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ON CLIQUISHNESS OF MAPS OF TWO VARIABLES

Abstract. We give some sufficient conditions under which a separately cliquish map
of two variables is cliquish.

Throughout the paper (X, 7T) and (Y, 7) are topological spaces, (Z,V) a
uniform space and Py a saturated family of pseudometrics on Z inducing
the given uniformity V.

A function ¢ : X — Z is called: cliquish at o € X if for each p € Py,
€ > 0 and each neighbourhood U of z( there is an open nonempty set Uy C U
such that p(g(z’), g(z")) < € for «’, 2" € Uy; cliquish, if it is cliquish at each
point {3]; (in the case of a metric space Z these definitions coincide with
those given in [10]).

For a function f : X xY - Z andanyz € X,y € Y by fz, fY we will
denote the z-section and y-section of f, i.e. the functions f; : ¥ — Z and
fY: X — Z given by fy(y) = f(z,y) = fY(z). It is known that a separately
cliquish function (i.e. possessing all sections cliquish) need not be cliquish
[5]. On the other hand the cliquishness of f does not imply this property for
its sections. For instance, let us consider the subset A = {p = (x,y) € R?:
z>0and y >0} U{p=(q,0) € R?: q € Q} of the euclidean plane and let
f : R?> > R be the characteristic function of A. Then f is cliquish, but for
y = 0 the section fY is not cliquish at any point p = (z,0) with z < 0.

In this paper we give some sufficient conditions for cliquishness of func-
tions and multivalued maps of two variables.

For a topological space (X, 7T) let us put

T,={U\H:U € T,H is of the first category in (X,7)}.
Then 7 is a topology on X, T C Tg; [6]. In what follows, topological notions
referring to the topology 7, will be qualified by the prefix 7, or simply ¢
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to distinguish them from those pertaining to the initial topology 7. For
example Int;A and ClgA denote the Ty-interior and 7,-closure of a set A
while IntA and ClA are the interior and the closure with respect to the
topology 7. Furthermore, for a function g: X — Z the symbols C(g,7)
and C(g,7,) will be used to denote the sets of all points at which g is
T-continuous or 74-continuous, respectively.

It is easy to see that given topological spaces (X,7) and (Y, 7) we have
T x1 CTyx 14 C (T X 7)g and — in general — these three topologies are
different.

LEMMA 1 ([2, 6]). Let (X,T) be a Baire space, then:

(a) for each Ty-closed set A C X we have IntgA = IntA;

(b) the spaces (X,T) and (X,7;) have the same classes of the first
category sets;

(¢) (X,T) and (X,T) have the same classes of sets with the Baire
property;

(d) (X,T,) is a Baire space.

A function ¢: X — Z is sald to be: quasicontinuous at g € X if for
each neighbourhoods U of zg and V' of g(zg) there is an open nonempty set
Uiy € U with g(U1) C V; quasicontinuous, if it has this property at each
point; {7].

It immediately follows from the definitions that if g: X — Z is continuous
(quasicontinuous, cliquish) at o, then it is Zg-continuous (7g-quasiconti-
nuous, 7,-cliquish) at zo, but the converse is not true.

THEOREM 1. Let (X,7), (Y,7) be locally second countable Baire spaces,
(Z,V) a uniform one and let f: X xY — Z be a function which all sections
fe, f¥, z € X,y €Y, are cliguish. If for each (z,y) € X XY, fy is
Tq-quasicontinuous at y or f¥ is Ty-quasicontinuous at x, then f is T X T-
cliquish.

Proof. Let us take (zo,y0) € X XY, e >0, p € Py and let U x V be a
neighbourhood of (zg,yp). Without loss of generality we can assume that
U, V have countable bases {Up : » = 1,2,...} and {V,, : n = 1,2,...},
respectively. We put for each n =1,2,...

Ap = {y eV:p(f(z,y), fa",y) < %6 for ', 2" € Un} :

Since for each point (z,y) € U x V, fY is cliquish at z, there exists n > 1
such that p(f(z',y), f(z",v)) < %s for 2’2" € Uy; hence V = |Up2; An.
The set V is of the second category in (Y, 7,), so for some n > 1 we have
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0 # Int,ClyAn, = IntClgA,. Now we put for each j =1,2,...
B; = {a: € Uy, : Vj C IntCl Ay
and p(f(@,), S (5,3") < ge for 4" € V).

For any points z € U, and y € IntCl;A, NV the function f; is cliquish at
y, thus there exists V; C IntClgA, NV such that p(f(z,v), f(z,y")) < g€
for y',y” € V;. This implies J;>; B; = Uy. The set U, is of the second
category in (X,7,), so @ # Int,ClyBy = IntClyBy, for some k > 1. In the
consequence we obtain A, N Vi # 0, By N IntClyBy N Up # 0 and

(1) if z € By, then p(f(z,y), f(z,y")) < %e for ¥/, y" € V}.

For any (z,v), (u,v) € (Br N IntClyB NU,) x (A, N Vi) the inequality

o (z,), £(,9)) < (2,0, ) + (1,3, F(,9)) < e

holds, i.e. we have obtained

2)  o(f(z,9), f(u,v))
< e for (z,9), (u,v) € (B N IntClgBr N Uy) X (A N V).
Let us take (z1,11) € (IntClgBy N Up) x Vi. At first we suppose that fz,

is 7g-quasicontinuous at y;. In this case there exists a nonempty open set
V' C Vi and an of the first category set M’ C Y such that

p(f(z1,9), f(z1,51)) < %z—: fory e V' \ M.

This follows from conditions V' \ M’ € 7, and V' \ M’ C IntClgA, that
(V'\ M) N A, # 0. Furthermore, we have Vi C IntClyA,. Hence for each
u € BpNIntClyBxNU, and v € (V'\M’')N A4, it holds: p(f(z1,v), f(u,v)) <
Le and p(f(21,0), f(z1,11)) < ie; consequently p(f(z1,31), f(,v)) < de.
So we have shown:

(3) if (z1,11) € (IntClyB, NUy) x Vi, and f;, is 74- quasicontinuous at
Y1, then there exists a point (u,v) € (Bx NIntClyBy NU,) x (A N V) such
that p(f(z1,v1), f(u,v)) < %e.

Now, let (z1,y1) € (IntClyBg N Uy) x Vi, be a point such that f¥! is
T,-quasicontinuous at z;. Then there exists a nonempty open set U’ C
IntClyBy N U, and an of the first category set H' C X such that

p(f(z1, 1), flz, 1)) < %e forz e U'\ H'.

Since By, is 74-dense in IntCly B, NUy, we obtain (U'\ H')N B NIntClyBxN
Un # 0. Hence for each u € (U'\H') N By N IntClgBx N Uy, ve An NV
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we get p(f(xlayl))f(uyyl)) < %6 and p(f(u’yl)’f(u’v)) < %6; then
o(f(z1, 1), f(u,v)) < %e. Thus we have shown:

(4) if (z1,y1) € (IntClgBy N Uyp) x Vi, and f¥* is Ty-quasicontinuous at
z1, then there exists a point (u,v) € (Bx NIntClyBr NUy) X (A, NVy) such
that p(f(z1,v1), f(u,v)) < %5.

Finally, from (3), (4) and (2) we have p(f(z,v'), f(z",y")) < € for

(«',y), (2",y") € (IntClyBr N Uy) x Vi, so f is T x 7-cliquish at (zo,yo)
and the proof is completed. =
THEOREM 2. Let (X, T), (Y, 1) be locally second countable spaces such that
(X xY,T x 1) is a Baire space and let (Z,V) be a uniform one. Suppose
that f: X XY — Z is a function withfy 74-cliquish and fY T -cliquish for
eachz € X,y €Y. If for each (z,y) € X XY f; is quasicontinuous at y or
fY is quasicontinuous at x, then f is Ty X Tg-cliquish.
Proof. Let us take (zo, %) € X xY,e > 0, p € Py and let (U\Hy)x(V\Hz)
be a 7; x 74 neighbourhood of (zg,y0). Without loss of generality we can
suppose that U, V have countable bases {U, : n =1,2,...} and {V,, : n =
1,2,...}, respectively. Let us put

E ={(z,y) € X x Y : f; is quasicontinuous at y},
E; ={(z,y) € X x Y : fY is quasicontinuous at z}.

Since EUE; = X xY and (U \ H1) x (V \ Hz) is of the second category
in (X xY,T x 7) then at least one of the sets EN (U \ Hy) x (V' \ Ha)),
E;n((U\ Hy) x (V\ Hy)) is of the second category. Suppose cf. that the
first one. Denote for eachn =1,2,...

Ap = {:c eU:p(f(z,v), fz,¥") < %e for y',y" € Vn} )

Then (UXx V)NE C (UZ14,) XV CUxV, hence (UXxV)NE =
(UL An x V)N E. Since (U x V)N E is of the second category, for some
n > 1, then the set (4, x V)N E and also A, x V is of the second category.
Under assumptions, (X, 7) and (Y, 7) are Baire spaces. According to Lemma
1, A, is of the second category in (X, 7). Thus @ # Int,ClqA, = IntCl A,.
For each y € V,, the function fY¥ is 7,-cliquish at any point belonging to
IntCl Ay, therefore for each y € V,, there is Upyy) C IntClyA, and an of
the first category set Hy C X such that

(5) p(f(a',y), f(z",)) < ge for &, 2" € Upgy \ Hy.

Let us put B, = {y € V, : m(y) = m} for m = 1,2,... Then V,, =
USe_; Bm. The set V;, is of the second category, so IntCIBy # § for some
k > 1. Singe By N IntCIB, NV, is a dense second countable subspace of
IntClBy NV, so we can choose a countable set D C By N IntClB, NV,
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which is dense in IntClB; N V,,. Then M = U,cp Hy is of the first category
and from (5) we have

1
(6) p(f(@',y), f(a",y)) < ge fory € D, ' 2" € Uy \ M.
Furthermore

1
(M) plf@y), fle,y")) < ge forz € An, ¢,y" € IntCLBL N Va.
So, it follows from (6) and (7) that

®)  pf(@y), Fwv)) < g for (2,9), (u,9) € (Ui An \ M) x D.

Now, let (z,y) € ((Ux \ M) x (IntCIB; N V,)) N E. By the quasicontinuity
of f; at y there is a nonempty open set W C IntClBy NV, such that
p(f(z,y), fz,w)) < -};8 for w € W. From this inequality and (6) for each
v € DNW and u € Uy N Ay \ M we get p(f(z,y), f(z,v)) < 3¢ and
p(f(z,v), f(u,v)) < 3. Thus we have shown:

(9) for each (z,y) € (Ux \ M) x (IntClB, N V,)) N E there is a point
(v,v) € (Ux N Ap \ M) x D such that p(f(z,y), f(u,v)) < 1e.

Finally, let (z,y) € ((Ux \ M) x (IntCIB, N V,)) N Ey. The function fY is
quasicontinuous at z, so a nonempty open set Wy C Uy can be choosen in
such a way that p(f(z,y), f(z',y)) < g& for 2’ € W1. The set A, is Ty-dense
in Uy, hence (W1 \ M)N A, # 0. For each point a € (W1\M)NA, and b€ D
the following inequalities p(f(a,b), f(a,y)) < %5 and p(f(z,y), f(a,y)) < -};e
are true and from this follows that

(10)  for each (z,y) € ((Ux \ M) x (IntCIBy, N V,)) N E; there exists a
point (a,b) € (Ux N An \ M) x D such that p(f(z,y), f(a,b)) < .

As a consequence of (8), (9), (10) we have p(f(z',y), f(z",y")) < € for
(z',¢), (2",y") € (U \(MUH1)) x (IntCIBNV,\ Hy) C (U\ H1) x (V\ H2)
which ends the proof. =

THEOREM 3. Let (X,T), (Y, 7) be locally second countable spaces such that
(X xY,T x 1) is a Baire space and let (Z,V) be a uniform space. Suppose
that a function f: X xY — Z has all sections f; 74-cliquish and all fY
T4-cliquish, x € X, y € Y. If at least one of the sets

E={(z,y) € X XY : f; is quasicontinuous at y},

Ey = {(z,y) € X xY : fY is quasicontinuous at =}
is residual, then f is (T x T)q-cliquish.
Proof. Let (zo,70) € XxY,e>0,p€ Pyandlet (UxV)\Hbea (T x7),
neighbourhood of (zg,y0), i.e. U € T, V € 7 and H is of the first category
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in X x Y. Suppose that F is residual. Using notations and arguments as in
the proof of Theorem 2 we repeat that proof up to (9). Hence we get

p(F(&, ), (&, o) < &
for (z',4"), (z",y") € (Ux \ M) x (IntCIBxNV,))N(E\H)Cc (UxV)\H
and
((Ug \ M) x (IntCIByNV,))N(E\ H)
= [Uk x (IntClB N Vy)]
\ (M x (IntCIBxNVR))U(X xY\E)UH] € (T x7),
which completes the proof. u

LEMMA 2. Let (X, T) be a Baire space, (Z,d) a metric one and let g: X — Z
be given

(a) The function g is cliquish if and only if X \ C(g,T)is of the first
category [5, 9.

(b) Moreover, let (Z,d) be separable. Then g has the Baire property if
and only if g is Ty-cliquish.

Proof. (b) Let {W,, : n=1,2,...} be an open base of Z. Then we have

o<
X\ C(9,7g) = | [97(Wa) \ Integ™ (Wy)] .

n=1
If g has the Baire property, then X \ C(g,7;) is of the first category in
(X, Ty), so g is T4-cliquish. Conversely, let g be Tg-cliquish. Then according
to (a) the set X \ C(g, 7y) is of the first category. For each openset W C Z
we have g71(W) = V U H, where V € T, and H C X \ C(g,7;). Thus
g~ (W) has the Baire property, which completes the proof. =

As a simple consequence of this lemma and Theorems 2 and 3 we obtain:

THEOREM 4. Let (X, T), (Y,7) be locally second countable spaces such that
(X xY,T x 1) is a Baire space and let (Z,d) be a separable metric space.
Suppose that a function f: X xY — Z has all sections f,, f¥ with the Baire
property. If one of the following conditions is satisfied:

(a) for each (z,y) € X x Y, f; is quasicontinuous at y or f, is quasi-
continuous at x;

(b) at least one of the sets E = {(z,y) € X xY : f; is quasicontinuous
at y}, E1 = {(z,y) € X xY : f¥ is quasicontinuous at x} is residual;

then f has the Baire property. m

COROLLARY 1 (1, Th. 3 and Th. 4). Suppose that a function f: R? — R has
all sections f, f¥ cliquish (with the Baire property). If for each (z,y) € R?,



Cligquishness of maps of two variables 663

fz 18 quasicontinuous at y or fY is quasicontinuous ot z, then f is cliquish
(has the Baire property). =

But for real functions it is possible to establish the results similar to
those in Theorems 1 and 4 taking some weaker assumptions on sections f;
and fY. To begin with, we remind some definitions.

A function f: X — R is said to be upper (lower) quasicontinuous at
zg € X if for each £ > 0 and each neighbourhood U of xg there exists an open
nonempty set Uy C U such that f(z) < f(zo) + € (resp. f(zo) — € < f(z))
for x € Uy, (4].

A function f is called upper (lower) quasicontinuous if it has this prop-
erty at each point.

Each quasicontinuous function is upper and lower quasicontinuous; the
inverse is not true. Furthermore, each upper (lower) quasicontinuous func-
tion defined on a Baire space is cliquish [4].

THEOREM 5. Let (X, T), (Y, 1) be locally second countable Baire spaces and
let f: X xY - R be a function which all sections f; and f¥ are cliquish. If
for each (z,y) € X x Y, f; is upper and lower T4-quasicontinuous at y or
f¥ is upper and lower Tg-quasicontinuous at x, then f is T x 7-cliquish.

Proof. Let (zo,y0) € X xY, ¢ > 0 and let U x V' be a neighbourhood of
(20, ¥0). Suppose that U, V have countable bases {U, : n = 1,2,...} and
{Va:n=1,2,...}, respectively. Let us denote

1
Ao = {y eV 1iW,0) - S0 < e for " € Uy}

Now, using the same notations and arguments as in the proof of Theorem
1 we repeat that proof up to (2), (taking the euclidean metric in R instead
of p).

Let (z1,y1) € (IntClyBxNUy) x V. At first we suppose that f;, is upper
and lower 7,-quasicontinuous at y;. By the upper 74-quasicontinuity there
is an open nonempty set V/ C Vi and an of the first category set M’ C Y
such that

f(z1,9) < flzr, ;) +efory e V\ M.
Since V'\M' € 7, and V'\M' C IntCl A, then we obtain (V'\M')NA, # 0.
Furthermore for each u € By N IntClyBy NU, and v € (V' \ M') N A, we
have |f(z1,v) — f(u,v)| < g€ and f(z1,v) < f(z1,91) + ie. This implies
f(u,v) < f(z1,v) + %5 < f(z1,y1) + %e. So we have shown:
(11)  if (z1,21) € (IntClgBxNUy,) x Vi and f;, is upper 14-quasicontinuous
at y1, then there exists (u,v) € (BxNIntClyB, NUy) X (An N V) such that

flu,v) < f(z1,y1) + %6.
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Similarly, applying the lower 7g-quasicontinuity of f, at y, we obtain

(12)  if (z1,41) € (IntClyBxNUy,) x Vi and f;, is lower 74-quasicontinuous
at y1, then there exists (u1,v1) € (Bx N IntClyBy N Uy) x (A N V) such
that

flz, ) - %e < flug,v1).

Take (z2,y2) € (IntClyBiNUy) x Vi, with fg, upper and lower 7,-quasiconti-
nuous at y. According to. (11) and (12) points (u/,v'), (uf,v]) € (Bx N
IntClyBpNUy) x (AnNVj) can be choosen in such a way that the inequalities
1 1
fu,v") < f(z2,92) + 7€ end flezyn) —2e < f(uy, 1)
hold. Hence, using also (2) and (11), we get

€

w1 =

flz1,91) = f(z2,92) < flua,v1) + %5 - f, )+

1 3
— fl, )|+ ze < =€

S |f(u1,'01 D) 1

~—

Similarly we obtain f(zg,y2) — f(z1,11) < -Z—E, S0

(13)  |f(z1,v1) — f(z2,92)] < %8 for all (z;,y;) € (IntClyBx N Uy) x Vi
such that f;; is upper and lower 7g-quasicontinuous at y;, ¢ = 1, 2.

Now, suppose that y1 € Vi and f¥1 is upper and lower T-quasicontinuous at
z1 € IntClyBxNU,. Then there exists a nonempty open set U’ C IntCl,BgN
Un and an of the first category set H’ such that f(z,y1) < f(z1,41) + 3¢ for
x € U'\ H'. Since By, is Ty-dense in IntCly By N Uy, then we have (U'\ H')N
BpNIntClyBr,NUpy # 0. Therefore for all w € (U'\ H')NByNIntClyB,NU,
and v € A, N By, the inequalities |f(u,y1) — f(u,v)| < 3¢ and f(u,y1) <
f(z1,31) + g€ hold, hence f(u,v) < f(u,y1) + 3¢ < f(z1,31) + z¢. Thus

(14)  if (z1,31) € (IntClyBpNU,)xVj, and fY* is upper 7,-quasicontinuous
at x1, then there exists (u,v) € (BxNIntClyBy, NUy) % (An N Vi) such that

Flu,v) < flznm) + g

Analogously, by the symmetry, using the lower 7,-quasicontinuity of f¥! at
1 we have

(15)  if (z1,31) € (IntClyBNUy,) x Vi and f¥* is lower Tg-quasicontinuous
at z1, then there is (u,v1) € (By N IntClyBy N Up) x (An N V) such that

flzn ) - g6 < fl,0m).

The properties (14) and (15) imply



Cliguishness of maps of two variables 665

(16)  |f(z1,91) — f(z2,92)| < 3¢ for all (z;,4:) € (IntClBy NUp) x Vi
such that f¥% is upper and lower 7;-quasicontinuous at z;, 7 = 1, 2.

Finally, applying (11), (12), (14) and (15), similarly as in in the proof of
the property (13), we get | f(z,y)— f(z',3')| < ¢ for all points (z,y), (z',y') €
(IntClyB, NUy,) x Vi C U x V which completes the proof. =

THEOREM 6. Let (X, T), (Y, 7) be locally second countable Baire spaces and
let f: X XY — R be a function with f, upper quasicontinuous and fY lower
quasicontinuous (or conversely) for allz € X,y € Y. Then f is cliquish.

Proof. Following [4, Coroll. 9] all sections f; and fY forz € X,y €Y are
cliquish. Let (zo,y) € X xY, e > 0 and let U x V be a neighbourhood
of (zo,v0). Using notations and arguments as in the proof of Theorem 1
we repeat that proof up to (2). Thus we get open sets U, C U, Vy C V
and of the second category sets A,, By such that By N IntClyB N Up # 0
and A, NV, # 0. Then, similarly as in the proof of Theorem 5, we show
that for the the function f the conditions (11) and (15) are satisfied. This
implies | f(z,y) — f(u,v)] < ie for all (z,y), (u,v) € (BN IntCIBx NUy) X
(An N Vi). Furthermore for each (z,y) € (IntClBy N Uy) x Vi there ex-
ist points (u,v),(u1,v1) € (Bx N IntClBy N Up) x (Ap N V) such that
f(u,v) - %E < f(Iay) < f(Ul,’Ul) + %6' Hence lf(xay) - f(m/’yl)l <e€
for each (z,y),(z',y’) € (IntCIByNU,) x Vi, C U x V, which completes the
proof. =

THEOREM 7. Let (X, T), (Y, 1) be locally second countable spaces such that
(X xY,T x 1) is a Baire space and let f: X xY — R be a function such
that f is 74-cliquish and fY is Tg-cliquish for eachz € X, y € Y. If for
each (z,y) € X XY, f; is upper and lower quasicontinuous at y or f¥ is
upper and lower quasicontinuous at x, then f is Ty x 74-cliquish.

Proof. Let (zg,5) € X xY, e > 0and (U\ Hy) x (V \ Hy) be a Ty x 74-
neighbourhood of (zo,y0),1.e. U € T,V € 7, Hy, H, are of the first category
in X and Y respectively. Without loss of generality we can assume that U,
V have countable bases {U, :n=1,2,...} and {V,: n=1,2,...}. We put

S={(z,y) € X xY : f; is upper and lower quasicontinuous at y}
S1={(z,y) € X x Y : fY is upper and lower quasicontinuous at z}.

In the next we use the same notations and arguments as in the proof of
Theorem 2 and we repeat that proof up to (8), taking S, S; instead of
E and E;i, and replacing p by the usual metric in R. Now, let (z1,y1) €
(U \ M) x (IntClB, NV,)) N S. Since f;, is upper quasicontinuous at y,
there exists an open nonempty set W C IntClBy NV, such that f(z;,w) <
f(z1, 1) + %6 for w € W. Then for any u € Uy NA,\ M andv e DNW
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we have f(z1,v) < f(z1,¥1) + 3¢, and from (6), |f(z1,v) — f(u,v)| < ze.
Hence we have shown f(u,v) < f(z1,¥1) + %6. Similarly, using the lower
quasicontinuity of f;, at y; we get the inequality: f(z1,y1) — ;}6 < f(p,q)
for some (p,q) € (U N An \ M) x D. Thus we have

(17)  for each point (z1,y1) € ((Ux \ M) x (IntClBi N V,))NS there exist
points ('Ufl,'Ul), (plaql) € (UkﬂAn\M) X D such that f(u].)vl) < f(mh y1)+
%6 and f(ml’yl) - %6 < f(pl,lh)-

If (z2,y2) € (Ux \ M) x (IntClBy, N V,))N Sy, then the upper quasicon-
tinuity of f¥2 at zo implies the existence of an open nonempty set U’ C Uy
such that f(z',y2) < f(22,¥2) + e for o’ € U'. Since A, is T;-dense in Uy
we get U'N A\ M # 0. Thus from the last inequality and (7) we obtain
f(U,y2) < f(fﬂz,y2)+%5 and |f(u'ay2) —f(u,v)] < %E forallu € UlnAn\M
and v € D; in the consequence f(u,v) < f(z2,y2) + %E. In the similar way,
by the lower quasicontinuity of f¥2 at z, we obtain the ”symmetric” result;
so we have proved:

(18)  for each point (z2,y2) € ((Ux \ M) x (IntClBrNV,)) N Sy there
exist points (ug,v2), (p2,q2) € (Ux N A, \ M) x D such that f(uz,v2) <
f(z2,y2) + 3 and f(z2,92) — e < f(p2, @)

Finally, let (z1,y1), (22, y2) € (Ux\(MUH))x (IntClBxNV,\Ha). According
to (17) and (18) the points (u;, v;), (i, ¢i) € (UgNAn\M)x D can be choosen
in such a way that f(u;,v;) < f(z:, %) + 1€ and f(zi,v:) — 3¢ < f(pi, @),
i = 1,2. Then applying (8) we get |f(z1,v1)— f(z2,y2)| < € which completes
the proof. m

THEOREM 8. Let (X, T) be a Baire space, (Y, 7) a locally second countable
one and let f: X XY — R be a function with f; cliquish for each x € X and
Y upper and lower quasicontinuous fory € Y. Then f is cliquish.

Proof. Let (zp,y0) € X x Y, e > 0 and let U x V be a neighbourhood of
(z0,y0). We can assume that V has a countable base {V, :n=1,2,...}.
Let A, = {z € U : |f(z,¥y') — f(z,y")| < }eforally',y” € V,}. For
z € U, f; is cliquish, so there is n; > 1 such that |f(z,y') — f(z,¥")| < %E
for v/, y"” € V,,. Hence we obtain U = [J02; Ap. Since U is of the second
category, IntClA,, # 0 for some n > 1. Let us take (a,b) € (UNIntClA,) x
Va. According to [2, Coroll. 9] f% is cliquish. Thus a nonempty open set
U1 C UNIntClA, can be choosen in such a way that | f(z',b)— f(z”,b)| < %
for 2/, 2" € Uy. Then for any (z,y) € Uy x V,, and (s,t) € (A, NU1) x V,, we
have |f(s,b) — f(s,t)| < %e. Furthermore, fY is upper quasicontinuous at z,
therefore there is a nonempty open set U’ C Uy with f(z',y) < f(z,y) + %5
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for ¢’ € U'. Hence for any z; € U' N A, we have f(z1,y) < f(z,y) + 3¢,
|f(z1,y) — f(z1,b)| < g€ and |f(z1,b) — f(s,b)] < %€, which leads to the
inequality f(s,t) < f(z, y)+%6. Similarly, by using the lower quasicontinuity
of f¥ at = we get f(z,y) < f(s,t)+ %E. Thus we have shown that |f(z,y) —
f(s,t)] < %a for all (z,y) € Uy x V,, and (s,t) € (A, NU1) x V4. In the
consequence we obtain |f(z',y') — f(z",y")| < € for every (¢, ¢'), (", y") €
U; x V,, which ends the proof. =

The results obtained for real functions we will apply to multivalued maps.
To begin with, we stand some notions and notations. Given a uniform space
(Z,V) foranype Z, M,M; C Z, p € Py and r > 0 we denote

B(p,p,r)={2€Z:p(p,z) <r},  B(M,p,7)=|}{B(p,p,r):p € M},
p(p, M) = inf p(p,z) and p(M1, M) = sup p(z, M).
2eM zEM;

One can easily see the following property:
(19)  if M, is compact, then p(My, M) < r iff My C B(M, p,7).

In a uniform space (Z,V) by Z we denote the family of all nonempty
compact subsets of Z. Then the sets

{(Ml,Mz) €EZxZ: M C B(M2,p,7‘) and M> C B(Ml,p, 7‘)},
pE Py,r>0,

form a base of a uniformity V on Z. Furthermore, for each p € Py, the Haus-
dorff pseudometric g is given by (M, M3) = max{p(M1, M), p(M2, M1)},
and then P, = {j: p € Py}

A multivalued map F: X — Z with compact values is said to be cliquish
at a point ¢ € X if the function F: X — (Z,V) is cliquish at z [3]. F is
called cliquish if it has this property at each point.

A multivalued map F: X — Z is said to be upper (lower) quasicontinuous
at zg € X if for each open set W C Z with F(zg) C W (resp. F(zo)NW # 0)
and for each neighbourhood U of zg there is an open nonempty set Uy C U
such that F(z) C W (resp. F(z) N W # 0) for z € Uy, (3, 8]. F is called
upper (lower) quasicontinuous if it has this property at each point.

Let us take z € Z, a finite set L C Z and p € Py. For a multivalued
map F: X — Z we have adjoint functions ¢y ,,%,,: X — R defined by
$ap(2) = pl2, F(z)) and 91,,(z) = p(F(z), L).

In the sequel by £(D) we denote the family of all finite subsets of a set
D C Z and we will write L instead of £(Z). Then the following holds:
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LEMMA 3. Let X be a topological space, (Z,V) a uniform one and F: X — Z
be a multivalued map with compact values. Then:

(a) if F is lower quasicontinuous at o, then for each L € L, p € Py the
function ¢r, , is lower quasicontinuous at x,;

(b) if F is upper quasicontinuous at zg, then for each z € Z, p € Py the
function 1, , is lower quasicontinuous at x,.

Proof. (a) We fix p € Py, L € L, a neighbourhood U of zp and a € R
with a < ¢r 5(20). Then we choose ¢ > 0 satisfying a < r — 2, where
r = @rp(20). Since the set F(zo) is compact, then some z € F(zg) can
be choosen in such a way that p(z,w) > r — ¢ for each w € L. Thus we
have F(zo) N B(z,p,e) # 0, so there exists an open nonempty set Uy C U
with F(z) N B(z,p,e) # 0 for z € U;. Hence for all y € B(z,p,&) N F(z),
z € Uy and w € L we have 1 — ¢ < p(z,w) < p(z,y) + p(y,w) < € + p(y, w),
ie. p(y,w) > 7 — 2¢e. In the consequence p(y,L) > r — 2¢ for each y €
B(z,p,e) N F(z), z € Uy which gives p(F(z),L) > r — 2¢. Thus we have
obtained ¢ ,(z) > a for z € Uj.

(b) Let p € Py, z € Z, € > 0 and a neighbourhood U of zy be given;
we put r = 1, ,(xo). There exists an open nonempty set U; C U such that
F(z) C B(F(zo),p, 3¢) for z € Uy. Given z € Uy, y € F(z) there exists
z1 € F(zo) with p(y,21) < 3e. Hence r — 3e < p(z, F(z0)) < p(z,721) <
p(z,9) + p(y, z1) < p(z,y) + 3¢, so v — 3¢ < p(y, z) for each y € F(z). The
latter means that r — & < 4, ,(x) for z € U; and the proof is completed. =

We will use some results presented in [3] which here are stated as the
following lemmas.

LEMMA 4 ([3, Th. 3]). Let X be a topological space, (Z,V) a uniform one
and let F: X — Z be a multivalued map.

(a) If F' is lower quasicontinuous at xg, then for each z € Z, p € Py the
function v, , is upper quasicontinuous at zg.

(b) If there exists a dense set D C Z such that for each z € D, p € Py the
function v, , is upper quasicontinuous at xg, then F is lower quasicontinuous
at zg.

LEMMA 5 ([3, Th. 4]). Let X be a topological space, (Z,V) a uniform one
and let F: X — Z be a multivalued map with compact values.

(a) If F is upper quasicontinuous at xg, then for each L € L, p € Py the
function ¢, , is upper quasicontinuous at xg.

(b) If there ezists a dense set D C Z such that for each L € L(D),
p € Py the function pr, , is upper quasicontinuous at xo, then F' 1is upper
quasicontinuous at xg.
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LEMMA 6 ([3, Th. 5]). Assume that a multivalued map F: X — (Z,V) is
cliquish at a point xg € X. Then

(a) for each z € Z, p € Py the function 1, , is cliquish at zo;
(b) if F' has compact values, then for each L € L, p € Py the function
©L,p 15 cliquish at zo.

LEMMA 7 ([3, Th. 6]). Let X be a Baire space, (Z,V) a separable uniform
one and let F: X — Z be a multivalued map with compact values. If for each
p € Py, z € D, L € L(D) functions v,,, ¢r, are cliguish, where D is a
countable dense subset of Z, then F is cliquish.

THEOREM 9. Let (X, T), (Y, 1) be locally second countable spaces such that
(X xY,T x 1) is a Baire space and let (Z,V) be a separable uniform space.
Suppose that a multivalued map F: X x Y — Z with compact values has all
sections Fy, FY, ¢ € X, y € Y cliquish. If for each (z,y) € X xY, Fy is
upper and lower quasicontinuous at y or FY is upper and lower quasicontin-
uous at z, then F s cliquish.

Proof. Let D be a dense countable subset of Z. Following Lemma 6 for each
w € Z, p € Py and L € L(D) all functions (Y p)e, (Yw,p)?, (@Lp)zs (L,p)?
are cliquish. Applying Lemmas 3, 4, 5 we have that all sections (¢ )z,
(¢Lp)c are upper and lower quasicontinuous at y or (Y)Y, (pr,)¥ are
upper and lower quasicontinuous at z for (z,y) € X xY. Under assumptions
(X,T) and (Y, ) are Baire spaces, so according to Theorem 5 all functions
Yw,p, PL,p are cliquish. Finally using Lemma 7 we obtain the conclusion. =

THEOREM 10. Let (X, T), (Y, 7) be locally second countable spaces such that
(X xY,T x 1) is a Baire space and let (Z,V) be a separable uniform space.
If F: X xY — Z is a multivalued map with compact values such that F,
is upper quasicontinuous and FY is lower quasicontinuous (or Fy is lower
quasicontinuous and FY is upper quasicontinuous ) forz € X, y € Y then
F is cliquish.

Proof. According to Lemmas 3-5 all sections (¢r )z, (¥.,0)Y are upper
quasicontinuous and (¢r,,)Y, (;,0)c are lower quasicontinuous for each z €
Z,L €L, pe Py. Hence by Theorem 6 all functions ¢y, ,, ¥, are cliquish.
Now applying Lemma 7 we have that F is cliquish. =

THEOREM 11. Let (X,T) be a topological space, (Y, ) locally second count-
able such that (X xY,T x 7) is a Baire space and (Z,V) a separable uniform
one. If F: X xY — Z is a multivalued map with compact values such that
F, is cliquish and FY upper and lower quasicontinuous forallz € X,y €Y
then F is cliquish.
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Proof. It follows from Lemma 6 that all sections (¢r,)z, (Yw,p)c are
cliquish and by Lemmas 3-5 all (@1 ,)Y, (w,)? are upper and lower quasi-
continuous for each w € Z, L € L, p € Py. Applying Theorem 8 we get that
all functions @y, ,, ¥y, , are cliquish, so Lemma 7 implies that F' is cliquish. «
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