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COMPUTING EQUIVALENT TABULAR FUNCTIONS 

Abstract. Tabular functions were invented to form a formal framework for normal 
and inverted function tables used in documenting complex software systems. They are 
defined as maps on finite partitions of a given nonempty set X with values in a set 
of function symbols. It is shown that every tabular function is equivalent to a tabular 
function of degree one. The problem of equivalence of two tabular functions is reduced to 
the problem of equivalence of two sets of functional expressions derived from the set of 
initial function symbols. 

1. Introduction 
Function and relation tables [10, 11, 12] have been in use for the formal 

documenting of complex software systems for some time. They are matrix-
like functional expressions with a set of predicates representing conditional 
expressions used for the indices and a corresponding set of functional ex-
pressions used for the entries. Every normal function table represents a 
function whose domain consists of those elements that are used as argu-
ments for the table predicates. The table predicates represent conditional 
expressions which split the whole domain into disjoint sets. Each entry in 
the table represents the values assumed by the function represented by the 
table when its arguments satisfy the corresponding condition predicates. 
Given two function tables with the same domain and codomain, the nat-
ural problem arises: How to decide whether they represent the same func-
tion? The solution to this problem consists of an algorithm which when 
followed provides a "yes" or "no" answer in a finite number of steps. The 
main difficulty in arriving to the answer, in general, lies in the fact that 
we cannot make pointwise comparisons of the functions under consideration 
since the domain may be infinite. Nevertheless, if we go to the descriptions 
of the functions considered, then we can compare those objects in a finite 
number of steps without taking into account their domain, provided the 
descriptions themselves are not too complex. That is, they are "finite" in 
a certain sense. Tabular functions introduced in this paper make this dis-
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tinction clear. The approach taken seems particularly suitable for functions 
that look like piece-wise analytic. The other approaches towards function 
and relation tables are taken in [2, 6, 13]. They are useful for their classifi-
cation and for the efficient computation of values or conditions assumed or 
represented by the tables. In particular, the way of using efficiently func-
tion and relation tables in documenting well structured programs is pre-
sented in [11, 12]. We define tabular functions of order one as maps from 
the set of finite partitions of a given set X, and with values in a set of 
function symbols. The set of function symbols under consideration will be 
identified with the set of functional expressions, or functional terms, de-
rived from a given basic set of function symbols by following certain deriva-
tion rules. Recursively, tabular functions of higher orders are defined as 
maps from the set of finite partitions of X, and with values in the set of 
function symbols obtained in previous steps. Finally, the union of all of 
those sets is defined as the set of tabular functions on X. Then, we intro-
duce the natural equivalence relation in the set obtained and prove that 
every tabular function is equivalent to a tabular function of order one, ob-
tained during the first step in the above recursive process. Thus, the prob-
lem of equivalence of two tabular functions is reduced to the problem of 
equivalence of two sets of functional expressions derived from the original 
set of function symbols. Given function / : X —> Y, we will commonly 
identify the functional expression f(x) where χ is a variable that assumes 
values from a given subset A of X, with the function χ f(x), where 
xe Ac X. 

2. Preliminaries 
Given a nonempty set X, denote by PRF(X) the set of all finite parti-

tions of the set X. Given two partitions of the set X, a and β, we say that 
β is finer than a if every member of α is a union of some members of β. 
Equivalently, β is finer than a if every member of β is included in a certain 
member of a.If the partition β is finer than a , we will write a ^ β and 
say that β is a refinement of a. The set PRF(X) is a partially ordered set 
with respect to the relation of being a finer partition. The trivial partition, 
containing only one set, X itself, is the smallest element with respect to the 
relation If the set X is finite, then the partition made of singletons of the 
set X is the greatest element in PRF(X). Given aePRF(X), denote by |a | 
its cardinality, that is, if a = {Αι, , Am}, then |α| == τη, where m is a 
positive integer. Finally, given two partitions a and β of the set X, we will 
denote by aß the partition that consists of all nonempty intersections Α Π Β, 
for all A in a and Β in /?, respectively. The following proposition says that 
the set PRF(X) is a directed set with respect to the refinement relation. 
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PROPOSITION 2.1. Given two partitions a and β in PRF(X), there is a 

partition 7 in PRF(X) such that a 7 and β < η. 

Proo f . Take 7 as the product aß. m 

Let Χ, Y be two nonempty sets. Denote by F S the set of total function 
symbols such that for every function denoted by a member of FS, its domain 
is equal to X and its range is in Y. The set FS is usually obtained from 
an initial, finite set of function symbols F SO by applying certain functional 
operations so that the set FS can be regarded as the closure of the set 
FSQ with respect to those operations. The elements of the set F SO denote 
different functions and are identified with the functions they denote. Two 
different elements of the set FS may denote the same function / : X —> Υ, 
and in this case they are called equivalent. The elements of the set FS 

will be called functional expressions. The set of all classes of equivalent 
functional expressions will be denoted by FSA and identified with the set of 
all functions from the set X and with values in the set Y that are denoted (or 
represented) by elements of FS. A functional expression, that is an element 
of the set FS, may contain an indeterminate, say x, such that when χ is 
assigned a value from the set X , the value the expression assumes is an 
element of the set Y, and thus represents the unique function from the set 
X to the set Y. The following example should make this distiction clear. 

EXAMPLE 2.1. Let X — R (the field of real numbers), FSQ = {1, x, cos(x), 
sin(a;)}, and FSA denote the linear algebra over IR generated by the set 
FSO• The elements of the set FSA are all functions obtained from the finite 
set FSo by application of three operations: the addition of functions, the 
multiplication of functions by real scalars, and the multiplication of functions 
by functions. Thus the set FS consists of all functional expressions of the 
form: 

n 

(2.1) Ai* xai * (cos(z))6, * (sin(z))Ci * exp (d¿ * χ), 

t=l 

where n is an arbitrary, positive integer; and given n, for each i = 1, 2,. . . , η, 
every Ai is a real number, and all a¿, 6¿, c¿ and di are nonnegative inte-
gers. Then, by the standard trigonometric identity, the functional expres-
sions: [cos(x)]2 + [sin(x)]2 and 1, are equivalent, and represent the function: 
R 3 î - t l E l R . • 

We are not concerned in this paper with the structural properties of 
the set FS other than those related to tabular operations as defined in 
the sequel. Actually, the main result of this paper consists in proving that 
tabular functions are closed with respect to those (tabular) operations. 
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3. Tabular functions of degree one 
Given two nonempty sets X, Y, denote by F S the set of total func-

tion symbols such that for every function denoted by a member of FS, 
its domain is equal to X and its range is in Y. Given finite partition 
a = {A\, ,Am} e PRF(X), define 

(3.1) TB™ (a, FS) = { F |F : α —>• FS}. 

That is, every member F of (3.1) is represented by a set of ordered pairs: 

(3.2) F = {(Λι, fi), (A2, h),..., (Am, fm)}, 

where fjeFS for j = 1 , 2 , . . . m. 
Alternatively, it is represented by a pair 

(3.3) F — (α, /), 

where α is a given partition and / = (/i,/2, · · · >/m) is an m-tuple of 
function symbols that occur in (3.2). When following definition (3.3) we will 
assume that members of the partition a are written in an order determined 
by (3.2). 

Next, define 

(3.4) TBW{X,FS)= (J T B W ( a, FS). 
atPRF(X) 

Elements of the set (3.4) will be called tabular functions of degree one, 
and denoted by capital letters F,G, H,... For the sake of completeness, the 
members of the set FS will be referred to as tabular functions of degree 0. It 
is evident from (3.4) that the tabular function F is given by all pairs in (3.2). 
Given F 6 denote by a(F) the corresponding partition and 
by f{F) the corresponding |a|-tuple of function symbols, that is both a(F) 
and f(F) satisfying 

(3.5) F = (a(F), f(F)) Ε TB^ (X, FS), 
(3.6) a(F) = {A1,...,AH}€PRF(X), 

M 
(3.7) f(F) = ( f 1 , h , . . . , f u ) e l [ F S 

i=l 
(Cartesian product of F S |α| times). 

Each F given by (3.5)-(3.7) determines in a natural and unique way a 
function FA from the set X and with values in the set Y, given as follows: 

(3.8) FA(x) = fj(x) for χ e Aj and j = 1 , 2 , . . . , |a|. 
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Since the sets A\, , A\a\ are pairwise disjoint and their union is all of 
X, each χ E X belongs to exactly one of them and the value (3.8) is defined 
by exactly one of the |a| function symbols that occur in (3.7). 

DEFINITION 3 . 1 . Two tabular functions F, G e ΤΒ{·ι\Χ, FS) are said to be 
equivalent if they determine the same function on X, following ( 3 . 5 ) - ( 3 . 8 ) . 

If the tabular functions F and G are equivalent, we will write F m G, that 
is 

P R O P O S I T I O N 3 . 1 . The relation is an equivalence relation onTB^\X, 

P r o o f . Already, the relation " ^ " has been defined in terms of equivalence 
classes. Given F G TB^\X), the equivalence class [F] with respect to the 
relation will be identified with the function F A as given by (3.8). • 

EXAMPLE 3.1. Let X = R, FS0 = {l ,exp(x)},and let FSA denote the 
linear algebra over R generated by the set F So, with the corresponding 
set of functional expressions FS. Next, consider the partitions of R : a = 
{ ( -oo , 0), [0,1), [1, oo)}), and β = {(—oo, 1), [1, oo)}, and let / = 
(1, l,exp(a;)), g = (1, exp(x)), F = (α, /), and G = (β, g). Clearly, the tabu-
lar functions F and G are different as members of T B ^ ( R ) , and equivalent, 
as both determine the fuction Φ : R —* R, given by 

EXAMPLE 3.2. Let X — R and F S denote the set of functional expres-
sions like in Example 2.1. Next, consider the partitions a = {(—οο,Ο), [0,1), 
[1, oo)}), and β — {(—oo, 1), [1, oo)}, of the set R and define / = (sin2(:r) + 
cos2(ζ), 1,exp(z)), g = (l,exp(a;)), and F = (α,/), G = (β,g). Clearly, fol-
lowing a similar argument like in Example 2.1, we can see that F A = GA = 1. 
Nevertheless, the tabular functions F = (α,/) and G = (β,g) regarded as 
maps F, G : PRF(R) -> FS, are different by (3.5)-(3.7). • 

The equivalence in Example 3.1 follows from the fact that for every ar-
gument the functions FA and GA are represented by the same functional 
expressions from FS over all members of an appriopriate partition. The 
equivalence in Example 3.2 involves equivalence among the members of the 
set F S itself. In this case the functions are represented by functional expres-
sions that are different on the interval (—οο,Ο), though they are equivalent 
in the set FS. The Example 3.2 is universal in that sense that the problem 
of equivalence of two tabular functions can be reduced to the problem of 
equivalence of members of the set F S over an appriopriate partition. In the 

(3.9) F ~ G iff FA = GA. 

F S ) . 

( 3 . 1 0 ) 
for χ < 1 
for χ > 1. 
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sequel we will assume that the set F S has been fixed and write TB^(X) 
for T E M P E S ) . 

DEFINITION 3.2. Let F be a tabular function of degree one with a ( F ) = 
{Αί,.,.,Αη}, and / ( F ) = ( / i , . . . , / m ) , and let β = {Bi, B2,..., Bn} be a 
finer partition than a(F), that is a(F) β. Consider the following n-tuple 
5 = (5i) 92, • • •, 9n) of function symbols given by 

(3.11) 9j = fi, if Bj C Ai, for j = 1,2, . . . n; i = 1 ,2 , . . . ,m. 

The tabular function {ß,g) € TEMPES) will be denoted by F (a Î β), 
and called a lift of F from a to β. 

PROPOSITION 3.2. For every F Ε TB^(X), and every β 6 PRF(X) such 
that a •< β, 

(3.12) F F (a î β). 

P r o o f . F and F(a j β) determine the same function on X. m 
It is clear that the equivalent tabular functions F and F (a ] β) that 

occur in (3.12) are different as members of TB(1\X) provided the partitions 
a and β are different. As we mentioned already, given two tabular functions 
F,G ζ TB^(X), the difficulty in deciding whether they are equivalent 
lies in the fact that we cannot, in general, compare the values assumed by 
the functions FA and GA, since their domain, the set X, may be infinite. 
Thus, we are led to deal with their descriptions. Then we have the following 
characterization. 

PROPOSITION 3.3 . Any F,G e TB^(X) are equivalent if and only if there 
is 7 € PRF(X) such that a(F) < 7 and a(G) ^ 7, and F(a(F) î 7) ^ 
G ( a ( G ) î 7 ) . 

P r o o f . (=>) Let F,G E TB^(X) be equivalent. By Proposition 2.1 there 
is a 7 e PRF(X) such that a(F) •< 7 and a(G) •< 7. Following Proposition 
3.2,we obtain F ~ F(a(F) î 7) and G ~ G(a(G) î 7). Then, by Proposition 
3.1, F(a(F) î 7) ϊξ G(a(G) | 7). 

(<=) Let F,G e TBW(X) and 7 € PRF(X) such that a{F) ^ 7 and 
a(G) ± 7, and F(a(F) | 7) - G(a{G) î β). As before, F ~ F ( a ( F ) ·-> 7) 
and G ^ G(a(G) 1—• 7) so, by transitivity of F ^ G. m 

EXAMPLE 3 . 3 . Let X = R , FSo — {x,a6s(x)}. Let F¿>I denote the linear 
algebra over Μ generated by the set F So, with the corresponding set FSA of 
functional expressions. Next, consider the partitions a = {(—00,0), [0,00)}) 
and β = {(—oo, 0), [0,2), [2,00)}. Then, define / = ( - x , x ) , 5 = 
{abs{x), χ, x)), F = (oi,f), and G — (β, g)· Clearly, the tabular functions 
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F and G are different as members of TU^^R), and equivalent, as both 
determine the function Φ : IR —» R, given by 

(3.13) Φ(χ) = abs(x) for χ € R. 

This time, in opposite to Example 3.2, there is no corresponding equiva-
lence among the members of the set F Si (as total functions over R). It is 
because the function abs(x) is already represented by a tabular function 
from TB^(R,FS) with FSA being a linear algebra over R generated by 
the identity function R 3 χ χ E R, alone.Consider, for instance, 

(3.14) α = {(—οο,Ο), [Ο,οο)}, and f = (-x,x). 

Then, clearly, the tabular function 

(3.15) ABS = (a, f ) 

represents the function abs(x). 
The last example shows that in order to be able to decide that two tabular 

functions are equivalent, the elements of the set F S that are not equivalent 
should remain so when reduced to members of the partition under consid-
eration. ( Except for, maybe, finite subsets). Such a property characterizes 
for instance analytic functions. From this point of view the functions repre-
sented by tabular functions of degree one can be looked upon as "piecewise 
analytic". 

4. Tabular functions of higher degrees 
We will need the following characterization of tabular functions of degree 

one. 

PROPOSITION 4 .1 . The set TB^(X) is equal to the following set 

( 4 . 1 ) Z = {(a,f)\aePRF(X), / = ( / i /,«,), f j E F S , j = 1 , 2 , . . . , \a\}. 

P r o o f . Let α E PRF(X). It is clear that TB^\a,FS) C Z. And vice 
versa, each (a, /) 6 Ζ belongs to T B ^ ( a , F5).Thus, the assertion holds. • 

Now we are in a position to extend the notion of a tabular function of 
degree one, defined in Section 3, to include higher degrees. To do so, we need 
to consider all pairs (a,/), where a is, as before, an element of PRF(X), 
and / = (/χ, /2 , . . . , / w ) is an |a|-tuple of another tabular functions. Let us 
define recursively the following sets 

( 4 . 2 ) PTB^(X) = TB(°\X) = FS. 

Inductively, for k = 1 , 2 , 3 , . . . , we set 

(4.3) P r e f i x ) = { ( a , /)|a G PRF(X), f = ( f ^ , . . . , / f t " 1 * ) } , 
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where 

( 4 . 4 ) / f _ 1 ) e P T B ^ i X ) , for j = 1 , 2 , . . . , \a\. 

Next, 

( 4 . 5 ) TB™(X) = {(a, / ) |a e PRF(X),f = ( f u / 2 , . . . , / H ) } , 

where 
fc-1 

( 4 . 6 ) /,· G ( J PTB^{X). 

3=0 

Finally, 
oo 

( 4 . 7 ) PTB(X) = ( J PTB{-k\X), 
k=0 

oo 
( 4 . 8 ) Γ 5 ( Χ ) = ( J TBW(X). 

k=0 

Given F € TB(X) we have that either F 6 FS, or that there is a partition 
α € PTF(X), say of m members, a = {Ai, . . . ,Am}, and a corre-
sponding an m-tuple f — (/i, / 2 , · · · , / m ) , with each f j € TB(X), such that 
F = (a, /). Then we define its degree, denoted by deg(F), as follows: 

f 0 , i f F e TBW(X) = FS, a n d 
(4.9) deg(F) = < 1 + m a x (deg(/,·), otherwise. 

L ι 

COROLLARY 4 . 1 . 

(4.10) deg(F) = 0 if and only if F e FS = PTB^\X), 

(4.11) deg(-F) = 1 if and only if F € PTB^\X), 

(4.12) deg(F) = k for any F € PTB^k\X), for k = 0 , 1 , 2 , . . . • 

Elements of the sets (4.3) will be called pure tabular functions of degree 
k on X, elements of the set (4.7) will be called pure tabular functions on X, 
and elements of the set (4.8) will be called tabular functions on X. 

The following proposition summarizes the relationships between the sets 
we have introduced. 

PROPOSITION 4 . 2 . 

(4.13) PTBio)(X) = TB{0)(X) = FS, 

(4.14) PTB{1)(X) = TBW(X), 

(4.15) P r e f i x ) C TBW{X), for Jfe = 2 , 3 , . . . (strict inclusion). 
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P r o o f . The identities (4.13) and (4.14) follow directly from (4.2)-(4.6) and 
Proposition 4.1. The inclusion (4.15) follows from the fact that if we restrict 
ourselves in (4.5)-(4.6) to the elements of P T B ^ ^ ^ X ) only, then we obtain 
exactly the set Moreover, if we consider other elements, for 
instance from then we obtain elements from the outside of 
P T B ^ { X ) , f o r k > 2 . • 

COROLLARY 4 . 2 . 

(4 .16) P T B ( X ) C T B { X ) (proper inclusion). • 

From now on unless explicitly stated we will assume that the tabular 
functions are of degree > 1. By induction, following Definition 3.1, we ex-
tend the notion of equivalency of two tabular functions, from T B ( 1 \ X ) to 
T B ( X ) . Similarly, given tabular function F G T B ( X ) , with its natural par-
tition a = a(F), and given partition β € PRF(X), such that a ^ β, we 
extend the notion of a lift of F from a to β, again denoted by F(a(F) f 7). 
Given F e T B ( X ) , and A e a(F), we will write / ( F ) ( A ) to indicate the 
component of the tuple f{F) referring to the set A, if the tuple itself is 
not explicitly displayed. Let us also introduce the notion of a joint of two 
tabular functions defined on two different sets. 

D E F I N I T I O N 4 . 1 . Given two tabular functions F\ e TB(X 1 ) , and F2 € 

TB(X2), where Χι (Ί X2 = 0, their joint, denoted F\ φ F2, is defined as an 
element of TB(X 1 U X2) as follows: 

(4.17) a(Fi Θ F2) = a(Fy) U a(F2), and 

It follows that the operation joint preserves equivalence and degree. Namely, 
we have the following proposition. 

P R O P O S I T I O N 4 . 3 . Let Fì,Gì e T B ^ ( X i ) , and Fi ^ for » = 1 , 2 . Then, 

(4.19) Fx Θ F2 ~ Gi Θ G2 , and 
(4.20) deg(i<i © F2) = m a ^ d e g ^ ) , deg(F2)). 

P r o o f . Directly follows from Definitions 3.1 and 4.1, and from formula 

Now we are in a position to state and prove the anticipated result on 
equivalency of arbitrary tabular functions. 

T H E O R E M 4 . 1 . For every F e Τ Β ( X ) there is G e T B ^ ( X ) such that 

(4 .18) 

(4 .9) . . 
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P r o o f . By induction with respect to deg(F). Let FeTB(X). If deg(F) = l, 
the theorem clearly holds. Let us now assume that whenever deg(F) < k for 
an integer k > 1, theorem holds, and assume that deg(F) = k + 1. Let 

(4.21) a = a(F) = {A1,A2,...,Am} and 

(4.22) / = f(F) — (/li /2> · · ·, fm) 

denote the natural partition for F and the corresponding m-tuple of function 
symbols, with each f j in TB(X) and each one of degree < k. 

Denote by m o the number of elements in the tuple (4.22) that are of 
degree 0, where 0 < mo < m. 

First, consider the case mo = 0, that is 1 < d e g ( f j ) < k for each j = 

1,2,... ,m. By hypothesis, there are m tabular functions of degree 1, say 
F}1}, F^,..., Fm^, with the corresponding partitions β\,/?2, · · · ,ß m such 
that f j ~ for j = 1,2, . . . , m. Let 

(4.23) ßi = {Bitl,Bi<2,...,Bitlßii} and 

(4.24) f(F¡1)) = (f¡Zfí%---J¡%iih for i = 1,2,.. . ,m. 

Next, define for every i = 1,2,... ,m, the following collections 

(4.25) 6(Ai) = {Ai Π B\B Ε ßi and Ai Γ) Β φ 0}. 

Finally, let 

τη 

(4.26) δ(α) = ( J δ(Αί). 
¿=ι 

It is clear that every collection (4.25) forms a finite and nonempty partition 
for Ai, and thus (4.26) forms a finite partition for X, that is δ(α) € PRF(X). 

Moreover, 

(4.27) a ^ Ä ( a ) and βί<δ(α), for i = 1,2,.. .m. 

Let us enumerate the partition members in (4.25): 

(4.28) ö(Ai) = {Aitl,Ait2,...,Ai,Pi}, 

where 1 <Pi <\ßi\ for i = 1,2,... , m. 
Now, for every 1 < i < m, define the following pi function symbols of 

degree 0: 

(4.29) = if Ai,. = AinB i tr, for 5 = 1 , 2 , . . . r = l ,2 , . . . , 
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By the above definition, for every 1 < i < m, the p¿-tuples l , g¿J,... 

• · • 19i°px ) given by (4.27) and |/3¿ ¡-tuples (4.24) represent the same function 
on A{. Therefore, the pair 

(4.30) G — ( 6 ( a ) , g ) , with the member g given below, 

(4 31Ì a - io(0) o(0) o(0) o(0) o(0) o(0) a(°> ) 

defines an element of T B ^ ( X ) , such that G - F(a(F) Î ¿(a)). Thus 
F G, which proves the theorem for the case mo = 0. 

To prove the case 0 < mo < m, assume, for the sake of simplicity, that 
the elements of degree 0 in the tuple f(F) occupy the last mo positions in 
the tuple. Then, consider the following collections of sets: 

m—mo 
(4.32) Xi= (J Au 

i=l 
mo 

(4.33) X2 - ( J Am-mo+j, 
j=1 

(4.34) ai = { A u A 2 , . . . , A m - m o } , 

(4.35) 

Obviously, the sets given by (4.32) and (4.33) are disjoint, their union equals 
X, and the collections given by (4.34) and (4.35) form partitions for them. 

Now, consider the following two tuples of tabular functions: 

(4.36) / ( 1 ) = (/ i , f 2 , . . ·, fm-mo) and 
(4.37) / ( 2 ) = ( f m - m o + l i fm—mo+2> · · · > fm)· 

We use them to form two tabular functions defined on X\ and X2 respec-
tively: 

(4.38) Fx = («!,/(!)), 

(4.39) F2 = ( a 2 , f { 2 ] ) . 

Then, we have 

(4.40) Fi G TB(X 1) and 1 < deg(Fi) < k + 1, 
(4.41) F2 € TB(X2) and deg(F2) = 1, 
(4.42) F = Fi®F2. 

Proceeding exactly like in the case mo = 0, we get a tabular function of 
degree one, say G1 € TB^\X 1), such that G\ F\. Then, consider the 
joint G = Gì φ F2. It follows from (4.9) and (4.20) that 
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(4.43) deg(G) = deg(Gi ® F2) = max(deg(Gi), deg(F2)) = 1. 

Moreover, since F\ ^ G\, then F — Fi (&F2 — Gì ®F2 = G which completes 
the proof. • 

5. Conclusions 
Given two tabular functions F,G e TB(X), of degree > 1, there 

are, by Theorem 4.1, tabular functions of degree one, say 
TB^{X), such that F^ ~ F, and G (1) ~ G. Thus, by Propositions 
2.1 and 3.2, there are equivalent lifts, say F ^ and G'^^of degree one, 
of FW and G^1) respectively, defined on a partitition 7 6 PRF(X). Let 7 = 
{Ci,C2,... ,Cm}, / (F' ( 1 ) ) = ( / 1 , / 2 , . . . , / m ) and f(G'W) = (Sl,g2,... ,gm). 
Then the equivalency of F and G follows from the equivalency of the func-
tion symbols f i , f2, • · •, fm and <7i, <72 > · · · > 9m (in FS) respectively. Based on 
this result we can construct effective provers for piecewice analytic functions 
in complex or real variables. In particular we can extend the capabilities of 
the existing computer algebra systems when it comes to piecewise defined 
functions. 
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