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ON THE SOLUTION SET
OF A VECTOR DUFFING EQUATION

Abstract. In this paper we consider a vector Duffing equation with periodic bound-
ary conditions. First we prove an existence result assuming on f(t,x) Caratheodory type
conditions. Then by imposing also a monotonicity assumption we show that the solution
set is acyclic.

1. Introduction

In this paper we study the following vector Duffing equation with peri-
odic boundary conditions

0 {:c”(t) +cx'(t) = f(t,z(t)),a.e. on T = [0, ] } |
z(0) = z(b),2'(0) = </ (b)

This problem has been studied extensively in the scalar case. We refer
to the works of J. Bebernes — M. Martelli [1], S. Fucik — V. Lovicar [2],
C. Gupta [4], C. Gupta — J. Nieto — L. Sanchez {5], J. Mawhin - J. R. Ward
[6], J. Nieto [7], J. Nieto - V.Rao [8], [9] and S. Tersian [10]. In almost all
of these works f is assumed to be continuous and only C. Gupta - J. Nieto
— L. Sanchez and J. Mawhin - J. R. Ward allow f to be a Caratheodory
function.

In this paper we consider the vector valued version of (1). Assuming a
one-sided growth restriction in z on the Caratheodory function f(t,z) , we
prove the existence of a solution for (1) using the Leray-Schauder alternative
theorem. Then by imposing an additional restriction on f(¢,.) we prove a
structural result for the solution set of (1). Namely we show that is acyclic
in the Sobolev space W1(T,RV).
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Moreover, in contrast to C. Gupta — J. Nieto — L. Sanchez who worked
with the Hilbert space L2(T,R"), here we develop the L'-existence theory
for the problem. We should point out that on the structural properties of
the solution set of the scalar version of (1), the most general results can be
found in the works of C. Gupta - J. Nieto - L. Sanchez [5], J. Nieto [7], and
J.Nieto- V. Rao [8], {9].

2. Existence result

First we prove an existence result for problem (1). We will need the
following hypotheses on the function f.

H(fn: f:Tx RN — RV is a function such that

(i) for every z € RN ,t — f(t,z) is measurable;
(ii) for almost all t € T,z — f(t,z) is continuous;

(iii) for every r > 0, there exists ¢, € L!(T,R") such that for almost all
t € T and all z € RY with ||z]| < r, we have that || f(t,z)|| < ¢ (t);
(iv) there exists M > 0 such that if ||zo|] > M, then we can find § > 0 and

n > 0 such that for almost all ¢ € T and all ||z — z4]| < 6, we have

(f(t,.’L‘),.’L‘)N 2.

THEOREM 1. If hypotheses H(f)1 hold, then problem (1) has a solution and
the solution set is weakly compact in W>(T,RV).

Proof. Let D = {z € W?!(T,RY) : z(0) = z(b),z (0) = z/(b)} and let
L:Dc LMT,RY) - LY(T,R") be defined by L(z) = —~cz'.

CraM 1. For every 1,z € D it follows that ||z; + L(z1) — 2 — L(x2)|[1 >
pllzy — z2|l1 for some u > 0.

In what follows by ||.] we denote the Euclidean norm in R and by
Il the I™norm (i.e. if z = (2x)i., € RY then ||z|l. = T |z]). The
two norms are equivalent, in other words there exist ¥;,792 > 0 such that
91|)zlls < 2| < F2]|2]ls, Yz € RY. Let 23 = 21 — 72, we have

b
(21) Iz =2 = el = {=(6) - 2(t) ~ e (Dt >
0
b N b
91 [ 12(0) — #(2) — c2' () ldt = 923" I2a(t) — 2(8) — cah(®)ldt.
0 k=10

Fix an arbitrary k € {1,2, ..., N} and set
T ={t €T :2(t) >0} and T, = {t € T: z(t) < 0}.
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Then we have

b
(2.2) S|zk(t — Zj(t) — cz,(t)|dt
0

> | lak(t) = 25 (1) — ez (Oldt + | l2k(2) ~ 2 (2) ~ czi(t)lde

T T
2 | (s(t) = 2(8) — ezm(t))dt — | (2(t) — 2 (t) — k(1))
T T

b
= {lze(®)ldt — § (z(t) + czi(t))dt + | (2K(t) + czi(t))dt.
0 T T,

Let (a, Ox) be a connected component of T} . Then zx(ax) = zx(Bx) = 0
and z; (o) > 0, 2, (Bx) < 0. Thus we have S " ”(t)dt = 2,(Bk) — 2 (o) <0
and Sﬂ" cz(t)dt = c(zx(Br) — 2x(ax)) = 0. Therefore we infer that

Sak(zk (t) + cz,(t))dt > 0 and so

(2.3) — § (24(t) + ez (t))dt > 0.
Uy

Similarly we obtain
(2.4) | (z£(t) + cz,(t))dt > 0, for every k € {1,2,...,N}.
T,

Using the inequalities (2.3) and (2.4) in (2.2), we obtain

b b
(2.5) S]zk(t) — Z;(t) — cz;,(t)|dt > S|zk(t)|dt, for every k € {1,2,...,N}.
0 0

Now using (2.5) in (2.1), we finally have that

b b
¢ 9
2 = 2" — c2'l|ly > 91 { 2(®)lludt > =2 {lz(®)lldt = == ||z,
0 ’!92 0 192

therefore, recalling the definition of L and that z = 71 — T, we obtain
. - ?
lz1 + L(z1) — z2 — L(z2)lh 2 19—:“1‘1 — a1

This proves the claim.

CLamM 2. R(I + L) = L*(T,RN), where I is the identity map of L*(T,RN).
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We need to show that for every h € L}(T,RY), the periodic problem
—z"(t) — cz'(t) + z(t) = h(t),ae.on T
z(0) = z(b),2’(0) = 2'(b)

has a solution z € W2(T,RN). If h € C(T,RY), then the existence of a
unique solution follows by applying Theorem V.7 of 3], to each equation
of the system (2). Now give h € L}(T,RY), let {hy}n C C(T,RY) be such
that hp, — h in L1(T,RV) as n — occ. Let 2, € W21(T,R") be the unique
solution of (2) with forcing term h,,. Take the inner product with z,(t) and
then integrate over T'. We have

(2)

b b

(2.6)  §(—zn(t), zn(t))ndt — c{(—20(t), 2n(t))Ndt + |Zall} < lhnll1]znlloo-
0 0

From Green’s formula we have
b

27)  §(=zh(t), za(t)) Nt = —(27,(6), 2n(®)) N + (27,(0), zn(0)) N + I|z 13
0
= ||z 13-
Also we have
b

(2.8) V(== (t), zn(t))Ndt =
0

~llzn () %dt

Q.Ig_‘

b
~3)

[Ilfvn(b)ll2 ~ llza(0)II%] = 0.
Using (2.7) and (2.8) in (2.6), we obtam

2213 + llzall} < Whnllzlizallos = Nzallt2 < Hhalliliznllo.

But recall that W2(T,RY) embeds continuously (in fact compactly) in
C(T,RN), so there exists v > 0 such that ||zp]|ec < V||Znll1,2. Hence, since
hn — hinLY(T,RY) as n — oo, we have that there exists M; > 0 such that

znll12 < M.

Therefore {z, }, is bounded in W%2(T,RY) and moreover directly from the
definition of {z, },, we see that {z] }, is uniformly integrable. Hence {z,}, is
bounded in W21(T,RY); so, recalling that W2!(T,R") embeds compactly
in Wh(T, RY), by passing to a subsequence, if necessary, we may assume
that z, — z in WH(T,RY) and 2! — ¢ weakly in L}(T,RY) as n — oo.
Also for every n > 1 and every 0 < s <t < b, we have ||z},(t) — z,(s)]| <
S |z (7})||dr, which by virtue of the uniform integrability of {z].},, implies
that {2/}, C C(T,RY) is equicontinuous. Moreover since W2!(T,RY) em-
beds continuously in C*(T,R¥), we see that {z’ }, is bounded in C(T,R").

ﬁ l\’)l(":
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Thus by Arzela-Ascoli theorem {z}}, is relatively compact in C(T,RN).
Hence z € C*(T,RY) and z/,(t) — z'(t) in RV as n — oo. Therefore for
all 0 < s <t < b, we have z'(t) — z'(s) = |* g(7)dr, from which we obtain
that z”(t) = g(t), a.e. on T. Hence z, — z weakly in W2}(T,RY) and
~z"(t) — cz'(t) + z(t) = h(t), a.e. on T, z(0) = z(b),2'(0) = z’(b). This
proves the claim.

Let now L = I + L : D ¢ LYT,RY) — L(T,RY). From claims 1 and
2 we obtain that L~ : LY(T,RY) — D c LY(T,R") is well-defined and
continuous.

CramM 3. L7 : LY(T,RY) — D ¢ LYT,R") is compact (i.e. continuous
and maps bounded sets into relatively compact sets).

In fact, since L : D ¢ L*(T,RY) — LY(T,R") is linear and continuous,
we have that also L~! : LY(T,RN) — D c L}(T,R") is linear and continu-
ous and maps bounded sets of L!(T,R") into bounded sets of W1(T,RV).
But W21(T,RY) embeds compactly in Wh(T,RY) and so the claim is
proved.

Let Hy : WH(T,RV) — LY(T,R") be defined by

Hy(z)() = —f(,2()) + =().
Evidently this is a continuous, bounded map. Moreover our problem (1) is
equivalent to the following abstract fixed point problem:

z = L™ Hy(z).

So we consider the set T' = {x € WL (T,RY) : = AL"1H;(z),0 < A < 1}.
CLAIM 4. The set T is bounded in WH(T,RN).

Let £ € T. Then for some A € (0,1), we have L (%z) = Hi(z) which
implies that z € W21(T,R") and
29) { ~z"(t) — ca'(t) = =Af(t, z(t)) + (A — 1)z(t),a.e. on T } |

z(0) = z(b),z'(0) = 2'(b)

Take the inner product with z(t) and then integrate over T. We obtain

b b b
(=2"(t), z(t))vdt — c|(—2'(t), (t))ndt < =A|(F (2, 2(2)), z(t))ndt.
0 0 0

As before we have that Sg(—z”(t),:z;(t))th = ||z'||3, Sg(—z'(t),a:(t))th =0
and so
b

(2.10) liz'll3 < =A§(f (2, z(2)), 2(t)) nat.
0
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We will show that ||z]lc < M, where M is the constant of hypothesis
H(f)-(iv). Indeed let ty € T such that ||z(to)|] = maxier ||z(t)]| > M
and let 7(t) = Z||z(t)||%. So maxer ||r(t)|| = r(to) and assuming first that
0 < tg < b, we have that 7'(tp) = (z'(t0), z(to))n = 0. Then by virtue of
hypothesis H(f)1-(iv), we can find §; > 0 and 7 > 0 such that

A(f(t,z(¢)), z(t))n = An, a.e. on [tg,to + 1),
and so from (2.9) we obtain
(z”(t) + cz'(t) + (A — V)z(t),z(t)) ¥ > An, a.e. on [tg, o + 61),
which implies that
(z”(t) + cz'(t), z(t))n > An > 0, a.e. on [to, tp + 61).
By integrating we get

¢ ¢
(2.11)  §(2"(s),z(s))nds + ¢ | (' (s), z(s))vds > 0, for all t € (to, to + 61).

As before by Green’s formula, we have
t t

J(2"(s), 2(s))wds = (a'(¢), 2(8))w — (2 (to), 2(to)) v — | Iz’ (s)Pds

to to
t

= («'(t), z(t))n — | 12’ (s)||*ds, for all t € [to, to + 61),
to
and also we have
t
¢ §(&/(s),3(s)wds = SlI2(E)I® ~ la(to)|P), for all t € [to,to + 1),

to

therefore, from (2.11), we obtain

t
(«'(®), z())n—§ Ilw'(3)||2d8+-;-lllm(t)ll2—llw(t0)|12] > 0, for all t€(to, to+61)-

Now, since ||z(¢)||? < ||lz(to)||? in [to, to + 61), we deduce that
' (t) = 2(z'(t), z(t))n > 0, for all t € (¢, %0 + 61),

which implies that 7(t) > r(to), for all ¢ € (to,to + 61), and this is a contra-
diction with the choice of #p.

If we assume that ¢y = 0 (or t = b), then 7/(0) < 0. Note that because of
the periodic condition 7(0) = r(b) and /(0) = '(b). So it must be '(0) =
r’(b) = 0 and proceeding as before we arrive to a contradiction.
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Therefore we have ||z|loc < M and so (cf. (2.10) and H(f);-(iii))

'3 < M = £ 2Ozl < MlemliM < llealh M,

which proves the boundedness of ' in W1!(T,RY).

Thus by virtue of the claims 3 and 4, we can apply the Leray-Schauder
alternative theorem, and obtain that there exists z € W1 (T,R") such that
z = L~'H,(z): evidently z € W(T,R") and it is a solution of problem (1).

[ ]

Now let S = {z € W»1(T,RY) : z is a solution of problem (1)}. From
the previous considerations, it is clear that S is relatively weakly compact
in W21(T,RY). So to prove weak compactness, we need to show that it
is sequentially weakly closed in W2!(T,RY). To this end let {z,}, C S
and assume that z, — z weakly in W2(T,RY) as n — oo. Then, since
W2LT,RN) embeds continuously in C*(T,R"), we have that z, — =z
weakly in C}(T,RV) and so z,(¢t) — z(t) and z/,(t) — 2/(t) for all t € T, as
n — oo. From condition H(f);, by applying Lebesgue’s dominated conver-
gence theorem to the sequence {f(.,zn(.))}n, we obtain that f(.,z,(.)) —
f(,, () in L}(T,RN). Now, since {z/ } is uniformly integrable it is possible
to show {z"}, weakly converges to z” in L!(T,R"), so we have that z € S
and this proves the weak compactness in W21(T, RN ) of the solution set of
problem (1). .

3. The structure of the solution set

In this section we will prove that the solution set of the problem (1)
is acyclic. We recall that a nonempty topological space is acyclic if all its
reduced Cech homology groups over rationals vanish.

To determine the structure of the solution set of (1) we will need the
following hypotheses on f:

H(f)2 f: T xRY = R" is a function such that

(i) for every z € RV ,t — f(t,z) is measurable;
(ii) for almost all t € T,z — f(t,z) is continuous and monotone;

(iii) for every r > 0, there exists ¢, € L(T,R") such that for almost all
t € T and all z € RV with ||z|| < r, we have that ||f(t, )| < ¢-(t);
(iv) there exists M > 0 such that if ||z¢|| > M, then we can find § > 0 and

n > 0 such that for almost all ¢ € T and all ||z — zo|| < §, we have

(f(t’x)’z)N 2.

THEOREM 2. If hypotheses H(f)2 hold, then the solution set of problem (1)
is nonempty, compact and acyclic in Wb (T,RV).
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Proof. Using the notations of Theorem 1, from the proof of the previous the-
orem we know that, denoting by T the map: T = L~ H; : WbLI(T, ]RN) — D,
T is compact by considering on D the topology of W1 (T, RY). Moreover
it is evident that

S ={ze WV (T,RY): 2z =Tz}

Since, as we have seen, the set I' = {x € WLI(T,RY) : z = AL 1H;(z),) €
[0,1]} is bounded let M > 0 be such that ||z|[;,1 < Mz, Vo € T'. Now we
put @ = {z € WHYT,RN) : ||z|l11 < M2} and let Hy, : WHY(T,RY) —
LY(T,RY) be defined by

~1
Hin(z) = 2= Hi(z),z € WH(T,RY),

and set T, = L™ Hy, : WHY(T,RN) — D. Obviously, as T, also T, is
compact and
IT = Tull = sup{[IT(z) — Tn(@)lh,1, = € O}
= sup{[|L~(H1(z) ~ Hyn(@)ll1,0, 2 € 2}

—1y 1 ~
<L 1IIL; sup{[|H1(z){1,2 € 2}.

(We denote by ||L™!||; the norm of L~! as a linear, bounded operator).
Therefore, since H; is bounded we obtain that

|T —Tn|]| — 0, as n — oo.

Now we will prove that for every n € IN, and all y € W1! (T, RrY ) such that
lyll11 < |IT — Tn|l, the equation

(3.1) z=Ty(z)+y

has at most one solution in 2. Indeed suppose that zi,z; €  are two
solutions of the equation (3.1), we get that z; — z3 = Ty(z1) — Ta(z2) and
S0

L(z1 — 29) = Hyn(z1) — Hijn(z2).
So we have:
($1 - $2)(t) (z1 — 22)"(t) — e(z1 - zz)'(t)
P f () + £t za() + 1(z1(t) — 22(t), ae.on T

and
(z1 = 22)(0) = (21 — 22)(b)
(z1 — 22)'(0) = (z1 — z2)'(b)-
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Take the inner product with (z1 — z2)(¢) and then integrate over T', we have
b

(=(z1 = 22)" (1), (21 — 22)(t)) vt

)
—CS((wl — 22)'(t), (x1 — z2) () wdt + ||z1 ~ 2213
=2t §(7(622(0) — 7t (0D o1 - 20) (et + "= a: - 2l
From Green’soformula, we have
li(-(zl — 22)"(8), (21 — 22)(t)) it = [|(21 — 22)'[13.
Also we havs

b

cf((z1—22)'(t), (z1—22)(t))welt = %[Ilml(b)—IZ(b)IIZ—HIl(O)—w2(0)||2] =0.
0

Thus finally we have

n—1

1
P2 - - 2:_
e~} 13+ lla1~22} = ——

b
V(@ 21(8) = F(t, 22(8)), (w1~22)(8)) e
0
and so from the monotonicity of f(t,.) we get
1
It — 243 + ~lor — zall§ < 0

which means that ||z; — z2||11 = 0 and so 71 = z5 in WH}(T,RV).
So we are in position to apply Lemma 2 of [1] and we conclude that S
is nonempty, compact and acyclic in W11(T,RV). »
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