(i) for every x G RN ,t —> f(t, x) is measurable; 
(ii) for almost all t G T, x —• f(t, x) is continuous; 
(iii) for every r > 0, there exists ipr G L1(T,R+) such that for almost all 

t G T and all x€RN with ||x|| < r, we have that || f(t, x)|| < <pr(t); 
(iv) there exists M > 0 such that if ||xo|| > M, then we can find 8 > 0 and 

T) > 0 such that for almost all t € T and all ||x — Xo|| < S, we have 
{f{t,x),x)N > T]. 

Theorem 1. If hypotheses H ( f ) i hold, then problem (1) has a solution and 
the solution set is weakly compact in W2,1(T,RN). 

P r o o f . Let D = {x E W 2 ' 1 ^ , ! ^ ) : x(0) = x(b),x'{0) = x'(b)} and let 
L : D C LX(T, RN) -> LX{T, RN) be defined by L(x) = -x" - ex'. 

Claim 1. For every x\, xi 6 D it follows that ||xi + L(xi) — X2 — £(x2)||i > 
n\\x\ — X2II1 for some n > 0. 

In what follows by ||.|| we denote the Euclidean norm in RN and by 
It - II* the I1-norm (i.e. if z = {zk)%=l e RN then ||z||, = Ek=M)- The 
two norms are equivalent, in other words there exist i?i,i?2 > 0 such that 

< IM| < i?2|kl|»> V® 6 RN. Let zi = xi - X2, we have 

b 
(2.1) \\z - z" - cz'lli = 5 ||z(t) - z"(t) - cz'{t)\\dt > 

0 
6 N b 
SIIz(t) - z"(t) - cz'(t)\\.dt = j Izfc(t) - 4(t) - cz'k(t)\dt. 
0 fc=l 0 

Fix an arbitrary k € {1 ,2 , . . . , N} and set 

Tfc+ = {t € T : zfc(t) > 0} and Tfc~ = {< G T : zk(t) < 0 } . 
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Then we have 
b 

(2.2) \\zk(t) - 4(t) - cz'k(t)\dt 
o 

> 5 \zk(t)-4(t)-cz'k(t)\dt+ \ \zk(t) - 4(t) - cz'k(t)\dt 

> 5 (zk(t) - 4(t) - cz'k(t))dt - S (zk(t) - 4(t) - cz'k(t))dt 

b 
= SMt)M<- !(4'(*) + <4(t))dt+ \(4(t) + cz'k(t))dt. 

0 T+ T -

Let (ak , ßk) be a connected component of Tk . Then zk{ak) = zk(ßk) = 0 
and z'k(ak) > 0, z'k(ßk) < 0. Thus we have zk(t)dt = z'k(ßk) - z'k(ak) < 0 
and cz'k(t)dt = c(zk(ßk) — zk(ak)) = 0. Therefore we infer that 

-Vakk(z'k(t) + cz'k(t))dt> o and so 

(2.3) - 5 (4(t) + cz'k(t))dt> 0. 

Similarly we obtain 

(2.4) J (4(t) + cz'k(t))dt > 0, for every fc G { 1 , 2 , . . . , N}. 
t ; 

Using the inequalities (2.3) and (2.4) in (2.2), we obtain 

b b 
(2.5) J \zk(t) - 4(t) ~ cz'k(t)\dt > J \zk(t)\dt, for every k G {1, 2 , . . .,N}. 

0 0 

Now using (2.5) in (2.1), we finally have that 

Ik - - cz'lli > S \\z(t)\Udt > £ j \\z(t)\\dt = y-||z||i, 
o o 

therefore, recalling the definition of L and that z = x\ — x2 , we obtain 

•di 

||ii + L(xi) - x 2 - L(x2)||i > -H|®i - x2||i. 

This proves the claim. 
C l a i m 2. R(I + L) = L ^ T , R^), where I is the identity map of Ll{T, RN). 
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We need to show that for every h € Ll(T, M.N), the periodic problem 

^ | -x"(t) - cx'(t) + x(t) = h{t), a.e. on T 

has a solution x e W 2 ' 1 ^ , ® ^ ) . If h 6 C(T,RN), then the existence of a 
unique solution follows by applying Theorem V.7 of [3], to each equation 
of the system (2). Now give h E L^T, R w ) , let {hn}n c C(T,RN) be such 
that hn-*h in Ll(T,RN) as n -» oo. Let xn € W^{T,^) be the unique 
solution of (2) with forcing term hn. Take the inner product with xn(t) and 
then integrate over T. We have 

b b 

(2.6) \(-x„(t) ,xn(t))Ndt - c\{-x'n{t), xn{t))Ndt + ||xn||̂  < \\h n || 1 H^n || oo • 
0 0 

From Green's formula we have 
b 

(2.7) \(-x'^t),xn(t))Ndt = -(x'n(b),xn(b))N + (x;(0),xn(0))jv + K i l l 

= \\x, nil!" 

Also we have 
b b j 

(2.8) c\(-x'n(t),xn(t))Ndt = j -|Mí)||2dí 
o ¿ 0 a l 

= -|[l l^n(6)|| 2 - ||Xn(0)||2] = 0. 

Using (2.7) and (2.8) in (2.6), we obtain 

K i l l + K I I 2 < I I M l M o o => ||Xn||i,2 < \\h n||l H n̂lloo-
But recall that Wl,2(T, RN) embeds continuously (in fact compactly) in 

so there exists 'y > 0 such that ||zn||oo < 7||zn||i,2- Hence, since 
hn —> h inL1(T, MN) as ra —> 00, we have that there exists M\ > 0 such that 

||Zn||l,2 < Mi. 
Therefore {xn}n is bounded in Wl<2(T, RN) and moreover directly from the 
definition of {xn}n we see that {x^}n is uniformly integrable. Hence { x n } n is 
bounded in Vr2,1(T,MN); so, recalling that TV^^T.M^) embeds compactly 
in Wlfl(T, M.n), by passing to a subsequence, if necessary, we may assume 
that xn —> x in W 1 ' 1 ^ , « ^ ) and x'¿ g weakly in L1 (T,RN) as ra 00. 
Also for every n > 1 and every 0 < s < t < b, we have ||a4(t) — a4(s)ll ^ 
Ss ||a;n(r)ll r̂> which by virtue of the uniform integrability of {x^}n , implies 
that {x'n}n C C(T,Rn) is equicontinuous. Moreover since W 2 ' 1 ^ , ® ^ ) em-
beds continuously in C1(T, RN), we see that {x'n}n is bounded in C(T, RN). 
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Thus by Arzela-Ascoli theorem {x'n}n is relatively compact in C(T,RN). 
Hence x G Cl{T,RN) and x'n(t) -> x'(t) in RN as n - » oo. Therefore for 
all 0 < s < t < b, we have x'(t) — x'(s) = fsg{r)dT, from which we obtain 
that x"{t) = g(t), a.e. on T. Hence xn -> x weakly in and 
-x"{t) - cx'{t) + x(t) = h(t), a.e. on T, x (0 ) = x (6 ) ,x ' (0 ) = x'{b). This 
proves the claim. 

Let now L = I + L : D C L 1 ( T , R N ) L\T, RN). From claims 1 and 
2 we obtain that L"1 : L1 (T, RN) D C L 1 (T , is well-defined and 
continuous. 

CLAIM 3. L " 1 : L 1 ( T , R*^) -» D C L ^ T . R ^ ) is compact (i.e. continuous 
and maps bounded sets into relatively compact sets). 

In fact, since L : D C Ll(T,RN) —> L 1 ( T , R N ) is linear and continuous, 
we have that also L'1 : LX(T, RN) D C Ll(T,RN) is linear and continu-
ous and maps bounded sets of L 1 ( T , R i V ) into bounded sets of W2>l{T, RN). 
But W2'l{T,RN) embeds compactly in Whl{T, and so the claim is 
proved. 

Let Hi : WX>\T, R ^ ) -» Ll{T,RN) be defined by 

Hi{x){.) = - / ( . , x ( . ) ) + x( . ) . 

Evidently this is a continuous, bounded map. Moreover our problem (1) is 
equivalent to the following abstract fixed point problem: 

x = L~lH\(x). 

So we consider the set T = { x G W U ( T , RN) : x = \L~lHi{x), 0 < A < 1} . 

CLAIM 4. The set T is bounded in W ^ ^ R * ) . 

Let x G T. Then for some A G (0 ,1) , we have L ( j ^ ) = H\{x) which 

implies that x G W2'l{T,RN) and 

( -x"{t) - cx ' ( t ) = - A f ( t , x(t)) + (A - l )x (f ) , a.e. on T 

( 2 ' 9 ) \ x ( 0 ) = x ( 6 ) , x ' ( 0 ) = x'(b) 

Take the inner product with x(t) and then integrate over T. We obtain 
b b b 
\(-x"(t),x(t))Ndt-c\(-x'{t),x{t))Ndt < - A \ { f { t , x ( t ) ) , x { t ) ) N d t . 
0 0 0 

As before we have that \h0{-x"{t),x{t))Ndt = ||x#|||, ¡b0{-x'(t),x{t))Ndt = 0 
and so 

b 
(2.10) ||x'||2 < - A S ( / ( t , x(t)), x(t))Ndt. 

o 
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We will show that ||a;||oo < M, where M is the constant of hypothesis 
ff(/)i-(iv). Indeed let t0 G T such that ||x(i0)|| = maxteT ||x(i)|| > M 

and let r(t) = ^||x(i)||2. So maxt£T ||r(i)|| = r(to) and assuming first that 
0 < to < 6, we have that r'(io) = ( x ' ( t o ) , x ( t o = 0. Then by virtue of 
hypothesis H(f)i-(iv), we can find ¿i > 0 and r) > 0 such that 

X(f(t,x(t)),x(t))N > Xij, a.e. on [¿o,io + <5i), 

and so from (2.9) we obtain 

(x"(i) + cx'(t) + (A - 1 )x{t),x{t))N > Ar j , a.e. on [io,io + «5i), 

which implies that 

(x"(t) + cx'(t),x(t))N > \t) > 0, a.e. on + 

By integrating we get 
t t 

(2.11) \(x"(s),x(s))Nds + c \{x'(s),x(s))Nds > 0, for all t G (t0,t0 + 6i). 
to to 

As before by Green's formula, we have 
t t 

\(x"(s),x(s))Nds = (x'(t),x{t))N - (x'{to),x(to))N - J H x ' ^ f d s 

to to 
t 

= (x'(t),x(t))N - 5 ||x'(s)||2ds, for all t G [t0,to + <5i), 
to 

and also we have 
t 

c\(x'(s),x(s))Nds = [̂||x(i)||2 - ||x(i0)||2], for all t G [i0,to + 
to 1 

therefore, from (2.11), we obtain 
t r 

(x'(t),x(t))N-\||x/(s)||2ds+-[||x(<)||2-||x(t0)||2] > 0, for all t e ( i o , i o + i i ) . 
2 

Now, since ||x(i)||2 < ||x(io)||2 in [to, to + 61), we deduce that 

r'(t) = 2 ( x ' { t ) , x ( t ) ) N > 0 , f o r a l l t G ( i 0 , ¿0 + <$i), 

which implies that r(t) > r(to), for all t G (to, to + Si), and this is a contra-
diction with the choice of to-

If we assume that to = 0 (or t = b), then r'(0) < 0. Note that because of 
the periodic condition r(0) = r(b) and r'(0) = r'(6). So it must be r'(0) = 
r'(b) = 0 and proceeding as before we arrive to a contradiction. 
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Therefore we have | |x | |oo < M and so (cf. (2.10) and H{f)r(iii)) 

llx'lll < All - /(.,x(.))||i||®||oo < AWMWIM < \WMWIM, 

which proves the boundedness of T in WX,1(T, RN). 
Thus by virtue of the claims 3 and 4, we can apply the Leray-Schauder 

alternative theorem, and obtain that there exists x € W l , l { T , RN) such that 
x = L~lHi(x)-. evidently x 6 W2,1(T,RN) and it is a solution of problem (1). 

• 

Now let S = {x e : x is a solution of problem (1)}. From 
the previous considerations, it is clear that S is relatively weakly compact 
in W2,1(T, R^). SO to prove weak compactness, we need to show that it 
is sequentially weakly closed in W2 , 1(T,Rw). To this end let {xn}n C S 
and assume that xn —» x weakly in W2'l{T, M.N) as n —> oo. Then, since 
W2<l(T, Rn) embeds continuously in C ^ T , ^ ) , we have that xn x 
weakly in Cl{T, RN) and so xn(t) x(t) and x'n(t) x'{t) for all t € T, as 
n —> oo. From condition H ( f ) i , by applying Lebesgue's dominated conver-
gence theorem to the sequence { f { - , x n ( . ) ) } n , we obtain that f{.,xn(.)) —» 
/( . , (.)) in Z/1(T, R^). Now, since {x'^)n is uniformly integrable it is possible 
to show { < } n weakly converges to x" in L1(T, R^), so we have that x 6 5 
and this proves the weak compactness in W2,1(T, R^) of the solution set of 
problem (1). • 

3. The structure of the solution set 
In this section we will prove that the solution set of the problem (1) 

is acyclic. We recall that a nonempty topological space is acyclic if all its 
reduced Cech homology groups over rationals vanish. 

To determine the structure of the solution set of (1) we will need the 
following hypotheses on / : 

H{f)2 / : T x R n R^ is a function such that 

(i) for every x € R^, t —> f(t, x) is measurable; 
(ii) for almost all t G T, x —> f(t, x) is continuous and monotone; 
(iii) for every r > 0, there exists ipr € L1(T, R+) such that for almost all 

t € T and all x € R^ with ||x|| < r, we have that | | /(í,x)| | < <¿>r(í); 
(iv) there exists M > 0 such that if ||xo|| > M, then we can find 6 > 0 and 

r) > 0 such that for almost all t E T and all ||x — xo|| < 6, we have 
( / ( t ,x ) ,x ) N > T}. 

THEOREM 2 . If hypotheses H ( f ) 2 hold, then the solution set of problem (1) 
is nonempty, compact and acyclic in W1,l(T,RN). 
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Proof. Using the notations of Theorem 1, from the proof of the previous the-
orem we know that, denoting by T the map: T = L~ lHx : W l ' l { T , RN) -> D, 
T is compact by considering on D the topology of W1,1(T, RN). Moreover 
it is evident that 

S = {x € W1'1 (T,RN) : x = Tx}. 

Since, as we have seen, the set T = {x G W l'x(T, RN) : x = AL_1iii(x), A € 
[0,1]} is bounded let M2 > 0 be such that ||x||i,i < M2, Vx € I\ Now we 
p u t Q = {x E W1'1^,*?) : | |x | | i , i < M 2 } a n d ' l e t Hhn : W^T,*?) 
LL{T, R^) be defined by 

HI,n{x) = — #i(x),x 6 W^\T,RN), n 
and set TN = L'1!!i,n : W 1 , 1 ^ , ^ ) D. Obviously, as T, also TN is 
compact and 

||T - r„| | = sup{||T(x) - Tn(x)||i,i, x G Q} 
= sup{||L-\Hx{x) - f M a O J I I u . z 6 0} 

SWL^U-snpiWH^x^x en}, n 
(We denote by ||L-1||£, the norm of L _ 1 as a linear, bounded operator). 
Therefore, since Hi is bounded we obtain that 

||T - Tn|| 0, as n 00. 

Now we will prove that for every n € JN, and all y € W1'1(T, RN) such that 
\\y\\i,i < I I T - T n l l , t h e equa t i on 

(3.1) x = Tn(x) + y 

has at most one solution in Q. Indeed suppose that xx,x2 6 fi are two 
solutions of the equation (3.1), we get that xi - X2 = Tn(x 1) — Tn(x2) and 
so 

L(x 1 - x 2 ) = Hiyn(xi) - Hiin(x2). 

So we have: 

(X! - X2)( i) - ( x i - x 2 )"(<) - c(xx - X2)'(t) 

= — (-/(¿,®i(t)) + f(t,x2(t))) + — (zi(t) - X2(i)), a.e. on T 
n n 

and 
(xi - x2)(0) = (xi - x2){b) 

(x i " X2)'(0) = (xi - x2)'(b). 
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Take the inner product with (xi - X2){t) and then integrate over T, we have 
& 

j ( - ( x x - x2)"(t), (®i - x2)(t))Ndt 
o 

b 
- c j ( ( x i - x2)'(t), (xi - x2)(t))Ndt + ||xx - X 2 I I 2 

0 

- 1 b n - 1 
= \{f{t, s i ( t ) ) - f(t, x2(t)), (®x - x2){t))Ndt + ||xx - x2\\\. 

n J n 

From Green's formula, we have 
b 
S ( - ( * l - X2)"(t), ( x i - X2)(t))Ndt = 11(351 - ®2)'||1-
0 

Also we have 
b c 

c j ( ( x i - x 2 ) ' ( i ) , ( x i - x 2 ) ( t ) ) N d t = - [||xx(6)-x 2 (6)|| 2 -||x 1 (0)-x 2 (0)|| 2 ] = 0. 
0 1 

Thus finally we have 
1 n - 1 b 

n n J 

and so from the monotonicity of f(t,.) we get 

1 1 * 1 - * ^ + -11*1 - * 2 | | I < 0 
n 

which means that ||xx — X2||x,i = 0 and so xx = x2 in WX,1{T, RN). 
So we are in position to apply Lemma 2 of [1] and we conclude that S 

is nonempty, compact and acyclic in W1,1(T, R^). • 
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