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COMPUTING EQUIVALENT TABULAR FUNCTIONS

Abstract. Tabular functions were invented to form a formal framework for normal
and inverted function tables used in documenting complex software systems. They are
defined as maps on finite partitions of a given nonempty set X with values in a set
of function symbols. It is shown that every tabular function is equivalent to a tabular
function of degree one. The problem of equivalence of two tabular functions is reduced to
the problem of equivalence of two sets of functional expressions derived from the set of
initial function symbols.

1. Introduction

Function and relation tables {10, 11, 12] have been in use for the formal
documenting of complex software systems for some time. They are matrix-
like functional expressions with a set of predicates representing conditional
expressions used for the indices and a corresponding set of functional ex-
pressions used for the entries. Every normal function table represents a
function whose domain consists of those elements that are used as argu-
ments for the table predicates. The table predicates represent conditional
expressions which split the whole domain into disjoint sets. Each entry in
the table represents the values assumed by the function represented by the
table when its arguments satisfy the corresponding condition predicates.
Given two function tables with the same domain and codomain, the nat-
ural problem arises: How to decide whether they represent the same func-
tion? The solution to this problem consists of an algorithm which when
followed provides a ”yes” or "no” answer in a finite number of steps. The
main difficulty in arriving to the answer, in general, lies in the fact that
we cannot make pointwise comparisons of the functions under consideration
since the domain may be infinite. Nevertheless, if we go to the descriptions
of the functions considered, then we can compare those objects in a finite
number of steps without taking into account their domain, provided the
descriptions themselves are not too complex. That is, they are "finite” in
a certain sense. Tabular functions introduced in this paper make this dis-
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tinction clear. The approach taken seems particularly suitable for functions
that look like piece-wise analytic. The other approaches towards function
and relation tables are taken in [2, 6, 13]. They are useful for their classifi-
cation and for the efficient computation of values or conditions assumed or
represented by the tables. In particular, the way of using efficiently func-
tion and relation tables in documenting well structured programs is pre-
sented in [11, 12]. We define tabular functions of order one as maps from
the set of finite partitions of a given set X, and with values in a set of
function symbols. The set of function symbols under consideration will be
identified with the set of functional expressions, or functional terms, de-
rived from a given basic set of function symbols by following certain deriva-
tion rules. Recursively, tabular functions of higher orders are defined as
maps from the set of finite partitions of X, and with values in the set of
function symbols obtained in previous steps. Finally, the union of all of
those sets is defined as the set of tabular functions on X. Then, we intro-
duce the natural equivalence relation in the set obtained and prove that
every tabular function is equivalent to a tabular function of order one, ob-
tained during the first step in the above recursive process. Thus, the prob-
lem of equivalence of two tabular functions is reduced to the problem of
equivalence of two sets of functional expressions derived from the original
set of function symbols. Given function f : X — Y, we will commonly
identify the functional expression f(z) where z is a variable that assumes
values from a given subset A of X, with the function z — f(z), where
z€ACKX.

2. Preliminaries

Given a nonempty set X, denote by PRF(X) the set of all finite parti-
tions of the set X. Given two partitions of the set X, o and 3, we say that
0 is finer than « if every member of « is a union of some members of f.
Equivalently, 8 is finer than « if every member of 3 is included in a certain
member of «.If the partition 3 is finer than «, we will write @ = 8 and
say that 8 is a refinement of a. The set PRF(X) is a partially ordered set
with respect to the relation of being a finer partition. The trivial partition,
containing only one set, X itself, is the smallest element with respect to the
relation <. If the set X is finite, then the partition made of singletons of the
set X is the greatest element in PRF(X). Given ae PRF(X), denote by |a|
its cardinality, that is, if @ = {A;,...., A}, then |a| = m, where m is a
positive integer. Finally, given two partitions a and g of the set X, we will
denote by af the partition that consists of all nonempty intersections AN B,
for all A in a and B in 3, respectively. The following proposition says that
the set PRF(X) is a directed set with respect to the refinement relation.
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PROPOSITION 2.1. Given two partitions o and B in PRF(X), there is a
partition v in PRF(X) such that a <y and B < .

Proof. Take « as the product af. =

Let X,Y be two nonempty sets. Denote by F'S the set of total function
symbols such that for every function denoted by a member of F'S, its domain
is equal to X and its range is in Y. The set F'S is usually obtained from
an initial, finite set of function symbols F'Sy by applying certain functional
operations so that the set F'S can be regarded as the closure of the set
FSy with respect to those operations. The elements of the set F'Sy denote
different functions and are identified with the functions they denote. Two
different elements of the set F'S may denote the same function f: X — Y,
and in this case they are called equivalent. The elements of the set 'S
will be called functional expressions. The set of all classes of equivalent
functional expressions will be denoted by FS” and identified with the set of
all functions from the set X and with values in the set Y that are denoted (or
represented) by elements of F'S. A functional expression, that is an element
of the set F'S, may contain an indeterminate, say x, such that when z is
assigned a value from the set X, the value the expression assumes is an
element of the set Y, and thus represents the unique function from the set
X to the set Y. The following example should make this distiction clear.

ExAMPLE 2.1. Let X = R (the field of real numbers), F'Sy = {1, z, cos(z),
sin(z)}, and FS” denote the linear algebra over R generated by the set
FSy. The elements of the set F'S” are all functions obtained from the finite
set F'Sy by application of three operations: the addition of functions, the
multiplication of functions by real scalars, and the multiplication of functions
by functions. Thus the set F'S consists of all functional expressions of the
form:

(21) ZAi * 2% * (cos(z))* * (sin(z))% * exp(d; * ),
i=1
where n is an arbitrary, positive integer; and given n, foreachi =1,2,...,n,

every A; is a real number, and all a;, b;, ¢; and d; are nonnegative inte-
gers. Then, by the standard trigonometric identity, the functional expres-
sions: [cos(z)]? + [sin(z)]? and 1, are equivalent, and represent the function:
Roz—-1€R =

We are not concerned in this paper with the structural properties of
the set 'S other than those related to tabular operations as defined in
the sequel. Actually, the main result of this paper consists in proving that
tabular functions are closed with respect to those (tabular) operations.
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3. Tabular functions of degree one

Given two nonempty sets X,Y, denote by F'S the set of total func-
tion symbols such that for every function denoted by a member of F'S,
its domain is equal to X and its range is in Y. Given finite partition
a={41,....,An} € PRF(X), define

(3.1) TBW (o, FS) = {F |F : a — FS}.
That is, every member F of (3.1) is represented by a set of ordered pairs:

(32) F= {(Alafl)’(A2;f2)1"'7(Am;fm)}7

where f;eF'S for j=1,2,...m.
Alternatively, it is represented by a pair

(3.3) F =(a, f),

where « is a given partition and f = (f1, f2,..., fm) is an m-tuple of
function symbols that occur in (3.2). When following definition (3.3) we will
assume that members of the partition a are written in an order determined
by (3.2).

Next, define

(3.4) TBY(X,FS)= ] TBW(a,FS).
aePRF(X)

Elements of the set (3.4) will be called tabular functions of degree one,
and denoted by capital letters F, G, H, ... For the sake of completeness, the
members of the set F'S will be referred to as tabular functions of degree 0. It
is evident from (3.4) that the tabular function F is given by all pairs in (3.2).
Given F € TBW (X, FS), denote by o(F) the corresponding partition and
by f(F) the corresponding |a|-tuple of function symbols, that is both «a(F)
and f(F) satisfying

(35)  F=(a(F),f(F) e TBY (X,FS),

(3.6) a(F) = {A1,..., Ao} € PRF(X),

la

37 fF)=(fr,f-. ) €[] FS

i=1

(Cartesian product of F'S |a] times).

Each F given by (3.5)—(3.7) determines in a natural and unique way a
function F” from the set X and with values in the set Y, given as follows:

(3.8) FMz)= fij(z) forz € Ajand j =1,2,...,|a|.
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Since the sets A,...., A}, are pairwise disjoint and their union is all of
X, each z € X belongs to exactly one of them and the value (3.8) is defined
by exactly one of the |a| function symbols that occur in (3.7).

DEFINITION 3.1. Two tabular functions F,G € TBM) (X, FS) are said to be
equivalent if they determine the same function on X, following (3.5)—-(3.8).
If the tabular functions F and G are equivalent, we will write F' = G, that
is

(3.9) F=G if F'=G"

PROPOSITION 3.1. The relation “=” is an equivalence relation on TB(I)(X ,
FS).

Proof. Already, the relation ” » ” has been defined in terms of equivalence
classes. Given F € TB(X), the equivalence class [F] with respect to the
relation will be identified with the function F* as given by (3.8). =

EXAMPLE 3.1. Let X = R, FSy = {1l,exp(z)},and let FS" denote the
linear algebra over R generated by the set F'Sy, with the corresponding
set of functional expressions F'S. Next, consider the partitions of R : o =
{(=00,0),[0,1),[1,00)}), and B = {(-o0,1),[1,00)}, and let f =
(1,1,exp(z)), g = (1,exp(z)), F = (a, f),and G = (B, g). Clearly, the tabu-
lar functions F and G are different as members of TB(1)(R), and equivalent,
as both determine the fuction ¥ : R — R, given by

1 forz <1
(3.10) ¥(z) = {exp(x) for z > 1.
ExXAMPLE 3.2. Let X = R and F'S denote the set of functional expres-
sions like in Example 2.1. Next, consider the partitions a@ = {(—00,0), [0, 1),
[1,00)}), and B8 = {(—00,1),[1,00)}, of the set R and define f = (sin®(z) +
cos?(z), 1,exp(x)), g = (1,exp(z)), and F = (o, f), G = (B, g). Clearly, fol-
lowing a similar argument like in Example 2.1, we can see that F* = G = 1.
Nevertheless, the tabular functions F' = (a, f) and G = (3, g) regarded as
maps F,G : PRF(R) — FS, are different by (3.5)—(3.7). m

The equivalence in Example 3.1 follows from the fact that for every ar-
gument the functions F* and G" are represented by the same functional
expressions from F'S over all members of an appriopriate partition. The
equivalence in Example 3.2 involves equivalence among the members of the
set F'S itself. In this case the functions are represented by functional expres-
sions that are different on the interval (—oo,0), though they are equivalent
in the set F'S. The Example 3.2 is universal in that sense that the problem
of equivalence of two tabular functions can be reduced to the problem of
equivalence of members of the set F'S over an appriopriate partition. In the
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sequel we will assume that the set F'S has been fixed and write TB(1)(X)
for TBO(X, FS).

DEFINITION 3.2. Let F be a tabular function of degree one with a(F) =
{A1,...,An}, and f(F) = (f1,..., fm), and let 8 = {B1,B>,...,B,} be a
finer partition than a(F'), that is a(F) < . Consider the following n-tuple
g9 =1(91,92,---,9n) of function symbols given by

(3.11) gi=Ffi, #B;CA4;, forj=12,...n;¢t=12,...,m.

The tabular function (8,g) € TB()(X, FS) will be denoted by F(a 1 ),
and called a lUft of F' from o to (3.

PROPOSITION 3.2. For every F € TBW(X), and every B € PRF(X) such
that o < 3,

(3.12) FeF(alB).

Proof. F and F(a 1 ) determine the same function on X. =

It is clear that the equivalent tabular functions F' and F(a 1 () that
occur in (3.12) are different as members of TB(1)(X) provided the partitions
a and f are different. As we mentioned already, given two tabular functions
F,G € TBW(X), the difficulty in deciding whether they are equivalent
lies in the fact that we cannot, in general, compare the values assumed by
the functions F* and G, since their domain, the set X, may be infinite.
Thus, we are led to deal with their descriptions. Then we have the following
characterization.

PROPOSITION 3.3. Any F,G € TBM(X) are equivalent if and only if there
is v € PRF(X) such that a(F) <X v and a(G) 2 v, and F(a(F) 1 v) =«
G(a(G) 17)-

Proof. (=) Let F,G € TBM(X) be equivalent. By Proposition 2.1 there
is ay € PRF(X) such that a(F) < v and a(G) =< ~. Following Proposition
3.2,we obtain F = F(a(F) 1 v4) and G = G(a(G) 1 ). Then, by Proposition
3.1, F(a(F) T7) = G(a(G) T1).

(<) Let F,G € TBN)(X) and y € PRF(X) such that o(F) < 5 and
a(G) X v,and F(a(F) 17v) = G(a(G) T B). As before, F = F(a(F) — v)
and G = G(a(G) — ) so, by transitivity of “«”, F =~ G. =

EXAMPLE 3.3. Let X = R, FSy = {z,abs(z)}. Let F'S; denote the linear
algebra over R generated by the set F'Sp, with the corresponding set FS7* of
functional expressions. Next, consider the partitions o = {(~00, 0}, [0,00)})
and 8 = {(~0,0),[0,2),[2,00)}. Then, define f = (-z,z), g =
(abs(z),z,x)), F = (a, f), and G = (B, g). Clearly, the tabular functions
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F and G are different as members of TB(Y)(R), and equivalent, as both
determine the function ® : R — R, given by

(3.13) ®(z) = abs(z) for z €R.

This time, in opposite to Example 3.2, there is no corresponding equiva-
lence among the members of the set F'S; (as total functions over R). It is
because the function abs(z) is already represented by a tabular function
from TBW(R, FS) with FS” being a linear algebra over R generated by
the identity function R 3 z — z € R, alone.Consider, for instance,

(314) a = {(—O0,0), [0,00)}, and f = (—17,.’13).
Then, clearly, the tabular function
(3.15) ABS = (a, f)

represents the function abs(z).

The last example shows that in order to be able to decide that two tabular
functions are equivalent, the elements of the set F'S that are not equivalent
should remain so when reduced to members of the partition under consid-
eration. ( Except for, maybe, finite subsets). Such a property characterizes
for instance analytic functions. From this point of view the functions repre-
sented by tabular functions of degree one can be looked upon as “piecewise
analytic”.

4. Tabular functions of higher degrees
We will need the following characterization of tabular functions of degree
one.

PROPOSITION 4.1. The set TBW(X) is equal to the following set
(41) Z = {(a, f)le€PRF(X), f=(f1,---,flay), [i€EFS, j=1,2,...,]a|}.

Proof. Let « € PRF(X). It is clear that TB")(a, FS) C Z. And vice
versa, each (a, f) € Z belongs to TB()(q, F'S).Thus, the assertion holds. m

Now we are in a position to extend the notion of a tabular function of
degree one, defined in Section 3, to include higher degrees. To do so, we need
to consider all pairs (a, f), where « is, as before, an element of PRF(X),
and f = (f1, f2,---, fla|) is an |a|-tuple of another tabular functions. Let us
define recursively the following sets

(4.2) PTBO(X)=TBO®(X) = FS.
Inductively, for k =1,2,3,..., we set
(43) PTBY(X)={(a Nla € PRE(X), f=(f*D,..., sED)),

al
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where

(4.4) &V e PTBED(X), for j=1,2,...,]al.

Next,

(4.5) TB®(X) = {(a, f)la € PRF(X), f = (f1, for- -, fia)}s

where
k-1

(4.6) fi € |J PTBY)(X).
=0

Finally,

(47) PTB(X)= U PTB® (X)),
k=0

(48) TB(X)= G TB®) (X

Given F' € TB(X) we have that either F € F'S, or that there is a partition
a € PTF(X), say of m members, a = {A;,4,...,An}, and a corre-
sponding an m-tuple f = (f1, f2,..., fm), with each f; € TB(X), such that
F = (a, f). Then we define its degree, denoted by deg(F), as follows:

0, if F ¢ TBOO(X) = FS, and
(49)  deg(F)=1q 1+ Jax (deg(f;), otherwise.
<j<m

COROLLARY 4.1.

(4.10)  deg(F) = 0 if and only if F € FS = PTBO(X),

(4.11)  deg(F) =1 if and only if F ¢ PTBM(X),

(4.12)  deg(F) =k for any F € PTB®)(X), for k=10,1,2,... =
Elements of the sets (4.3) will be called pure tabular functions of degree

k on X, elements of the set (4.7) will be called pure tabular functions on X,

and elements of the set (4.8) will be called tabular functions on X.

The following proposition summarizes the relationships between the sets
we have introduced.

PROPOSITION 4.2.

(413) PTBO(X)=TBO(X)=FS,

(4.14) PTBM(X)=TBM(X),

(4.15)  PTBW(X) c TB®(X), for k=2,3,... (strict inclusion).
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Proof. The identities (4.13) and (4.14) follow directly from (4.2)—(4.6) and
Proposition 4.1. The inclusion (4.15) follows from the fact that if we restrict
ourselves in (4.5)-(4.6) to the elements of PT B(*~1)(X) only, then we obtain
exactly the set PTB(*)(X). Moreover, if we consider other elements, for
instance from PTB(®(X), then we obtain elements from the outside of
PTB®(X), fork>2. =

COROLLARY 4.2.
(4.16) PTB(X) Cc TB(X) (proper inclusion). m

From now on unless explicitly stated we will assume that the tabular
functions are of degree > 1. By induction, following Definition 3.1, we ex-
tend the notion of equivalency of two tabular functions, from TBW(X) to
TB(X). Similarly, given tabular function F' € TB(X), with its natural par-
tition @ = «(F), and given partition 8 € PRF(X), such that a <X 3, we
extend the notion of a lift of F' from « to 5, again denoted by F(a(F) T 7).
Given F € TB(X), and A € aF), we will write f(F)() to indicate the
component of the tuple f(F) referring to the set A, if the tuple itself is
not explicitly displayed. Let us also introduce the notion of a joint of two
tabular functions defined on two different sets.

DEFINITION 4.1. Given two tabular functions Fy € TB(X;), and F, €
TB(X,), where X; N X, = (), their joint, denoted F; & Fs, is defined as an
element of TB(X; U X3) as follows:

(4.17) a(Fy @ F) = a(F) Ua(F,y), and

) _ [ FFED)A, if A€ a(F),
(418) f(FieR) A)_{f(F;)(A), ifAEa(F:)-

It follows that the operation joint preserves equivalence and degree. Namely,
we have the following proposition.

PROPOSITION 4.3. Let F;,G; € TBW(X;), and F; = G; for i =1,2. Then,
(4.19) FFeFR-G ®G,, and
(4.20) deg(F1 ® F2) = max(deg(Fy), deg(Fr)).

Proof. Directly follows from Definitions 3.1 and 4.1, and from formula
(49). =

Now we are in a position to state and prove the anticipated result on
equivalency of arbitrary tabular functions.

THEOREM 4.1. For every F € TB(X) there is G € TBW(X) such that
F=G.



694 Z. Dudek

Proof. By induction with respect to deg(F'). Let FeTB(X). If deg(F')=1,
the theorem clearly holds. Let us now assume that whenever deg(F) < k for
an integer k > 1, theorem holds, and assume that deg(F) = k + 1. Let

(4.21) a=qa(F)={A,4,,...,An} and
(422) fzf(F)z(fl)fZ"'-’fm)

denote the natural partition for F' and the corresponding m-tuple of function
symbols, with each f; in TB(X) and each one of degree < k.

Denote by mgp the number of elements in the tuple (4.22) that are of
degree 0, where 0 < mg < m.

First, consider the case mo = 0, that is 1 < deg(f;) < k for each j =
1,2,...,m. By hypothesis, there are m tabular functions of degree 1, say

Fl(l), Fz(l), ceey F,(nl), with the corresponding partitions fi,0s,...,Bm such
that f; = Fj(l), for j=1,2,...,m. Let
(423) Bi = {Bi,l, Bi,2, ey Bi»lﬁd} and
0) (0 0 .
(4.24)  FFM)=( i(’l),f.(’z),...,fi(vl[),il}, fori=12,...,m.

13

Next, define for every ¢ = 1,2,...,m, the following collections
(4.25) 8(A;)={A;NB|Bep; and A;NB#0}.
Finally, let
(4.26) 8(e) = | J 6(4s).

i=1

It is clear that every collection (4.25) forms a finite and nonempty partition
for A;, and thus (4.26) forms a finite partition for X, thatis §(a) € PRF(X).
Moreover,

(4.27) a=X6(a) and B; <6(a), fori=1,2,...m.
Let us enumerate the partition members in (4.25):
(4.28) 6(Ai) = {4i1, Ai2, -5 Aip ),

where 1 <p; <|B;| fori=1,2,...,m.
Now, for every 1 < ¢ < m, define the following p; function symbols of
degree 0:

4.29) g =759 if A, = ANB;,, for s=1,2,...p; r=1,2,...,16].

gi,s — Jiro
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By the above definition, for every 1 < ¢ < m, the p;-tuples (gl(’ol), glg’oz), -

ce gg?p)i) given by (4.27) and |B;|-tuples (4.24) represent the same function

on A;. Therefore, the pair

(4.30) G = (6(a), g), with the member g given below,

0 0 0 0 0 0
(431) g= (95,1):g§,2)’ trey gg,;l, T ,gg,,),z, v )gsn,)lvgfn,)za R 7(7?,),,,,1),

defines an element of TB((X), such that G = F(a(F) T é(a)). Thus
F « G, which proves the theorem for the case mg = 0.

To prove the case 0 < mg < m, assume, for the sake of simplicity, that
the elements of degree 0 in the tuple f(F') occupy the last mg positions in
the tuple. Then, consider the following collections of sets:

m—mg

432) Xi= | 4,
i=1

mo
(433)  Xa=|]J Am-mo+i»
i=1

(434) ay = {Al, A2, ey Am—mo},
(435) Qo = {Am—mo+1a Am—m0+2, N ,Am}
Obviously, the sets given by (4.32) and (4.33) are disjoint, their union equals

X, and the collections given by (4.34) and (4.35) form partitions for them.
Now, consider the following two tuples of tabular functions:

(4.36) fay = (f1, f25- -, fm—m,) and
(4.37)  f2) = (Fm-mos1, fmemot2, -+ fm)-
We use them to form two tabular functions defined on X, and X, respec-
tively:
(4.38) Fy = (a1, f)),
(4.39)  Fy = (a2, fa)):
Then, we have
(4.40) F, € TB(X;) and 1 <deg(F)<k+1,
(4.41) F, e TB(X2) and deg(F:) =1,
(4.42) F=FRoF.
Proceeding exactly like in the case mg = 0, we get a tabular function of

degree one, say G; € TBW(X,), such that G; = Fj. Then, consider the
joint G = G1 @ F3. It follows from (4.9) and (4.20) that
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(4.43) deg(G) = deg(G1 @ F3) = max(deg(G1),deg(F3)) = 1.

Moreover, since F; = G1, then F = Fy ® F5 = G ® F» = G which completes
the proof. =

5. Conclusions

Given two tabular functions F,G € TB(X), of degree > 1, there
are, by Theorem 4.1, tabular functions of degree one, say F' (1), G ¢
TBW(X), such that F) < F, and G® « G. Thus, by Propositions
2.1 and 3.2, there are equivalent lifts, say F' (D and G'!) of degree one,
of F() and GWrespectively, defined on a partitition v € PRF(X). Let v =
{Ch 027 s 7Cm}) f(Fl(l)) = (fl) f2) AR fm) and f(G,(l)) = (91,92, cee ’gm)
Then the equivalency of F' and G follows from the equivalency of the func-
tion symbols f1, fo,..., fm and g1, 92, - .., gm (in F'S) respectively. Based on
this result we can construct effective provers for piecewice analytic functions
in complex or real variables. In particular we can extend the capabilities of
the existing computer algebra systems when it comes to piecewise defined
functions.
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