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THE VITALI-HAHN-SAKS THEOREM 
FOR THE PRODUCT OF QUANTUM LOGICS 

Abstract . We show as a main result that if each quantum logic of a given collection 
of quantum logics satisfies the Vitali-Hahn-Saks theorem, then so does their product. As 
a consequence we formulate a dual result for the sum of a collection of Dynkin systems. 

Introduction 
Recently quite a few mathematicians and physicists "have gone non-

commutative" , i.e. have exercised their effort in extending classic (commu-
tative) theorems to obtain more general (noncommutative) results. This has 
occurred as much in algebra and geometry as in measure theory, often in 
an attempt to shed light on questions of quantum mechanics. We want to 
contribute to the measure-theoretic line by going on with the study of the 
Vitali-Hahn-Saks theorem (VHS) in quantum logics as previously investi-
gated in [3], [4], [5], [6], [10], etc. Upon calling a quantum logic a VHS logic 
if the VHS theorem holds for it, we ask if the class of VHS logics is closed 
under the formation of countable products. This question announced itself 
naturally after the findings of [10] and [5] which established an abundance 
of the VHS logics and some of those which are not VHS. We answer this 
question in the positive, providing as a by-product new types of VHS logics. 
We then apply the result to "concrete logics" obtaining a result on the VHS 
theorem for Dynkin systems of sets. 
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1. Basic notions on quantum logics 
Our terminology is generally taken from [12]. Let us only review basic 

notions as we shall use them in the sequel. 

DEFINITION 1.1. By a quantum logic (abbr., a logic) we mean a cr-complete 
orthomodular poset, i.e. a triple (L,<,') subject to the following require-
ments (a, b E L): 

(i) L is a nonvoid set, < is a partial ordering and ' is a unary operation, 
(ii) L possesses a least and a greatest element, 0,1, 

(iii) a" = o, 
(iv) if a < b, then b' < a', 

(v) a V a' = 1, o A a' = 0, 
oo 

(vi) if a,i E L (i E N) and aj < a'j for each i ^ j, then \J at exists in L, 
i=1 (vii) if a < b, then b = a V (a' A b) (the orthomodular law). 

The prototype examples of logics are Boolean cr-algebras and lattices of 
projectors in a Hilbert space. Generally, logics do not have to be lattices 
and do not have to be distributive. 

We shall deal with states on logics. 

DEFINITION 1.2. By a state on L we mean a normalized measure on L. 

Formally, s: L —> [0,1] is said to be a state on L if 

(i) 5 (1) = 1, 
(ii) if ai E L (i € N) and a* < a'j (i ^ j), then 

OO 00 

s (V a « ) = 
i= l ¿=1 

Let us denote by <5"{L) the set of all states on L. 

Our next definition introduces the key concept of this paper. Therein, the 
notion of absolutely continuous states and the notion of uniformly absolutely 
continuous states is given the standard meaning. Expressed formally, the 
state s is said to be absolutely continuous with respect to the state t if 

Ve > 0 35 > 0: t(a) < 6 => s(a) < e for each a 6 L. 

Further, a sequence {si)iejq of states on L is uniformly absolutely continuous 

with respect to the state t on L if 

Ve > 0 36 > 0 Vi € N: t(a) < 6 Si(a) < e for each a € L. 

DEFINITION 1.3. A quantum logic, L, is said to be Vitali-Hahn-Saks (abbr. 
a VHS logic) if the Vitali-Hahn-Saks theorem is valid for L: Given states 
Si € y{L) (i e N) and a state t E y(L) such that Si are absolutely 
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continuous with respect to t and, for each a € L, the limit l ims l(a) exists, 
then 

(i) the function s: L —> [0,1], s(a) = limj Si(a) is a state on L, 
(ii) s is absolutely continuous with respect to i, 

(iii) the states st (i € N) are uniformly absolutely continuous with respect 
to t. 

It can be shown [6] that for each logic the condition (i) is always fulfilled. 
This is easy to check since the a-additivity of states verifies on orthogonal 
families only. The conditions (ii) and (iii) do not have to be fulfilled (see [10] 
and [5]). It is easy to see that (iii) implies (ii) and that the uniform conver-
gence of Si is equivalent to (iii). It should be noted that many important 
logics satisfy (iii). So do, for instance, all logics containing only finitely many 
maximal cr-Boolean subalgebras, the projector logic L(H) for a Hilbert space 
H, many set-representable logics, etc. (see [10] and [5]). Thus, the class of 
VHS logics is reasonably large. 

2. Results 
On the ground of the investigations carried on in [5] and [10], a natural 

question occurs of whether the class of VHS logics is closed under the for-
mation of countable products. There is also a need to clarify this question 
because of the important position within quantum mechanics of the logic 
I I ^ L , , where Li is either a Boolean cr-algebra or the projector logic L(H). 

THEOREM 2 .1 . Let Li (i 6 N) be quantum logics. Let L = n ^ L j be the 
direct product of Li's. Then L is VHS i f , and only i f , each Li (i € N) is a 
VHS logic. 

Before we launch on the proof of Th. 2.1, let us collect the properties of 
the product in question and relate them to the VHS theorem. 

PROPOSITION 2 .2 . Let Li (i E N) be quantum logics and let L = n ^ L * . 

(i) The set E(L) of all elements of L whose coordinates consist of 0's and 
1 's in the respective Li's (i G N) forms a Boolean subalgebra of L 
which is Boolean isomorphic to the complete Boolean algebra exp N of 
all subsets of the set of natural numbers. 

(ii) Denote by ej ( j 6 N) the element of E(L) (E(L ) C L) which consists 
of all 0's on all but the j-th coordinates, the j-th coordinate being 1. 
Let u € ¿y{L) and Mu = {j 6 N \ u{ej) > 0}. Then u can be written 
as 

u = J2 uie^-u3, 
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where v? is the state on L defined by setting 

u(aA ej) 
u = f \ • 

Notice that the state u is a a-convex combination of v?, j 6 Mu, because 

1 = u ( i ) = u ( \ / e,-) = Y^ u(e i)-
jeMu jeMu 

(iii) If f: P —• Q is a quantum logic morphism onto Q and if P is a VHS 
logic, then so is Q. Consequence 1: Each Boolean a-algebra is a VHS 
logic. Consequence 2: If is VHS, then each Li is VHS. 

P r o o f . The property (i) follows easily — E(L) is obviously a subset of the 
centre of Tl'*L1Ll. (The centre of L is the set of all "absolutely compatible" el-
ements of L, see e.g. [12].) To check (ii), observe that ^ u(ej) = 1 because 

j£Mu 
u is a state on the Boolean er-algebra E(L) = exp N when restricted to E(L). 
The rest is easy (for details, see [8]). Property (iii) is verified in a straight-
forward manner. For Consequence 1, one uses the Loomis-Sikorski theorem 
and the classic VHS theorem for u-algebras of sets, for Consequence 2 one 
uses the projection of n ^ L i onto Lj. • 

Let us return to the proof of Th. 2.1. The condition is obviously neces-
sary. If I I ^ L i is VHS, then each L{ (t G N) has to be VHS (Prop. 2.2(iii), 
Consequence 2). Let us show the sufficiency. Let each Li (i 6 N) be a 
VHS logic. For the product Hc*llLl) write L = n ^ L j . Let us suppose that 
Si (i 6 N) and s are states on L such that, for each a 6 L, limj Si(a) = s(a). 
Our goal is to show that this convergence is uniform. This would complete 
the proof that L is a VHS logic (as mentioned before, the uniform conver-
gence is easily seen to imply the uniform absolute continuity). 

Let us fix an e, £ > 0. As in Prop. 2.2, denote by ej ( j € N) the element 
of E(L) {E{L) C L) which consists of all 0's on all but the j-th coordinates, 
the j-th coordinate being 1. Then we obtain 

1 = S(1) = S ( V e j ) = 5 > ( e j ) . 
jeN jeN 

As a consequence, there exists a finite subset, M, of the set Ms = {j 6 
N | s(ej) > 0} such that 

E *(ei) > 1 ~ \ -
jeM 
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We therefore have the inequality 

E s ( e j ) < T 
j£N\M 

Since 

H *<( c j ) E s ( e j ) 

jGM j€M 
when i € N approaches +00, there is a number k\ E N such that the 
following implication holds true: If i > k\, then Si(ej) > 1 - - . We 

jeM 
therefore have, for i > k\, 

E < 7-
j£N\M 

Consider now the states sj and sJ induced by Si (i G iV) and s (see 
Prop. 2.2 (ii)). Obviously, limj sj = sJ. This is correct since if s(ej) > 0 then 
at most finitely many sj are undefined. By our assumption, each Lj ( j € N) 

satisfies the VHS theorem. Since Lj is isomorphic to [0, ej], we infer that 

the convergence sj —>• must be uniform. Taking advantage of this, we see 
that for each j 6 M we can find an index rij € N such that, for each i > r i j , 

we obtain the following inequality (it is supposed that a £ L and that m 

denotes the number of elements of M ) : 

s j ( a ) - ¿ ( a ) 
£ 

Am' 

Let k2 = max{nj | j € M}. Let us view the Boolean cr-algebra E(L) as 
a sublogic of L. The VHS theorem holds true for Boolean a-algebras and 
therefore when we restrict all Si and s to E(L), then the sequence of the 
restricted s¿ converges uniformly to the restricted s. Thus, there is a number 

€ N such that, for each i> k^ and each e0 G E(L)t 

ISi(ej) - s(e,-)| < 

Let us set k = max{A:i, ^3}- In order to verify that s¿ —> s uniformly, 
let us assume that i > k,a € L, and let us consider |s¿(a) — s(a)|. In the 
attempt to estimate it above, we first have (Prop. 2.2 (ii)) 

\si{a) - 5(o)| = I E s i ( e j ) s i ( a ) ~ ] C s ( e i ) s i ( o ) 
jeN jeN 

< E M e i W ( ° ) - s ( e i V ( a ) l 
jeM 

+ E * ( c i W ( a ) + £ s (e j )^ (o ) . 
j£N\M jeN\M 
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We have obtained three terms to estimate. First, 

E |«i(ej)Si(a) — s(ej)s3(a)\ 
jeM 

= E M e j W ( a ) - s i ( e j ) s : , ( a ) + Siie^s^a) - s(ej)sJ(o)| 
jeM 

< E • K ( a ) - s J ( a ) l + E s J ( a ) • l ^ t e ) ~ s ( e j ) l 
jeM jeM 

< E i s ' ( a ) - s > ) i + E i * ( c ; ) -
jeM jeM 

<m( e + e N \ _ e 
_ \4 m Am) 2' 

Second, 

Third, 

E si(ej)sÎ(a) < E si(ei)< 7-
j£N\M jeN\M 

E s ( e > > ) < E 
jeN\M jeN\M 

We see that, for each i> k and a 6 L, we have obtained |si(o) — s(a)| < e. 
This shows that L is a VHS logic and the proof is complete. • 

As a consequence of the previous theorem, let us explicitly formulate 
the result the validity of which actually stood as the main motivation for 
this article. It involves the product logic of factors which are of consider-
able importance in quantum theories. Before stating the result, recall that 
the projection logic L(H), for a separable Hilbert space H, is a VHS logic 
(see [10]) and each Boolean cr-algebra is a VHS logic (including those which 
may not be set-representable—-see Prop. 2.2 (iii); such Boolean a-algebras 
play a distinguished role within quantum theories, see e.g. [3] and [12]). 

THEOREM 2.3. Let Li (i 6 N) be either a Boolean a-algebra or the lattice 
L(H) of projectors in a separable Hilbert space. Let L = n^Lj. Then L 
satisfies the Vitali-Hahn-Saks theorem. 

If we inspect the proof of Th. 2.1, we find out that Th. 2.1 allows for 
certain "cardinal generalizations" as regards the number of the factors in the 
product. Some of the generalizations are, however, subject to the foundation 
of the set theory we work with. We nevertheless have one "absolute" result. 

THEOREM 2.4. Let I be a set of the first uncountable cardinality and let each 
Li (i € I) satisfy the Vitali-Hahn-Saks theorem. Then so does the product 
n iziLi. 
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P r o o f . Let L = H^jLi. Obviously, the Boolean u-algebra E(L) is isomor-
phic to exp I and, as known (see e.g. [7]), each state on exp I must live on a 
countable subset of I. Thus, any countable collection of states must live on 
a countable subset of I, and we then apply Th. 2.1. • 

In a similar vein we obtain the following result. (By CH we abbreviate 
the assumption of continuous hypothesis and by ->M the assumption of 
nonexistence of measurable cardinals. As known, both of these assumptions 
are consistent with the standard ZFC theory of sets.) 

THEOREM 2.5. Under -^M, a product of logics each of which satisfies the 
Vitali-Hahn-Saks theorem is a logic which satisfies the Vitali-Hahn-Saks 
theorem. Under CH, a product of continuum many logics each of which sat-
isfies the Vitali-Hahn-Saks theorem is a logic which satisfies the Vitali-
Hahn-Saks theorem. 

P r o o f . Under -iM, for each set I any state on exp I must live on a countable 
set (see [7]). We then easily reduce the problem to a countable product. 
Under CH, the continuum is the first uncountable cardinality and Th. 2.4 
applies. • 

In the second part we apply our results to the investigation of states 
on Dynkin systems of sets. Since Dynkin systems of sets have proved to be 
important in investigations of stochastic nature ([1], [2], [9]), our result may 
be relevant to classical or generalized probability. Let us first establish the 
link of Dynkin systems and quantum logics. 

DEFINITION 2.6. A quantum logic which allows for a set representation is 
called a Dynkin system (of sets). Thus, a collection A of subsets of a set S 
is said to be a Dynkin system if 

(i) 0 € A, 
(ii) whenever A G A , t h e n S \ A € A , 

00 

(iii) whenever A{ 6 A (i G N), A{ D Aj = 0, then |Jyli € A. 
¿=i 

By a state on the Dynkin system (5, A) is meant a probability measure 
on A. Obviously, a Dynkin system is a quantum logic with the inclusion 
relation on S for < and the set complementation on S for ', and the notions 
of state coincide for quantum logics and Dynkin systems. 

The product of quantum logics transforms into the sums of Dynkin sys-
tems. 

DEFINITION 2.7. Let (Si, A,) (i e l ) be a collection of Dynkin systems. 
Let S — [ J Si be the disjoint union of Si's. Let A = { A c 5 | A n 5 j 6 

¿6/ 
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AJ for each i 6 / } . T h e n we call (5 , A ) the sum of the Dynkin systems 
(SI, AJ). 

PROPOSITION 2.8. Suppose that (S , A ) is the sum of the Dynkin systems 
(S{,Ai) (i e I ) . Then (S, A ) is a Dynkin system. Moreover, if (5J ,AJ) is 
viewed as a quantum logic, say Li (i 6 I), then the sum (S , A ) is isomorphic 
(in the category of quantum logics) to the product H^jLi. 

P r o o f . T h e proof reduces t o a straightforward verif ication. • 

W e are in t h e pos i t ion t o trans late our result into the D y n k i n s y s t e m 
setup. Observe t h a t , in general , t h e V H S theorem does not have t o hold for 
D y n k i n s y s t e m s though , o n the other hand, the paper [5] es tabl i shes a large 
class of D y n k i n s y s t e m s for wh ich the V H S theorem does hold. 

THEOREM 2.9. Let the cardinality of I do not exceed the first uncountable 
cardinal. Let (Si,Ai) (i £ I ) be a collection of Dynkin systems and let each 
(S{,Ai) satisfies the Vitali-Hahn-Saks theorem. Then the sum (S, A ) of 
(5J ,AJ) (i G I ) also satisfies the Vitali-Hahn-Saks theorem. Under ->M, 
any sum of a collection of Dynkin systems each of which satisfies the Vitali-
Hahn-Saks theorem also satisfies the Vitali-Hahn-Saks theorem. 
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