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A N E W SPACE-SAVING B A Y E S I A N TREE C O N S T R U C T I O N 
M E T H O D FOR HIGH DIMENSIONAL DATA 

Abstract . Bayesian networks have many practical applications due to their capability 
to represent joint probability distribution in many variables in a compact way. There 
exist efficient reasoning methods for Bayesian networks. Many algorithms for learning 
Bayesian networks from empirical data have been developed. A well-known problem with 
Bayesian networks is the practical limitation for the number of variables for which a 
Bayesian network can be learned in reasonable time. A remarkable exception here is the 
Chow/Liu algorithm learning tree-like Bayesian networks. However, also this algorithm has 
an important limitation, related to space consumption. The space required is quadratic in 
the number of variables. The paper presents a novel algorithm overcoming this limitation 
for the tree-like class of Bayesian networks. The new algorithm space consumption grows 
linearly with the number of variables while the execution time is comparable with the 
Chow/Liu algorithm. This opens new perspectives in construction of Bayesian networks 
from data containing thousands and more variables, e.g. in automatic text categorization. 

1. Introduction 
Currently, Bayesian networks [14] appear to be quite a popular method 

of representation of uncertain knowledge. They can represent concisely a 
joint multivariate discrete probability distribution exploiting properties of 
conditional independence. A Bayesian network is an acyclic directed graph 
(dag) nodes of which are labeled with variables and conditional probabil-
ity tables of the node variable given its parents in the graph. The joint 
probability distribution is then expressed by the formula: 

P(xi,... ,xn) = Π P(XÌ\K(XÌ)) 
t=l.. .n 

where π(χ{) is the set of parents of the variable (node) Xt,. 
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On the one hand, Bayesian networks allow for efficient reasoning, and on 
the other many algorithms for learning Bayesian networks from empirical 
data have been developed [8]. 

A well-known problem with Bayesian networks is the practical limitation 
for the number of variables for which a Bayesian network can be learned in 
reasonable time. A remarkable exception here is the Chow/Liu [4, 5] algo-
rithm learning tree-like Bayesian networks. However, also this algorithm has 
an important limitation, related to space consumption. The space required 
is quadratic in the number of variables. 

The paper presents a novel algorithm overcoming this limitation for the 
tree-like class of Bayesian networks. The new algorithm space consumption 
grows linearly with the number of variables while the execution time is 
comparable with the Chow/Liu algorithm. This opens new perspectives in 
construction of Bayesian networks from data containing thousands and more 
variables, e.g. in automatic text categorization. 

Section 2 presents a brief introduction to the Chow/Liu algorithm. In 
Section 3 the new algorithm is proposed. In Section 4, the behavior of the 
Chow/Liu algorithm and of the new algorithm for tree-like underlying dis-
tributions are investigated. In Section 5, behavior of both algorithms for 
general type probability distributions is studied. Section 6 summarizes ex-
periments with the Chow/Liu and the new algorithm. Section 7 contains 
some concluding remarks. 

2. T h e C h o w / L i u Algor i thm 
By a tree-like Bayesian network we understand a quadruple (X, E, 

Ρ χ , Pe) where E is a set of edges constituting a tree over the set of nodes X, 
Ρ χ is a set of marginal probability distributions for elements of X, and Pg 
is a set of probability distributions for edges from E such that for each edge 
XV = {X,Y} P^iXY) is marginally consistent with Ρχ{Χ) and Ρχ{Υ). 

For any partial order -< of nodes such that for each edge {X, Y} either 
X -< Y or Y ~< X and for no two edges {Χ,Υ}, {X, Z} both Ζ < X 
and Y < X hold, and there exists XO being a node such that for no Y e Χ 
Y -< XO holds, the joint probability distribution represented by the Bayesian 
network, is given by: 

P(X) - P x ( X 0 ) · Π Υ}) /Ρχ(Χ) · 

The best known algorithm for construction of tree-like Bayesian net-
works from data seems to be the Chow/Liu algorithm [4, 5]. For probability 
distributions described by tree-like Bayesian networks it recovers robustly 
the underlying tree structure and for general type probability distributions 
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it recovers the closest tree-like Bayesian network [16, 17]. It exploits the idea 
of maximum weight spanning tree, with dependence measure DEP(X, Y ) 

between variables Χ, Y equal to 

í h w h - Í Í I « ) ! , ^ 

where x,y run through the domains of X and Y respectively. P ( x , y ) is the 
probability of co-occurrence of the events X = χ and Y = y, in practice it 
is calculated as relative frequency from some database. 

The basic outline of the algorithm is as follows: 

Algorithm CL(D,X) 

(D is a probability distribution over a set of variables including the set of 
variables X ) 

1. Let X be the set of (discrete) variables. Find X i , X 2 G X such that 
D E P { X U X 2 ) > DEP{YuY2) f o r a n y YltY2 G X . 

2. Form two sets of nodes Τ, N, and the set of edges E, and initialize 
T = { X U X 2 } , N = X - T , E = { ( X I , X 2 ) } . 

3. If Ν is empty, then S T O P . 
4. Otherwise find X i e T , X 2 e Ν such that 

D E P ( X U X 2 ) > D E P ^ Y - i ) f o r a n y Y i ê T , 7 2 E Ν . 

5. Update E := E U { ( Χ χ , ^ ) } , T - T U {X 2 } , Ν = Ν - {X2}· 
6. Go to step 3. 

End of Algorithm 

As a result Tr = (X, E) is the tree being the backbone (the acyclic 
graph) of the resulting tree-like Bayesian network. 

Notice that the algorithm of Chow/Liu relies on the following property of 
the DEPÇ): If in the intrinsic Bayesian network the node Ζ lies on the path 
from node X to node V, then DEP(X, Ζ ) > DEP{X, Y ) < DEP(Y, Z). 

The most time-consuming step of the algorithm is the calculation of 
D E P ( X , Y ) , because it is connected to calculations involving all records 
from the database. In step 1 D E P ( X , Y ) is accessed (card(X) — 1) χ 
card(X)/2 times and upon each execution of step 4 it is accessed (cardÇT) — 

1) -card(N) times. If card(X) = n, then the total amounts to (n- (n—1)/2) + 
η · η · (n — l)/2 — (2η— 1) · (η — 1) -n/6 which grows with n 3 for large n. It is 
easily seen that for a given pair of variables X , Y , DEP(X, Y ) is accessed 
many (up to n) times. 

For purposes of time saving the practical implementations create a table 
TDEP[X, Y] for storing the values of DEP{X, Y) so that we need to calcu-

Τ means set of " treated" nodes and Ν - set of " not treated" nodes 
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late the DE Ρ () function only (η · (Η — 1)/2) times. For large η the number 
of times the whole database is searched through is proportional to n2 only. 
The algorithm changes then to: 

Algorithm CL1(D,X) 
(D is a probability distribution over a set of variables including the set of 
variables X) 

1. Let X be the set of (discrete) variables. For each Χι,Χ2 E X calculate 
TDEP[X 1,X2] = DEP(X U X 2 ) . 

2. Find I i , I 2 € X such that TDEP[X1,X2] > TDEP[Y1,Y2} for any 
i l . n e x . 

3. Form two sets of nodes Τ, N, and the set of edges E, and initialize 
Τ = {XU X2}, Ν = X - Τ, E = {(XI,X2)}. 

4. If Ν is empty, then STOP. 
5. Otherwise find Χχ € Τ, X2 e Ν such that 

TDEP[Xi,X2] > TDEP[YUY2] for any YX ε Τ , Υ 2 £ Ν. 
6. Update E := E U {(Χι, X2)}, Τ = Τ U {Χ2}, Ν = Ν - {Χ2}. 
7. Go to step 3. 

End of Algorithm 

Further reductions in time consumption are possible (see e.g. [11, 12, 
13]). 

Though in TDEP[} we do not need the diagonal elements and the table 
is symmetric ( D E P ( X , Y ) = DEP(Y,X)), it requires still n(n - 1) cells, 
which may be prohibitive even for moderate size η = 10,000 which may 
be required in free text applications. The goal of this paper is to propose 
a new algorithm for building the tree-like Bayesian networks with memory 
consumption proportional to η and with time complexity not exceeding the 
CL1 algorithm. 

The performance improvements are important due to many applications 
of this algorithm, e.g. as starting phases of other Bayesian network learning 
algorithms [3, 15], in Bayesian classifiers of TAN-type [6, 1] etc. In particular, 
applications in domains requiring usage of large Bayesian networks (with 
thousands of nodes) like intelligent genetic algorithms for feature selection 
[7] or free text classification [12], the space consumption of main memory 
may be a critical factor (disk access would slow down the process beyond 
any acceptable limits). 

3. The Description of the New Algorithm 
The new algorithm relies on the following paradigm: 
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Imagine that for the set X you define a series of sets X2 C X3 C X n - i C 
X n = X with card(Xi) = i. Let Tr¿ = (X¿, E¿) be a tree constructed by the 
algorithm CL1 for a given set of nodes X¿ and the background database. 
Ei be the set of triples (X,Y,DEP(X, F)) with X,Y G X¿ By the way, 
we can consider the problem of building Tr¿ as a problem of building a 
Bayesian network from data with hidden (or latent) variables X — X¿ We 
claim now that we can construct Trj from Tr¿_i and the set of dependences 
DEP(X, Xi) with X € X¿-i and Xi being the only element from X¿ — X¿_i. 

Below we present the new algorithm, followed by the proof of its correct-
ness. 

Algorithm IT(D,X) 

(D is a probability distribution over a set of variables including the set of 
variables X) 

1. Define the sequence of sets X2 C X3 C X n - i C X n = X with X¿ = 
{ X 1 , X 2 , . . . , X i } f o r i = 2 , . , . , π . 

2. Initialize Tr as Tr=(T={Xi , X2,},E={( Xu X2, DEP{Xi,X2))} and 
i := 2. 

3. i := i + 1. 
4. if i > η STOP. 
5. Create the set of edges E' = {(X, X¿, DEP{X, € τ } · 
6. E 1 = E U E'. 
7. Find the edge e = ( X , Y , D E P ( X , Y ) ) from Ex such that for any 

edge e' = (X1, Y1, DEP{X', Y')) from E* DEP(X, Y ) > DEP(X', Y') 
holds. 

8. Initialize the sets Τ" = {Χ, Υ}, Ε" = {e}, Ν" = Τ - Τ". 
9. Ε 1 = Ε 1 - {e}. 

10. If Ν" is empty, then E := E" , Τ := Τ", go to step 3. 
11. In Ex find an edge e = { X , Y, DEP(X, F)) with X G Τ", Y € Ν", such 

that for any edge e' = {X',Y',DEP{X',Y')) from E1 . with X' G Τ", 
Y' € Ν", DEP(X, Y ) > D E P { X Y ' ) holds. 

12. For that edge e set: Τ" = Τ" U {Υ}, E" = E" U {e}, Ν" = Ν" - {Y}. 
13. Go to step 10. 

End of Algorithm 

It is obvious that the result of IT is a tree-like Baysian network. 
Before analyzing theoretical properties of IT, let us stress here that this 

algorithm is space-saving. Instead of about n2 /2 cells required by CL1, it 
needs at most 2(n—1) cells for storing DEP: (π—1) cells for storing distances 

On complexities resulting from existence of hidden variabkles for learning Bayesian networks 
from data consult e.g. [10, 9]. 
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between nodes in the current tree and (η — 1) cells for storing distances of 
the ingoing node to the nodes currently in the tree. 

4. Claims about the New Algorithm 
We would like to assume subsequently that the algorithm is applied to 

data stemming from a tree-like distribution. We demonstrate the rationality 
of the new algorithm. 

Let us denote by CL(Tr(X,E), X') the tree grown for the set X' Ç 
X of nodes given the intrinsic distribution is based on the tree Tr. Let 
CLS(Tr,X') be the construction sequence of the tree CL(Tr,X') (that is 
the sequence by which CL included the edges into the tree). 
Algorithm RCL(AB,Tr,X) 
Let us define the reduced Chow/Liu algotrithm (RCL(AB,Tr,X)) with A, Β 
being nodes from X, in such a way that in the algorithm CL(Tr,X) we 
replace step 1 with the following: 

1. set X\ to A, and X<i to B. 
End of Algorithm 

By RCLS(j4ì3, Tr,X) let us denote the construction sequence of this 
algorithm. 

Subsequently we show that many assumptions of the Chow/Liu algo-
rithm may be weakened. For example, the step 1 of CL, seeking the node 
pair with maximum DEP, requires calculation of DEP for all pairs of nodes. 
We do not need to look for such a pair at the very offset of the algorithm, 
as the following Proposition demonstrates. 

PROPOSITION 1. In the Chow/Liu algorithm, the initial edge can be any edge 
of which we know it is a true edge. That is if AB is an edge in E in Tr(X, E), 
then CL(Tr(X, E),X) yields the same result as RCL(AB, Tr,X). 
Proof . Consider any subgraph Τ being a tree of the intrinsic tree Tr un-
derlying the distribution. If we start step 4 of CL with this tree T, then 
only a node neighboring in Tr with a node in Τ has a chance to be attached 
to the tree Τ because for any other node Y from outside of Τ there exists 
a node Ζ outside of Τ on the path from Y to any node X in Τ so that 
DEP(X, Ζ) > DEP(X, Y) and so Y has no chance to be selected. The 
node Y from outside of Τ neighboring in Tr with the node Ζ inside of Τ 
can only be connected to Ζ as for any other node X in Τ Ζ is on the path 
from Y to X so that DEP{Y, Z) > DEP(X, Y) and hence X has no chance 
to be connected with Y. 

the pair of nodes maximizing DEP is just such an edge. 
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Therefore step 4 and subsequent ones of CL will transform any tree-like 
subgraph of Tr into a tree-like subgraph of Tr. Any edge in Tr is by itself 
a tree-like subgraph of Tr, hence starting from it we will reach finally the 
graph Tr. • 

Potentially, we do not need even to investigate all the pairs of nodes 
subsequently, as the following Proposition demonstrates. 

PROPOSITION 2. If the removal of an edge AB from a tree Tr splits the 
tree Tr into parts Pa (containing A) and Pb (containing B), both being 
themselves trees, then we can construct the tree Tr first by growing a tree 
Tra from nodes of Pa plus the node Β using CL, then by growing a tree Tr b 
from nodes of Pb plus the node A using CL, and then joining the sets of 
edges from T ra and Trò. 

P r o o f . From Proposition 1 it is obvious that Tra is identical with Pa plus 
edge AB, T rb is identical with Pb plus edge AB. Hence their sum is just 
Tr. ι 

However, these insights are insufficient to claim properties of the algo-
rithm IT. We need to know the fate of edges and missing edges in the tree 
from one set of nodes to the other (Xt, Xz+i) to show that comparisons 
of distances ignored by IT algorithm do not affect decisions made by CL 
algorithm. 

PROPOSITION 3. Let Tr (X, E ) be a tree. Let CL(Tr, X') be obtained for 
X' C X. Let Ζ be a node from X — X'. Let A, Β be in X Let Ζ be on path 
from A to Β in Tr . Then AB cannot be in CL{Tr,X' U {Z}). 

P r o o f . Notice that 

DEP(A, B) < DEP(Z, A) and DEP(A, Β) < DEP(Z, B). 

Let us consider the construction sequence CLS(Tr,X' U {Z}), in particular 
the point when one of the two nodes A, Β is included into the tree grown 
so far, and the other isn't. Assume A is already included (the case Β is 
symmetric). Now either Ζ is already included or is not. Assume first that Ζ is 
included. Then the edge AB cannot be included because AZ is a competing 
candidate with greater DEP (DEP(A,B) < DEP{Z,A)). Now assume Ζ 
is already included. Then the edge AB cannot be included because BZ is a 
competing candidate with greater DEP (DEP(A,B) < DEP(Z,B)). We 
conclude that AB will never be included into the tree CL (Tr ,X ' U {Z}). m 

The Proposition 3 demonstrated that IT behaves rationally upon inclu-
sion of a new node: the d-separation property (for definition of d-separations 
see e.g. [8]) is imposed. The next Proposition shows that this property is 
kept at next inclusions of IT. 
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PROPOSITION 4 . Let T r ( X , E j be a tree. Let CL(Tr,X') be obtained for 
X' Ç X. Let Ζ be a node from X-X '. Let A, Β be in X '. Let there be no 
edge AB in CL(Tr,X ') and let C be a node in X ' such that C is on the path 
between A and Β in Tr. Then AB cannot be in CL(Tr,X' U {Z}). 

P roo f . Notice that 

DEP(A, Β) < DEP(C, A) and DEP(A, Β) < DEP(C, B). 

Let us consider the construction sequence CLS(Tr,X' U{Z}), in particu-
lar the point when one of the two nodes A, Β is included into the tree grown 
so far, and the other isn't. Assume A is already included (the case Β is sym-
metric). Now either C is already included or is not. Assume first that C is 
included. Then the edge AB cannot be included because AC is a competing 
candidate with greater DEP (DEP(A, B) < DEP{C,A)). Now assume C 
is already included. Then the edge AB cannot be included because BC is a 
competing candidate with greater DEP (DEP(A,B) < DEP{C,B)). We 
conclude that AB will never be included into the tree CL(Tr,X' U {Z}). m 

The next Proposition shows that IT establishes true edges as soon as the 
ends of the edges are available. 

PROPOSITION 5. Let Tr(X,E,) be a tree. Let CL(Tr,X') be obtained for 
X' Ç X. Let Ζ be a node from X-X'. Let A be in X'. Let Ζ be a direct 
neighbor of A in Tr. Then AZ will be an edge in CL(Tr,X' U {Z}). 

Ρ r o o f. In Tr removal of AZ would split Tr into two parts: Pa containing A 
and Pz containing Z. As the preceding Propositions indicate, no node from 
Χ' Π Pa can be connected with any node from Χ' Π Pz except for nodes 
A and Z. But X' = (Χ' Π Pa) U (Χ' Π Pz) and in order to obtain a tree 
containing all nodes, AZ must be included. • 

The next Proposition shows that IT keeps true edges as soon as it has 
established them. 

PROPOSITION 6. Let T r (X ,E j be a tree. Let CL(Tr,X') be obtained for 
X' Ç X. Let Ζ be a node from X-X Let A,C be inX' and let C be a direct 
neighbor of A in Tr. Then AC will be an edge in CL(Tr,X! U {Z}). 

Ρ r o o f. In Tr removal of AC would split Tr into two parts: Pa containing A 
and Pc containing C. As the preceding Propositions indicate, no node from 
Χ' Π Pa can be connected with any node from Χ' Π Pc except for nodes 
A and C. But X' = (Χ' Π Pa) U (Χ' Π Pc) and in order to obtain a tree 
containing all nodes, AZ must be included. • 

Now we come to the fundamental theorems of this section that show 
correctness of the IT algorithm, that is that IT recovers the intrinsic tree of 
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the tree-like Bayesian network underlying the probability distribution. The-
orem 1 shows the correctness of an algorithm with modified DEP measures 
and then Theorem 2 shows that IT is identical with this algorithm with 
modified DEP measures. 

T h e o r e m 1. Consider the sequence of sets X2 C X3 C X n - i C X n = X 
with X¿ = {Χι, Ä2, · · ·, Xi} for i = 2 , . . . , η. Consider a modified Chow/Liu 

algorithm CL' such that CL'fTr, X.2) is identical with CL'fTr, Χ2Λ and 

for i — 3,..,n CL'(rTrt X¿j is identical with CLfTr, X¿j except that the 

dependence DEP(A, B) is zero if AB is not an edge in CL'(Tr, Xj_\) and 

neither A nor Β is identical with X{. Then CL'(TT, X ) yields identical result 

with CLfTr, XJ. 

P r o o f . We have to demonstrate the following: If two nodes Xj,Xk with 
j < k are direct neighbors, then they will be connected in CL(Tr, X&), 
hence also in CL'(Tr , X&) because the dependence DEP(Xj,Xk) will be 
identical in CL(Tr , X^) and CL'(Tr , X^), and all the other dependences 
(also those competing with connection XjXk) will have values in CL'(Tr , 
Xfc) not greater than in CL(Tr , Xfc). Later on, for I > k, by induction we 
can show that in DEP(Xj,Xk) will be identical in CL(Tr, X;) and CL'(Tr , 
X¡), and all the other dependences (also those competing with connection 
XjXk) will have values in CL'(Tr , X/) not greater than in CL(Tr , X¡). 
This is because XjXk has been included in CL'(Tr , X;_i) and thus will be 
included in CL'(Tr , X j ) . 

Hence any edge contained in T r will also appear in CL'(Tr, X) . As 
CL'(Tr , X ) is a tree over the same set of nodes as Tr, it must be identical 
with Tr. • 

T h e o r e m 2. The algorithm IT yields the same tree as CL. 

P r o o f . The previous theorem describes an algorithm CL' which is essen-
tially identical with IT because IT simply ignores edges not present in the 
tree built in the previous stage and this is identical with setting respec-
tive dependence to zero because the dependences DEP are non-negative 
by definition. So IT yields the same as CL because CL' does as claimed in 
Theorem 1. • 

Notice also that 

P r o p o s i t i o n 7. Let Tr be the tree of the underlying distribution, and AB 
an edge in it. Let Pa and Pb be sub-trees obtained from T r upon removal 
of AB (Pa containing A, Pb containing B). Then for any node X in Pa 
DEP(X, Β) < DEP(A, B) and for any node Y from Pb DEP(A, Y) < 
DEP(A, B). 
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P roo f . We need only to consider the case of node X, as the case with Y is 
symmetric. Obviously A is on the path from X to B. Hence it is a straight 
forward conclusion that DEP(X,B) < DEP(A, B). m 

5. Beyond the underlying tree-like distributions 
The Chow/Liu algorithm is known to reconstruct robustly the Bayesian 

network underlying a probability distribution given the network is tree-like 
[4, 5]. However, it can be applied to sets of variables of any probability 
distribution yielding then a best approximating tree. We would like to be 
able to use the IT algorithm also in this context. The Chow/Liu algorithm 
is known for its optimal behavior in this context. Does IT behave that good 
also? To answer this question let us study some properties of Chow/Liu 
algorithm (CL) in the context of a general type distribution. 

By CL(D,X) let us denote the tree yielded by CL, and by CLS(D,X) 
the construction sequence (the sequence in which edges are added) for an 
underlying distribution D. 

Propositions 8-10 establish a brand of rationality behind IT in that 
for any node the DEP to its direct neighbor is higher than to the nodes 
"behind" the neighbor. 

PROPOSITION 8. Let AB be any edge in the tree CL(D,X). Let Pa and Pb 
be two trees we obtain from CL(D,X.) after removing the edge AB, with Pa 
containing A and Pb containing B. Let A be included into CLS(15,X,) before 
Β has been included. Then DEP(A, B) > DEP(A, V) for any V in Pb. 

Proo f . At the moment, that CL(D,X) was deciding to include B, only a 
subset S of nodes from Pa (including A) was in the current Τ tree and none 
of the nodes from Pb. That is all nodes from Pb were in N. The nature of 
the step 4 of CL algorithm implies that DEP(A, Β) > DEP(A, V) for any 
node V from N, and thus for all nodes from Pb. • 

PROPOSITION 9. Let AB be any edge in the tree CL(D,X). Let Pa and Pb 
be two trees we obtain from CL(D,X) after removing the edge AB, with Pa 
containing A and Pb containing B. Let A be included into CLS(D,X) before 
Β has been included. Then DEP(A, Β) > DEP{V, Β) for any V in Pa. 

Proof . At the moment, that CL(D,X) was deciding to include B, only a 
subset S of nodes from Pa (including A) was in the current Τ tree and none 
of the nodes from Pb. The nature of the step 4 implies that DEP(A, B) > 
DEP(Y, B) for any node Y from S. It also implies that for any node Y from 
S and for any node Ζ from Pa but not from S, DEP(A, B) > DEP(Y, Z). 

Now consider the inclusion of the first node Z\ from Pa but not from S. 
It is attached to a node Υχ from S. Obviously DEP{Y1, ZI) > DEP(Z1, Β). 
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But we had DEP(A, B) >. DEP(YltZl), hence also DEP(A,B) > 
DEP(Zl,B). But we had also that for any Ζ from Pa but not from S 
different from Ζχ DEP{YUZ1) > DEP{Z,B) and due to DEP(A, B) > 
DEP{Yl,Z 1), we have also DEP(A, B) > DEP{Z,B). Hence DEP(A,B) 
> DEP(V, Β) for any V from Pa. m 

PROPOSITION 10. Let AB be any edge in the tree CL(D,X). Let Pa and Pb 
be two trees we obtain from CL(D,X) after removing the edge AB, with Pa 
containing A and Pb containing B. Then DEP(A, B) > DEP(A,V) for 
any V in Pb. 

Proof . The conclusion of this Proposition follows directly from Propositions 
8 and 9. • 

The following states that the IT algorithm keeps edges removed in the 
tree construction process. 

PROPOSITION 11. Let A, Β be not connected in the tree CL(D,X'). Let Ζ 
be a node from X but not from X' . Then A, Β will not be connected in 
CL(D,X.' U {Z}). 

Proo f . If A and Β are not connected in CL(D,X'), then there is a path 
A - An - ... - A3 - A2 - Αχ - D - B\ - B2 — — - Bm - Β connect-
ing them where D is the "oldest" node on the path that is the one that 
was included as the first among the nodes mentioned. Let the nodes Αχ to 
Ar be the next ones included. Let then the node B\ be included. By the 
property of the algorithm, DEP(D, Βχ) nust be smaller than DEP(D, Αχ), 

DEP{A1,A2), . . . , DEP(Ak,Ak-i). Let then nodes B2 to Br be included. 
And then the node Ak+1. Obviously, DEP(Ak+x,A¡c) must be smaller than 
DEP(D, Βχ), DEP(Bi, B2) . . . , and hence also smaller than DEP(D, Αχ), 

DEP(A\, A2) Thus we can demonstrate that DEP(A, Β) is smaller than 
any dependence of any two neighboring nodes on the path A — An — ... — 
A3 - A2 - Ax - D - Βχ - B2 - . . . - Bm - B. 

Assume now that in the tree construction sequence CLS(D,X' U {Z}) 
A was included before B. (if Β is included first, the argument is similar). 
Assume An is not included. Then AB cannot be included because AAn has 
a higher DEP. After An is included but Αη—χ not. AB cannot be included 
because ΑηΑη~χ has a higher DEP. Etc. When Bm is included and Β not, 
then AB cannot be included because BmB has a higher DEP. m 

The previous Proposition permits to conclude that the rationality estab-
lished in Proposition 10 may be extended one step more. 

PROPOSITION 12. Let AB be any edge in the tree CL(D,X). Let Pa and Pb 
be two trees we obtain from CL(D,X) after removing the edge AB, with Pa 
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containing A and Pb containing B. Then DEP(A,B) > DEP(W,V) for 
any V in Pa and any W in Pb. 

P r o o f . The conclusion of this Proposition is provable analogously to that 
of Proposition 11. • 

Now let us present the crucial theorem of this paper stating that the 
results of IT are identical to those of CL. 

THEOREM 3. The algorithm IT yields the same tree as CL for arbitrary 
distribution. 

P r o o f . The previous Propositions show that in an incremental process of 
building trees for larger and larger sets, once a pair of nodes went apart, it 
will never be considered for merging. Hence their dependence does not need 
to be considered. So IT yields the same as CL. • 

6. Experiments 
To verify the Propositions raised in this paper, experimental implemen-

tations of CL1 and IT were tested on identical artificial data sets generated 
from tree-like Bayesian networks with binary variables. Networks with 100 
up to 2,000 nodes were considered. Conditional probabilities of success on 
success and failure on failure of the variables were varied from 0.6 to 0.9. 
Branching factors of the underlying trees were chosen in the range from 2 
to 8. Sample sizes ranged from the number of variables to the tenfold of the 
number of variables. The sequence of variable inclusions was randomized. 

The experiments confirmed the otherwise known high robustness of the 
Chow/Liu algorithm: The number of errors in inserting edges rarely was 
reaching 1 %. (In over 90 % of all experiments no errors occurred at all). 

The IT algorithm proposed in this paper behaved exactly in the same way 
as the Chow/Liu algorithm (perfect reconstruction of the original tree-like 
Bayesian network with Chow/Liu was paralleled by perfect reconstruction 
when using IT, also all errors of Chow/Liu were followed by IT). 

The IT algorithm exhibited consistently a slight execution time advan-
tage over CL1 algorithm. This may be attributed to the fact that IT requires 
much less memory and probably it avoids therefore some additional calcu-
lations in memory management. 

7. Conclusions 
This study has demonstrated the possibility of reducing space consump-

tion when constructing tree like Bayesian network from data from quadratic 
in the number of variables by the Chow/Liu algorithm to a linear one with-
out worsening the time efficiency. A new algorithm achieving this goal has 
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been proposed and it was demonstrated that the resulting tree will have 
properties no worse than the one delivered by the Chow/Liu algorithm. 

Out of this fact new application possibilities are open. Bayesian network 
construction for applications with 10,000 and more nodes like those needed 
in free text classifications will be possible. The new approach is indepen-
dent of other approaches to improvements of efficiency of the Chow/Liu 
algorithm. For example the sparse data time saving algorithms proposed in 
[11, 12, 13] may still be applied in the context of the new algorithm. 

The success in reducing considerably space consumption without wors-
ening time complexity may be considered as an encouragement for further 
research into possibilities of time saving without increase of space complexity 
for Chow/Liu like algorithms. 
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