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THE VITALI-HAHN-SAKS THEOREM
FOR THE PRODUCT OF QUANTUM LOGICS

Abstract. We show as a main result that if each quantum logic of a given collection
of quantum logics satisfies the Vitali-Hahn-Saks theorem, then so does their product. As
a consequence we formulate a dual result for the sum of a collection of Dynkin systems.

Introduction

Recently quite a few mathematicians and physicists “have gone non-
commutative”, i.e. have exercised their effort in extending classic (commu-
tative) theorems to obtain more general (noncommutative) results. This has
occurred as much in algebra and geometry as in measure theory, often in
an attempt to shed light on questions of quantum mechanics. We want to
contribute to the measure-theoretic line by going on with the study of the
Vitali-Hahn-Saks theorem (VHS) in quantum logics as previously investi-
gated in (3], [4], [5], [6], [10], etc. Upon calling a quantum logic a VHS logic
if the VHS theorem holds for it, we ask if the class of VHS logics is closed
under the formation of countable products. This question announced itself
naturally after the findings of [10} and [5] which established an abundance
of the VHS logics and some of those which are not VHS. We answer this
question in the positive, providing as a by-product new types of VHS logics.
We then apply the result to “concrete logics” obtaining a result on the VHS
theorem for Dynkin systems of sets.
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1. Basic notions on quantum logics

Our terminology is generally taken from [12]. Let us only review basic
notions as we shall use them in the sequel.

DEFINITION 1.1. By a guantum logic (abbr., a logic) we mean a o-complete
orthomodular poset, i.e. a triple (L, <,’) subject to the following require-
ments (a,b € L):

(i) L is a nonvoid set, < is a partial ordering and ’ is a unary operation,
(ii) L possesses a least and a greatest element, 0, 1,
(iii) o” = a,
(iv) if a < b, then V' < d/,
(v)avad' =1, anad =0,

o0

(vi) ifa; € L (i € N) and a; < ag for each i # 7, then \/ai exists in L,
i=1

(vil) if @ < b, then b=aV (a' Ab) (the orthomodular law).

The prototype examples of logics are Boolean o-algebras and lattices of
projectors in a Hilbert space. Generally, logics do not have to be lattices
and do not have to be distributive.

We shall deal with states on logics.

DEFINITION 1.2. By a state on L we mean a normalized measure on L.
Formally, s: L — [0,1] is said to be a state on L if

(i) s(1) =1,
(ii) if a; € L (i € N) and a; < @} (i # j), then

s(v ai) = i s(a;).

i=1 i=1
Let us denote by .#(L) the set of all states on L.

Our next definition introduces the key concept of this paper. Therein, the
notion of absolutely continuous states and the notion of uniformly absolutely
continuous states is given the standard meaning. Expressed formally, the
state s is said to be absolutely continuous with respect to the state ¢ if

Ve >036 > 0:t(a) < 6§ = s(a) <e foreach a€L.

Further, a sequence (s;);en of states on L is uniformly absolutely continuous
with respect to the state t on L if

Ve>036 >0Vie N:t(a) < 6= si(a) <e foreach a€ L.

DEFINITION 1.3. A quantum logic, L, is said to be Vitali-Hahn—Saks (abbr.
a VHS logic) if the Vitali-Hahn—Saks theorem is valid for L: Given states
s; € F(L) (¢ € N) and a state t € (L) such that s; are absolutely
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continuous with respect to ¢ and, for each a € L, the limit lim s;(a) exists,
then

(i) the function s: L — [0,1], s(a) = lim; s;(a) is a state on L,
(ii) s is absolutely continuous with respect to ,
(iii) the states s; (¢ € N) are uniformly absolutely continuous with respect
to t.

It can be shown [6] that for each logic the condition (i) is always fulfilled.
This is easy to check since the o-additivity of states verifies on orthogonal
families only. The conditions (ii) and (iii) do not have to be fulfilled (see [10]
and [5]). It is easy to see that (iii) implies (ii) and that the uniform conver-
gence of s; is equivalent to (iii). It should be noted that many important
logics satisfy (iii). So do, for instance, all logics containing only finitely many
maximal o-Boolean subalgebras, the projector logic L(H) for a Hilbert space
H, many set-representable logics, etc. (see [10] and [5]). Thus, the class of
VHS logics is reasonably large.

2. Results

On the ground of the investigations carried on in {5] and [10], a natural
question occurs of whether the class of VHS logics is closed under the for-
mation of countable products. There is also a need to clarify this question
because of the important position within quantum mechanics of the logic
II2, L;, where L; is either a Boolean o-algebra or the projector logic L(H).

THEOREM 2.1. Let L; (i € N) be quantum logics. Let L = TI2 | L; be the
direct product of L;’s. Then L is VHS if, and only if, each L; (i € N) is a
VHS logic.

Before we launch on the proof of Th. 2.1, let us collect the properties of
the product in question and relate them to the VHS theorem.

PROPOSITION 2.2. Let L; (i € N) be quantum logics and let L = 1132, L;.

(i) The set E(L) of all elements of L whose coordinates consist of 0’s and
1’s in the respective L;’s (1 € N) forms a Boolean subalgebra of L
which is Boolean isomorphic to the complete Boolean algebra exp N of
all subsets of the set of natural numbers.

(ii) Denote by e; (j € N) the element of E(L) (E(L) C L) which consists
of all 0’s on all but the j-th coordinates, the j-th coordinate being 1.
Letu e (L) and M, = {j € N | u(e;) > 0}. Then u can be written

as
u= Z u(ej) -,

JEMy
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where w’ is the state on L defined by setting

w(a) = “(Z’(gj‘;j) .

Notice that the state u is a o-convex combination of u?, j € My, because

1=u(l) = u( V ej) = Z u(e;).
JEM, JEM,
(ili) If f: P — Q 1is a quantum logic morphism onto Q and if P is a VHS
logic, then so is Q. Consequence 1: Each Boolean o-algebra is a VHS
logic. Consequence 2: If II2,L; is VHS, then each L; is VHS.

Proof. The property (i) follows easily — E(L) is obviously a subset of the
centre of II?2; L;. (The centre of L is the set of all “absolutely compatible” el-
ements of L, see e.g. [12].) To check (ii), observe that Z u(e;) = 1 because
JEM,
u is a state on the Boolean o-algebra E(L) = exp N when restricted to E(L).
The rest is easy (for details, see [8]). Property (iii) is verified in a straight-
forward manner. For Consequence 1, one uses the Loomis—Sikorski theorem
and the classic VHS theorem for g-algebras of sets, for Consequence 2 one
uses the projection of II2; L; onto L;. n

Let us return to the proof of Th. 2.1. The condition is obviously neces-
sary: If II32, L; is VHS, then each L; (1 € N) has to be VHS (Prop. 2.2(iii),
Consequence 2). Let us show the sufficiency. Let each L; (i € N) be a
VHS logic. For the product II32, L;, write L = II?2; L;. Let us suppose that
s; (1 € N) and s are states on L such that, for each a € L, lim, s;(a) = s(a).
Our goal is to show that this convergence is uniform. This would complete
the proof that L is a VHS logic (as mentioned before, the uniform conver-
gence is easily seen to imply the uniform absolute continuity).

Let us fix an €, > 0. As in Prop. 2.2, denote by e; (j € N) the element
of E(L) (E(L) C L) which consists of all 0’s on all but the j-th coordinates,
the j-th coordinate being 1. Then we obtain

1=3s(1) = s( \/ ej) = Z s(e;)-
JEN JEN
As a consequence, there exists a finite subset, M, of the set M; = {j €
N | s(ej) > 0} such that
€

> s(eg) > l—Z.

JEM
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We therefore have the inequality

Z s(e;) <

JEN\M

Y si(es) = Y sley)
JEM JEM
when i € N approaches +o0o, there is a number k3 € N such thgt the
following implication holds true: If i« > kj, then Z si(ej) > 1 - 1 We
JEM

R

Since

therefore have, for i > ki,

Consider now the states sg and s/ induced by s; (i € N) and s (see
Prop. 2.2 (ii)). Obviously, lim; s{ = ¢7. This is correct since if s(e;) > 0 then
at most finitely many s{ are undefined. By our assumption, each L; (j € N)
satisfies the VHS theorem. Since L; is isomorphic to [0,e;], we infer that

the convergence s 2 &7 must be uniform. Taking advantage of this, we see
that for each j € M we can find an index n; € N such that, for each ¢ > n;,
we obtain the following inequality (it is supposed that a € L and that m
denotes the number of elements of M):

s{(a) - sj(a)l < %

Let k2 = max{n; | j € M}. Let us view the Boolean o-algebra F(L) as
a sublogic of L. The VHS theorem holds true for Boolean o-algebras and
therefore when we restrict all s; and s to E(L), then the sequence of the
restricted s; converges uniformly to the restricted s. Thus, there is 2 number
k3 € N such that, for each ¢ > k3 and each e; € E(L),

Isi(ej) — s(e;)] < 4—;.

Let us set £k = max{ki, k2, k3}. In order to verify that s; — s uniformly,
let us assume that ¢ > k,a € L, and let us consider |s;(a) — s(a)|. In the
attempt to estimate it above, we first have (Prop. 2.2 (ii))

Isi(a) = s(a)l = |3 siles)sl(a) = 3 s(es)s’(a)

JEN JEN
< Y lsile)st(a) — s(e;)s (a)]
JEM

+ Y silep)si@)+ Y s(e;)si(a).

JEN\M JEN\M
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We have obtained three terms to estimate. First,

Y Isi(ej)si(a) - s(e;)s’ (a)]

JEM
=" |si(ej)s sl(a) — si(ej)s’ (a) + si(e;)s”(a) — s(e;)s%(a)|
jeM
< Y silej) - 18! (a) — 8% (a)] + Y sl(a) - [si(es) — s(es)]
JjeM JEM
< Z |s](a - s’ (a)| + Z |si(ej) — s(e;)l
jeM jEM

Second,

Third,

We see that, for each ¢ > k and @ € L, we have obtained |s;(a) — s(a)| < €.
This shows that L is a VHS logic and the proof is complete. "

As a consequence of the previous theorem, let us explicitly formulate
the result the validity of which actually stood as the main motivation for
this article. It involves the product logic of factors which are of consider-
able importance in quantum theories. Before stating the result, recall that
the projection logic L(H), for a separable Hilbert space H, is a VHS logic
(see [10]) and each Boolean o-algebra is a VHS logic (including those which
may not be set-representable—see Prop. 2.2 (iii); such Boolean o-algebras
play a distinguished role within quantum theories, see e.g. (3] and [12}]).

THEOREM 2.3. Let L; (i € N) be either a Boolean o-algebra or the lattice
L(H) of projectors in a separable Hilbert space. Let L = II32,L;. Then L
satisfies the Vitali-Hahn—~Saks theorem.

If we inspect the proof of Th. 2.1, we find out that Th. 2.1 allows for
certain “cardinal generalizations” as regards the number of the factors in the
product. Some of the generalizations are, however, subject to the foundation
of the set theory we work with. We nevertheless have one “absolute” result.

THEOREM 2.4. Let I be a set of the first uncountable cardinality and let each
L; (i € I) satisfy the Vitali-Hahn-Saks theorem. Then so does the product
WierLi.
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Proof. Let L = II;c;L;. Obviously, the Boolean o-algebra E(L) is isomor-
phic to exp I and, as known (see e.g. [7]), each state on exp I must live on a
countable subset of I. Thus, any countable collection of states must live on
a countable subset of I, and we then apply Th. 2.1. ]

In a similar vein we obtain the following result. (By CH we abbreviate
the assumption of continuous hypothesis and by -M the assumption of
nonexistence of measurable cardinals. As known, both of these assumptions
are consistent with the standard ZFC theory of sets.)

THEOREM 2.5. Under ~M, a product of logics each of which satisfies the
Vitali~Hahn—Saks theorem is a logic which satisfies the Vitali-Hahn-Saks
theorem. Under CH, a product of continuum many logics each of which sat-
isfies the Vitali-Hahn-Saks theorem is a logic which satisfies the Vitali-
Hahn-Saks theorem.

Proof. Under M, for each set I any state on exp I must live on a countable
set (see [7]). We then easily reduce the problem to a countable product.
Under CH, the continuum is the first uncountable cardinality and Th. 2.4
applies. =

In the second part we apply our results to the investigation of states
on Dynkin systems of sets. Since Dynkin systems of sets have proved to be
important in investigations of stochastic nature ([1], 2}, [9]), our result may
be relevant to classical or generalized probability. Let us first establish the
link of Dynkin systems and quantum logics.

DEFINITION 2.6. A quantum logic which allows for a set representation is
called a Dynkin system (of sets). Thus, a collection A of subsets of a set S
is said to be a Dynkin system if

(i) 0 € A,

(ii) whenever A € A, then S\ A€ A,

o0
(iii) whenever A; € A (i € N),A; N A; =0, then UAi € A.
i=1
By a state on the Dynkin system (S, A) is meant a probability measure
on A. Obviously, a Dynkin system is a quantum logic with the inclusion
relation on S for < and the set complementation on S for ’, and the notions
of state coincide for quantum logics and Dynkin systems.

The product of quantum logics transforms into the sums of Dynkin sys-
tems.

DEFINITION 2.7. Let (S;,A;) (¢ € I) be a collection of Dynkin systems.

Let § = U S; be the disjoint union of Si’s. Let A={A C S| ANS; €
el
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A; for each i € I}. Then we call (S,A) the sum of the Dynkin systems
(Si, A;).

PROPOSITION 2.8. Suppose that (S,A) is the sum of the Dynkin systems
(Si, A;) (i € I). Then (S,A) is a Dynkin system. Moreover, if (S;, A;) is
viewed as a quantum logic, say L; (2 € I), then the sum (S, A) is isomorphic
(in the category of quantum logics) to the product I;c;L;.

Proof. The proof reduces to a straightforward verification. "

We are in the position to translate our result into the Dynkin system
setup. Observe that, in general, the VHS theorem does not have to hold for
Dynkin systems though, on the other hand, the paper [5] establishes a large
class of Dynkin systems for which the VHS theorem does hold.

THEOREM 2.9. Let the cardinality of I do not exceed the first uncountable
cardinal. Let (S;, A;) (i € I) be a collection of Dynkin systems and let each
(Si, A;) satisfies the Vitali-Hahn-Saks theorem. Then the sum (S,A) of
(S, Ai) (¢ € I) also satisfies the Vitali-Hahn-Saks theorem. Under -M,
any sum of a collection of Dynkin systems each of which satisfies the Vitali-
Hahn-Saks theorem also satisfies the Vitali-Hahn—Saks theorem.
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