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Abstract. Bayesian networks have many practical applications due to their capability
to represent joint probability distribution in many variables in a compact way. There
exist efficient reasoning methods for Bayesian networks. Many algorithms for learning
Bayesian networks from empirical data have been developed. A well-known problem with
Bayesian networks is the practical limitation for the number of variables for which a
Bayesian network can be learned in reasonable time. A remarkable exception here is the
Chow/Liu algorithm learning tree-like Bayesian networks. However, also this algorithm has
an important limitation, related to space consumption. The space required is quadratic in
the number of variables. The paper presents a novel algorithm overcoming this limitation
for the tree-like class of Bayesian networks. The new algorithm space consumption grows
linearly with the number of variables while the execution time is comparable with the
Chow /Liu algorithm. This opens new perspectives in construction of Bayesian networks
from data containing thousands and more variables, e.g. in automatic text categorization.

1. Introduction

Currently, Bayesian networks [14] appear to be quite a popular method
of representation of uncertain knowledge. They can represent concisely a
joint multivariate discrete probability distribution exploiting properties of
conditional independence. A Bayesian network is an acyclic directed graph
(dag) nodes of which are labeled with variables and conditional probabil-
ity tables of the node variable given its parents in the graph. The joint
probability distribution is then expressed by the formula:

P(z1,...,zn) = [[ Plailn(z:))
i=l..n
where 7(z;) is the set of parents of the variable (node) X; .
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On the one hand, Bayesian networks allow for efficient reasoning, and on
the other many algorithms for learning Bayesian networks from empirical
data have been developed [8].

A well-known problem with Bayesian networks is the practical limitation
for the number of variables for which a Bayesian network can be learned in
reasonable time. A remarkable exception here is the Chow/Liu [4, 5] algo-
rithm learning tree-like Bayesian networks. However, also this algorithm has
an important limitation, related to space consumption. The space required
is quadratic in the number of variables.

The paper presents a novel algorithm overcoming this limitation for the
tree-like class of Bayesian networks. The new algorithm space consumption
grows linearly with the number of variables while the execution time is
comparable with the Chow/Liu algorithm. This opens new perspectives in
construction of Bayesian networks from data containing thousands and more
variables, e.g. in automatic text categorization.

Section 2 presents a brief introduction to the Chow/Liu algorithm. In
Section 3 the new algorithm is proposed. In Section 4, the behavior of the
Chow/Liu algorithm and of the new algorithm for tree-like underlying dis-
tributions are investigated. In Section 5, behavior of both algorithms for
general type probability distributions is studied. Section 6 summarizes ex-
periments with the Chow/Liu and the new algorithm. Section 7 contains
some concluding remarks.

2. The Chow/Liu Algorithm

By a tree-like Bayesian network we understand a quadruple (X, E,
Px, Pg) where E is a set of edges constituting a tree over the set of nodes X,
Px is a set of marginal probability distributions for elements of X, and Pg
is a set of probability distributions for edges from E such that for each edge
XY ={X,Y} Pg(XY) is marginally consistent with Px(X) and Px(Y).

For any partial order < of nodes such that for each edge {X,Y} either
X <Y orY < X and for no two edges {X,Y}, {X,Z} both Z < X
and Y < X hold, and there exists X0 being a node such that forno ¥ € X
Y < X0 holds, the joint probability distribution represented by the Bayesian
network, is given by:

P(X)=Px(x0)- J[  Pe({X,Y})/Px(X).
{X,Y}eE,X<Y

The best known algorithm for construction of tree-like Bayesian net-

works from data seems to be the Chow/Liu algorithm [4, 5]. For probability

distributions described by tree-like Bayesian networks it recovers robustly
the underlying tree structure and for general type probability distributions
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it recovers the closest tree-like Bayesian network {16, 17]. It exploits the idea
of maximum weight spanning tree, with dependence measure DEP(X,Y)
between variables X, Y equal to

P(z,y)
DEP(X,Y)=)» P(z,y)log ————
(X,¥) = 2 Plev)los 53755
where z,y run through the domains of X and Y respectively. P(z,y) is the
probability of co-occurrence of the events X = z and Y = y, in practice it
is calculated as relative frequency from some database.
The basic outline of the algorithm is as follows:

Algorithm CL(D,X)

(D is a probability distribution over a set of variables including the set of
variables X)

1. Let X be the set of (discrete) variables. Find X1, Xy € X such that
DEP(Xl,Xz) > DEP(Yl,Yz) for any Y71,Y; € X.

2. Form two sets of nodes T, N, and the set of edges E, and initialize
T= {X1, X3}, N=X-T, E= {(X;, X3)}.

3. If N is empty, then STOP.

4. Otherwise find X; € T, X5 € N such that
DEP(X,,X3) > DEP(Y1,Y2) forany Y1 € T,Y; € N.

5. Update E:= EU {(X1,X3)}, T=TU{X}, N=N - {X,}.

6. Go to step 3.

End of Algorithm

As a result Tr = (X,E) is the tree being the backbone (the acyclic
graph) of the resulting tree-like Bayesian network.

Notice that the algorithm of Chow /Liu relies on the following property of
the DEP(): If in the intrinsic Bayesian network the node Z lies on the path
from node X to node Y, then DEP(X,Z) > DEP(X,Y) < DEP(Y, Z).

The most time-consuming step of the algorithm is the calculation of
DEP(X,Y), because it is connected to calculations involving all records
from the database. In step 1 DEP(X,Y) is accessed (card(X) — 1) x
card(X)/2 times and upon each execution of step 4 it is accessed (card(T) —
1)-card(IN) times. If card(X) = n, then the total amounts to (n-(n—1)/2)+
n-n-(n—1)/2—(2n-1) - (n—1)-n/6 which grows with n? for large n. It is
easily seen that for a given pair of variables X, Y, DEP(X,Y) is accessed
many (up to n) times.

For purposes of time saving the practical implementations create a table
TDEP[X,Y] for storing the values of DEP(X,Y) so that we need to calcu-

T means set of "treated” nodes and N - set of "not treated” nodes
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late the DEP() function only (n - (n — 1)/2) times. For large n the number
of times the whole database is searched through is proportional to n? only.
The algorithm changes then to:

Algorithm CL1(D,X)

(D is a probability distribution over a set of variables including the set of
variables X)

1. Let X be the set of (discrete) variables. For each X1, X2 € X calculate
TDEP[X1,X2] = DEP(X1,X?).

2. Find Xj, X, € X such that TDEP[X1, X2 > TDEP[Y;,Y3] for any
", eX.

3. Form two sets of nodes T, N, and the set of edges E, and initialize
T={X1,X2}, N=X-T, E = {(X1,X3)}.

4. If N is empty, then STOP.

5. Otherwise find X; € T, X3 € N such that
TDEP[X1,X2] > TDEP|[Y1,Ys] for any Y7 € T,Y; € N.

6. Update E:=EU {(Xl,Xz)},T =TU {X2},N =N- {Xg}

7. Go to step 3.

End of Algorithm

Further reductions in time consumption are possible (see e.g. [11, 12,
13)).

Though in TDEP(] we do not need the diagonal elements and the table
is symmetric (DEP(X,Y) = DEP(Y, X)), it requires still n(n — 1) cells,
which may be prohibitive even for moderate size n = 10,000 which may
be required in free text applications. The goal of this paper is to propose
a new algorithm for building the tree-like Bayesian networks with memory
consumption proportional to n and with time complexity not exceeding the
CL1 algorithm.

The performance improvements are important due to many applications
of this algorithm, e.g. as starting phases of other Bayesian network learning
algorithms {3, 15|, in Bayesian classifiers of TAN-type [6, 1] etc. In particular,
applications in domains requiring usage of large Bayesian networks (with
thousands of nodes) like intelligent genetic algorithms for feature selection
[7] or free text classification [12], the space consumption of main memory
may be a critical factor (disk access would slow down the process beyond
any acceptable limits).

3. The Description of the New Algorithm
The new algorithm relies on the following paradigm:
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Imagine that for the set X you define a series of sets X C X3 C X,_1 C
X, = X with card(X;) = i. Let Tr; = (X;, E;) be a tree constructed by the
algorithm CL1 for a given set of nodes X; and the background database.
Ei be the set of triples (X,Y,DEP(X,Y)) with X,Y € X, By the way,
we can consider the problem of building Tr; as a problem of building a
Bayesian network from data with hidden (or latent) variables X — X; We
claim now that we can construct Tr; from Tr;_; and the set of dependences
DEP(X,X;) with X € X;_1 and X, being the only element from X; —X;_;.

Below we present the new algorithm, followed by the proof of its correct-
ness.

Algorithm IT(D,X)

(D is a probability distribution over a set of variables including the set of
variables X)

1. Define the sequence of sets X2 C X3 C X,,-1 C X, = X with X; =
{Xl,XQ,. . .,X,;} for i = 2,. T

2. Initialize Tr as Tr=(T={X1, X»,},E={( X1, X2, DEP(X1, X2))} and

1:=2.

3.i:=1+4+ 1.

4. if ¢ > n STOP.

5. Create the set of edges E' = {(X, X;, DEP(X, X;)}|X € T}.

6. EE=EUE"

7. Find the edge e = (X,Y,DEP(X,Y)) from E® such that for any
edge ¢’ = (X',Y', DEP(X',Y")) from E* DEP(X,Y) > DEP(X',Y")
holds.

8. Initialize the sets T = {X,Y}, B = {e}, N" =T - T".
9. E® = E* — {e}.

10. If N” is empty, then E := E” | T := T”, go to step 3.

11. InE* find anedge e = (X,Y, DEP(X,Y)) with X € T",Y € N”, such
that for any edge ¢/ = (X', Y/, DEP(X',Y")) from E®. with X’ € T",
Y' e N”, DEP(X,Y) > DEP(X',Y’) holds.

12. For that edge e set: T =T"U{Y}, E' = E"U{e}, N"=N" - {Y'}.

13. Go to step 10.

End of Algorithm

It is obvious that the result of IT is a tree-like Baysian network.

Before analyzing theoretical properties of IT, let us stress here that this
algorithm is space-saving. Instead of about n2/2 cells required by CL1, it
needs at most 2(n—1) cells for storing DEP: (n—1) cells for storing distances

On complexities resulting from existence of hidden variabkles for learning Bayesian networks
from data consult e.g. [10, 9].
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between nodes in the current tree and (n — 1) cells for storing distances of
the ingoing node to the nodes currently in the tree.

4. Claims about the New Algorithm

We would like to assume subsequently that the algorithm is applied to
data stemming from a tree-like distribution. We demonstrate the rationality
of the new algorithm.

Let us denote by CL(Tr(X,E), X’) the tree grown for the set X' C
X of nodes given the intrinsic distribution is based on the tree Tr. Let
CLS(Tr,X’) be the construction sequence of the tree CL(Tr,X’) (that is
the sequence by which CL included the edges into the tree).

Algorithm RCL(A4B,Tr,X)

Let us define the reduced Chow/Liu algotrithm (RCL(AB,Tr,X)) with A, B
being nodes from X, in such a way that in the algorithm CL(Tr,X) we
replace step 1 with the following:

1. set X7 to A, and X5 to B.
End of Algorithm

By RCLS(AB, Tr,X) let us denote the construction sequence of this
algorithm.

Subsequently we show that many assumptions of the Chow/Liu algo-
rithm may be weakened. For example, the step 1 of CL, seeking the node
pair with maximum D E P, requires calculation of DEP for all pairs of nodes.
We do not need to look for such a pair at the very offset of the algorithm,
as the following Proposition demonstrates.

PROPOSITION 1. In the Chow/Liu algorithm, the initial edge can be any edge
of which we know it is a true edge. That is if AB is an edge in E in Tr(X, E),
then CL(Tr(X,E), X) yields the same result as RCL(AB, Tr, X).

Proof. Consider any subgraph T being a tree of the intrinsic tree Tr un-
derlying the distribution. If we start step 4 of CL with this tree T, then
only a node neighboring in Tr with a node in T has a chance to be attached
to the tree T because for any other node Y from outside of T there exists
a node Z outside of T on the path from Y to any node X in T so that
DEP(X,Z) > DEP(X,Y) and so Y has no chance to be selected. The
node Y from outside of T neighboring in Tr with the node Z inside of T
can only be connected to Z as for any other node X in T Z is on the path
from Y to X so that DEP(Y,Z) > DEP(X,Y) and hence X has no chance
to be connected with Y.

the pair of nodes maximizing DEP is just such an edge.
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Therefore step 4 and subsequent ones of CL will transform any tree-like
subgraph of Tr into a tree-like subgraph of Tr. Any edge in Tr is by itself
a tree-like subgraph of Tr, hence starting from it we will reach finally the
graph Tr. =

Potentially, we do not need even to investigate all the pairs of nodes
subsequently, as the following Proposition demonstrates.

PROPOSITION 2. If the removal of an edge AB from a tree Tr splits the
tree Tr tnto parts Pa (containing A) and Pb (containing B), both being
themselves trees, then we can construct the tree Tr first by growing a tree
Tra from nodes of Pa plus the node B using CL, then by growing a tree Trb
from nodes of Pb plus the node A using CL, and then joining the sets of
edges from Tra and Trb.

Proof. From Proposition 1 it is obvious that Tra is identical with Pa plus
edge AB, Trb is identical with Pb plus edge AB. Hence their sum is just
Tr. w

However, these insights are insufficient to claim properties of the algo-
rithm IT. We need to know the fate of edges and missing edges in the tree
from one set of nodes to the other (X;, X;;1) to show that comparisons
of distances ignored by IT algorithm do not affect decisions made by CL
algorithm.

PRrROPOSITION 3. Let Tr(X,E) be a tree. Let CL(Tr,X') be obtained for
X' C X. Let Z be a node from X — X'. Let A, B be in X . Let Z be on path
from A to B in Tr. Then AB cannot be in CL(Tr, X' U {Z}).

Proof. Notice that
DEP(A,B) < DEP(Z,A) and DEP(A,B)< DEP(Z,B).

Let us consider the construction sequence CLS(Tr, X' U {Z}), in particular
the point when one of the two nodes A, B is included into the tree grown
so far, and the other isn’t. Assume A is already included (the case B is
symmetric). Now either Z is already included or is not. Assume first that Z is
included. Then the edge AB cannot be included because AZ is a competing
candidate with greater DEP (DEP(A,B) < DEP(Z,A)). Now assume Z
is already included. Then the edge AB cannot be included because BZ is a
competing candidate with greater DEP (DEP(A,B) < DEP(Z,B)). We
conclude that AB will never be included into the tree CL(Tr, X' U {Z}). =

The Proposition 3 demonstrated that IT behaves rationally upon inclu-
sion of a new node: the d-separation property (for definition of d-separations
see e.g. [8]) is imposed. The next Proposition shows that this property is
kept at next inclusions of IT.
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PRrRoOPOSITION 4. Let Tr(X,E) be a tree. Let CL(Tr,X’) be obtained for
X' C X. Let Z be a node from X-X'. Let A, B be in X'. Let there be no
edge AB in CL(Tr,X’) and let C be a node in X’ such that C is on the path
between A and B in Tr. Then AB cannot be in CL(Tr, X' U{Z}).

Proof. Notice that
DEP(A,B) < DEP(C,A) and DEP(A,B)< DEP(C,B).

Let us consider the construction sequence CLS(Tr,X'U{Z}), in particu-
lar the point when one of the two nodes A, B is included into the tree grown
so far, and the other isn’t. Assume A is already included (the case B is sym-
metric). Now either C is already included or is not. Assume first that C is
included. Then the edge AB cannot be included because AC is a competing
candidate with greater DEP (DEP(A,B) < DEP(C, A)). Now assume C
is already included. Then the edge AB cannot be included because BC is a
competing candidate with greater DEP (DEP(A,B) < DEP(C, B)). We
conclude that AB will never be included into the tree CL(Tr, X' U {Z}). =

The next Proposition shows that IT establishes true edges as soon as the
ends of the edges are available.

PRrROPOSITION 5. Let Tr(X,E) be a tree. Let CL(Tx,X’) be obtained for
X' C X. Let Z be a node from X-X’. Let A be in X’. Let Z be a direct
neighbor of A in Tr. Then AZ will be an edge in CL(Tr, X' U {Z}).

Proof. In Tr removal of AZ would split Tr into two parts: Pa containing A
and Pz containing Z. As the preceding Propositions indicate, no node from
X' N Pa can be connected with any node from X' N Pz except for nodes
A and Z. But X' = (X’ N Pa) U (X' N Pz) and in order to obtain a tree
containing all nodes, AZ must be included.

The next Proposition shows that IT keeps true edges as soon as it has
established them.

PROPOSITION 6. Let Tr(X,E) be a tree. Let CL(Tr,X’) be obtained for
X' C X. Let Z be a node from X-X". Let A,C be in X’ and let C be a direct
neighbor of A in Tr. Then AC will be an edge in CL(Tr,X'U{Z}).

Proof. In Tr removal of AC would split Tr into two parts: Pa containing A
and Pc containing C. As the preceding Propositions indicate, no node from
X’ N Pa can be connected with any node from X’ N Pc except for nodes
A and C. But X' = (X' N Pa) U (X' N Pc) and in order to obtain a tree
containing all nodes, AZ must be included. »

Now we come to the fundamental theorems of this section that show
correctness of the IT algorithm, that is that IT recovers the intrinsic tree of
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the tree-like Bayesian network underlying the probability distribution. The-
orem 1 shows the correctness of an algorithm with modified DEP measures
and then Theorem 2 shows that IT is identical with this algorithm with
modified DFE P measures.

THEOREM 1. Consider the sequence of sets Xo C X3 C X,,-1 C X, =X
with X; = {X1,Xs,...,X;} fori=2,...,n. Consider a modified Chow/Liu
algorithm CL’ such that CL’(Tr, X3) is identical with CL’(Tr, X;), and
fori = 3,.,n CL(Tr, X;) is identical with CL(Tr, X;) except that the
dependence DEP(A, B) is zero if AB is not an edge in CL’(Tr, X;_1) and
neither A nor B is identical with X;. Then CL’(Tr, X) yields identical result
with CL(Tr, X).

Proof. We have to demonstrate the following: If two nodes X;, X; with
j < k are direct neighbors, then they will be connected in CL(Tr, Xy),
hence also in CL’(Tr, Xj) because the dependence DEP(X;, X;) will be
identical in CL(Tr, Xj) and CL’(Tr, Xj), and all the other dependences
(also those competing with connection X;X}) will have values in CL’(Tr,
X}) not greater than in CL(Tr, X}). Later on, for | > k, by induction we
can show that in DEP(X, Xi) will be identical in CL(Tr, X;) and CL’(Tr,
X)), and all the other dependences (also those competing with connection
X;Xy) will have values in CL’(Tr, X;) not greater than in CL(Tr, X;).
This is because X; X has been included in CL’(Tr, X;_;) and thus will be
included in CL’(Tr, X;).

Hence any edge contained in Tr will also appear in CL’(Tr, X). As
CL’(Tr, X) is a tree over the same set of nodes as Tr, it must be identical
with Tr. =

THEOREM 2. The algorithm IT yields the same tree as CL.

Proof. The previous theorem describes an algorithm CL’ which is essen-
tially identical with IT because IT simply ignores edges not present in the
tree built in the previous stage and this is identical with setting respec-
tive dependence to zero because the dependences DEP are non-negative
by definition. So IT yields the same as CL because CL’ does as claimed in
Theorem 1. u

Notice also that

PROPOSITION 7. Let Tr be the tree of the underlying distribution, and AB
an edge in it. Let Pa and Pb be sub-trees obtained from Tr upon removal
of AB (Pa containing A, Pb containing B). Then for any node X in Pa
DEP(X,B) < DEP(A,B) and for any node Y from Pb DEP(A,Y) <
DEP(A, B).
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Proof. We need only to consider the case of node X, as the case with Y is
symmetric. Obviously A is on the path from X to B. Hence it is a straight
forward conclusion that DEP(X,B) < DEP(A,B). =

5. Beyond the underlying tree-like distributions

The Chow/Liu algorithm is known to reconstruct robustly the Bayesian
network underlying a probability distribution given the network is tree-like
[4, 5]. However, it can be applied to sets of variables of any probability
distribution yielding then a best approximating tree. We would like to be
able to use the IT algorithm also in this context. The Chow/Liu algorithm
is known for its optimal behavior in this context. Does IT behave that good
also? To answer this question let us study some properties of Chow/Liu
algorithm (CL) in the context of a general type distribution.

By CL(D,X) let us denote the tree yielded by CL, and by CLS(D,X)
the construction sequence (the sequence in which edges are added) for an
underlying distribution D.

Propositions 8-10 establish a brand of rationality behind IT in that
for any node the DEP to its direct neighbor is higher than to the nodes
"behind” the neighbor.

PROPOSITION 8. Let AB be any edge in the tree CL(D,X). Let Pa and Pb
be two trees we obtain from CL(D,X) after removing the edge AB, with Pa
containing A and Pb containing B. Let A be included into CLS(D,X) before
B has been included. Then DEP(A,B) > DEP(A,V) for any V in Pb.

Proof. At the moment, that CL(D,X) was deciding to include B, only a
subset S of nodes from Pa (including A) was in the current T tree and none
of the nodes from Pb. That is all nodes from Pb were in N. The nature of
the step 4 of CL algorithm implies that DEP(A, B) > DEP(A,V) for any
node V from N, and thus for all nodes from Pb. =

PROPOSITION 9. Let AB be any edge in the tree CL(D,X). Let Pa and Pb
be two trees we obtain from CL(D,X) after removing the edge AB, with Pa
containing A and Pb containing B. Let A be included into CLS(D,X ) before
B has been included. Then DEP(A, B) > DEP(V, B) for any V in Pa.

Proof. At the moment, that CL(D,X) was deciding to include B, only a
subset S of nodes from Pa (including A) was in the current T tree and none
of the nodes from Pb. The nature of the step 4 implies that DEP(A, B) >
DEP(Y, B) for any node Y from S. It also implies that for any node Y from
S and for any node Z from Pa but not from S, DEP(A,B) > DEP(Y, Z).

Now consider the inclusion of the first node Z; from Pa but not from S.
It is attached to a node Y7 from S. Obviously DEP(Y1,Z1) > DEP(Z1, B).
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But we had DEP(A,B) >. DEP(Y1,Z1), hence also DEP(A,B) >
DEP(Z1, B). But we had also that for any Z from Pa but not from S
different from Z; DEP(Y1,Z1) > DEP(Z,B) and due to DEP(A,B) >
DEP(Y;,Z1), we have also DEP(A,B) > DEP(Z,B). Hence DEP(A, B
> DEP(V, B) for any V from Pa. »

PRrROPOSITION 10. Let AB be any edge in the tree CL(D,X). Let Pa and Pb
be two trees we obtain from CL(D,X) after removing the edge AB, with Pa
containing A and Pb containing B. Then DEP(A,B) > DEP(A,V) for
any V in Pb.

~—

Proof. The conclusion of this Proposition follows directly from Propositions
8and 9. =

The following states that the IT algorithm keeps edges removed in the
tree construction process.

PROPOSITION 11. Let A, B be not connected in the tree CL(D,X’). Let Z
be a node from X but not from X’. Then A, B will not be connected in
CLMD,X'u{Z}).

Proof. If A and B are not connected in CL(D,X’), then there is a path
A-A,—...—A3—Ay—- A —-D—-By—-By—.... — B, — B connect-
ing them where D is the ”oldest” node on the path that is the one that
was included as the first among the nodes mentioned. Let the nodes A; to
A, be the next ones included. Let then the node B; be included. By the
property of the algorithm, DEP(D, B;) nust be smaller than DEP(D, A1),
DEP(A,,A2), ..., DEP(Ag, Ax—1). Let then nodes B, to B, be included.
And then the node Ag;. Obviously, DEP(Ag.1, Ax) must be smaller than
DEP(D, B;), DEP(By, Bs) ..., and hence also smaller than DEP(D, A;),
DEP(A, Az). ... Thus we can demonstrate that DEP(A, B) is smaller than
any dependence of any two neighboring nodes on the path A — 4, — ... -
A3 —As-A1-D-B,—-By~...- B, — B.

Assume now that in the tree construction sequence CLS(D, X' U {Z})
A was included before B. (if B is included first, the argument is similar).
Assume A,, is not included. Then AB cannot be included because AA, has
a higher DEP. After A, is included but A,_; not. AB cannot be included
because A, A, has a higher DEP. Etc. When Bm is included and B not,
then AB cannot be included because By, B has a higher DEP. u

The previous Proposition permits to conclude that the rationality estab-
lished in Proposition 10 may be extended one step more.

PROPOSITION 12. Let AB be any edge in the tree CL(D,X). Let Pa and Pb
be two trees we obtain from CL(D,X) after removing the edge AB, with Pa
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containing A and Pb containing B. Then DEP(A,B) > DEP(W,V) for
any V in Pa and any W in Pb.

Proof. The conclusion of this Proposition is provable analogously to that
of Proposition 11. a

Now let us present the crucial theorem of this paper stating that the
results of IT are identical to those of CL.

THEOREM 3. The algorithm IT yields the same tree as CL for arbitrary
distribution.

Proof. The previous Propositions show that in an incremental process of
building trees for larger and larger sets, once a pair of nodes went apart, it
will never be considered for merging. Hence their dependence does not need
to be considered. So IT yields the same as CL. =

6. Experiments

To verify the Propositions raised in this paper, experimental implemen-
tations of CL1 and IT were tested on identical artificial data sets generated
from tree-like Bayesian networks with binary variables. Networks with 100
up to 2,000 nodes were considered. Conditional probabilities of success on
success and failure on failure of the variables were varied from 0.6 to 0.9.
Branching factors of the underlying trees were chosen in the range from 2
to 8. Sample sizes ranged from the number of variables to the tenfold of the
number of variables. The sequence of variable inclusions was randomized.

The experiments confirmed the otherwise known high robustness of the
Chow/Liu algorithm: The number of errors in inserting edges rarely was
reaching 1 %. (In over 90 % of all experiments no errors occurred at all).

The IT algorithm proposed in this paper behaved exactly in the same way
as the Chow/Liu algorithmm (perfect reconstruction of the original tree-like
Bayesian network with Chow/Liu was paralleled by perfect reconstruction
when using IT, also all errors of Chow/Liu were followed by IT).

The IT algorithm exhibited consistently a slight execution time advan-
tage over CL1 algorithm. This may be attributed to the fact that IT requires
much less memory and probably it avoids therefore some additional calcu-
lations in memory management.

7. Conclusions

This study has demonstrated the possibility of reducing space consump-
tion when constructing tree like Bayesian network from data from quadratic
in the number of variables by the Chow/Liu algorithm to a linear one with-
out worsening the time efficiency. A new algorithm achieving this goal has
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been proposed and it was demonstrated that the resulting tree will have
properties no worse than the one delivered by the Chow/Liu algorithm.

Out of this fact new application possibilities are open. Bayesian network
construction for applications with 10,000 and more nodes like those needed
in free text classifications will be possible. The new approach is indepen-
dent of other approaches to improvements of efficiency of the Chow/Liu
algorithm. For example the sparse data time saving algorithms proposed in
(11, 12, 13] may still be applied in the context of the new algorithm.

The success in reducing considerably space consumption without wors-
ening time complexity may be considered as an encouragement for further
research into possibilities of time saving without increase of space complexity
for Chow/Liu like algorithms.
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