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2&-INNER PRODUCTS IN REAL LINEAR SPACES 

Abstract. The notion of 2fe-inner product is introduced as a generalization of usual 
inner product and Q-inner product ([4]-[8]). As a consequence, is defined the notion of 
2fc-normed space and some properties, e.g. uniformly convexity, Gâteaux differentiability 
and Riesz property of the dual, are given. 

1. Introduction 
In the last decade, the second author gave (see [4]-[9]) an extension of the 

usual notion of inner product, namely the quaternionic inner product, or, 
for short, the Q-inner product. Some of the properties of an inner product 
and of the associated norm, such as: 

(i) uniform convexity, 
(ii) Gâteaux differentiability, 

(iii) equivalence of Birkhoff orthogonality with the inner product orthogo-
nality, 

(iv) the Riesz form of linear continuous functionals 

were reobtained in this new framework. 
The present paper is devoted to a generalization of both the classical 

inner product and the Q-inner product. In the first section we introduce the 
concept of 2/c-inner products and prove the properties (i)-(ii) above. Also, 
it is proved that a 2/c-inner product space is a smooth space of (BD)-type 
in the sense of Dragomir, and two remarkable identities, equivalent with 
the parallelogram identity, are given. The following two sections deal with 
the properties (iii) and (iv) and some results related to projections are ob-
tained. 
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2. Main properties of 2/c-inner products 
Let X be a real linear space and fc^Oa natural number. As usual, we 

shall denote X2k — Χ χ . . . χ X. We introduce the following new concept: 
2 fc times 

DEFINITION 1. A mapping ( · , . . . , · ) : X2k —» R is said to be a 2k-inner 
product if: 

(i) (aixi + a2X2,X3, . . .,X2k+l) = Oil . . · ,X2fe+l) 
+ oì2(X2ìXz,···,Z2fc+i), oii,a2 e Μ; 

(ii) (ζσ(ΐ). · · · > z<r(2Jfc)) = (zi> · · ·, X2k), € S2k, where S2k denotes the set 
of all permutations of the indices {1, . . . , 2k}; 

(iii) (x , . . . , χ) > 0 if χ φ 0; 
(iv) Cauchy-Buniakowski-Schwarz's inequality (CBS for short) 

2k 
|(xi, . . . ,X2fc)|2fe < Π (Xi> •••>xi) 

i—1 

with equality if and only if χ χ , . . . , x2k are linear dependent. 

The pair (X, ( · , . . . , ·)) is called 2k-inner product space. Let us remark 
that our notion is different from the n-inner product of Misiak ([10]). 

For fc = 1 we have the usual notion of inner product and for k = 2 we 
obtain the notion of Q-inner product from [4]-[8]. Also, it follows that 

(0, X2, • • -,X2k) = 0 and (ax i , . . .,ax2k) = a2k (χι,... ,x2fc) · 

EXAMPLE 1. 

η / 2k \ y \ 
I) X = Rn, (* ! , . . . , x2k) = E ( Π ®;·) if Xj = · • ·, x") • 

II) Let (Ω, Λ, μ) be a measure space consisting of a set Ω, a σ-algebra A 
of subsets of Ω, and a countably additive and positive measure μ on 
A with μ (Ω) < oo. Then o n I = L2k (Ω, Α, μ) we have the 2A:-inner 
product 

2k 
(xi,..., x2k) = \ Υ[χϊ{ί)άμ(ί). 

Ωί=1 

A remarkable class of 2A;-inner products is provided by: 

PROPOSITION 1. An usual inner product (·,·) on X gives rise to a 2k-inner 
product on X for every k. 

Proo f . By induction after k. Let us suppose that the given inner product 
yields the 2/c-inner product ( · , . . . , -)2fe· Then 
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( x i , . . . , X2k+2)2k+2 

••= 2fc + 1 [ ( χ 1 ' χ 2 ) (®3, · · · , ^2fc+2)2fc + χ3) (X2,X4, •••, X2k+2)2k + · · · 

+ (xi,X2k+2) (X3, X2k+l)2k] 

is a (2k + 2)-inner product. • 

In the following we call simple the above type of 2/c-inner products. 

EXAMPLE 2. 

(i) For k = 2 ([6, p. 76], [8, p. 20]) we have the following 4-inner product: 

(χχ, X2, X3, 2:4)4 = ^ {{X1,X2) (X3, X4) + (a;i, X 3 ) (x2, X4) + (3:1,2:4) (X2, 2:3)] · 

(ii) For k = 3 we have the 6-inner product 

(xi, . . . , 2¡6)g 

= 77{(®1, 2:2) [(2:3,2:4) (Χ5,Χβ) + (2:3,2:5) (2:4,2:6) + (2:3,2:6) (2:4,2:5)] 
lo 
+ (2:1, X3) [(2:2, Xi) (X5, Χβ) + (X2, X5) (2:4, XG) + (Χ2,Χβ) {X4, 2:5)] 
+ (2:1, x 4 ) [(2:2,2:3) (2:5, X&) + (X2, 2:5) (2:3, x 6 ) + {x2,xe) (2:3, X5)} 
+ (χι ,χδ) [(2:2,2:3) (2:4,2:0) + (2:2,2:4) {x3,Xg) + (2:2,2:6) (2:3,2:4)] 
+ (®1, Xe) [(X2, Xi) (2:4, 2:5) + {X2, 2:4) (2:3, 2:5) + (2:2, 2:5) (2:3, 2:4)]}. 

(iii) In the general case we have (2k — 1)!! = 1 • 3 · ... · (2k — 1) terms. So, 
for k = 4 we have 7!! = 3 · 5 · 7 = 105 terms. 

The previous proposition leads to the definition of orthogonal basis. Let 
us suppose that X has dimension η and let Β = {e¿}i<¿<n be a basis for X. 
For k = 1 as usual Β is said to be orthogonal if (e¿, ej) — 6ij and for k > 1 
we define recurrently using the relation from the proof of Proposition 1. For 
example, Β is orthogonal for a Q-inner product if 

(βίχ , e¿2 , 613 , 6j4) = — (δί1ί2δί3ί^ + ¿>ÍI¿3<5Í2¿4 "I" ̂ ¿114̂ 1213) · 

Then, for i φ j, we have (e¿,e¿,ej,ej) = 5 and (e¿, e t, e¿, ej) — 0. 
A first property is: 

PROPOSITION 2. If (·,..., ·) is a 2k-inner product then || · ||2fc : X —• 

K+>||®||2Jfe = (x, • • • ,x)^ is a norm on X for which the following gener-
alization of parallelogram identity holds 

k ( 2k \ 
II* + y\\li + Ik - y\\ll = 2 Σ ( 2 _ J ( £ ^ 5 . ^ 

0 2i times 2(k-i) times 
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P r o o f . By definition of the 2k—norm, we get 
2fc / 2 A 

Ik + villi = Σ ( i I ) · 
i times 2k—i times 

However, 
( a ^ ^ x , y ^ y ) < MMlvllfk'1 

i times 2k—i times 

and then 

Ik + y\\ikk < Σ [ i J IMImMIIS"4 = ( 1 M b + IMb)2 f e 

which gives the triangle inequality. The relations 

1 M b >0,||x||2fc = 0 ^ x = 0 
and ||Àa;||2ifc = | λ | | |x|b> λ a real number, immediately follow. The paral-
lelogram identity is obvious. • 

R E M A R K 1. 

(i) For Example 1 part I, we have 

IMI» = ( £ ( * ' ) " ) * i=1 
i î x = { x i ) 1 ^ n . 

(ii) CBS has the form 
2k 

I ( z i , · · -,x2k) I < Π I M I b · 
i=1 

(iii) If ( · , . . . , -)2jt is a simple 2fc-inner product with the inner product (·, ·) 
as generator then || · ||2fc is exactly the norm || · || of (·, •). Also, we have 

(x,...,x,y)2k = | | s f i f c - 1 ) (x,y), 

a relation important for orthogonality theory, see Remark 2 part (ii) 
of Section 3. 

The previous result leads to: 

DEFINITION 2. A real normed space is said to be a 2k-normed space if its 
norm is defined by a 2fc-inner product. 

An important property of 2k—normed spaces is provided by: 

THEOREM 1. A 2k-normed space is uniformly convex. 
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Proof . Let 0 < ε < 2 and x,y G X with |]:z||2fc < 1, Wvhk < 1 and 
II® -2/lbfe > £· Applying the parallelogram identity and the CBS inequality, 
we have that 

II« + y\\ll < 2 ς ( 2 \\Α\ΪΛν\\Τι) - II« - v\\lì 

< 22k — e2k - 22fc 2k 

and then 

Putting 

x + y 
< 1 -2 1 - 1 

δ(ε) = 1-[ΐ 
2k\ 2k 

2fc\ 

we have δ (e) > 0, which gives the desired result. • 

Another remarkable result of this section is: 

T H E O R E M 2 . The norm, of a 2k-normed space is Gâteaux differentiable with: 

r{x,y) := (ll-ir2fc)(»)(y) = (g:'::¿!'1y), «¿O. 
I l « l l 2 f c 

Proof . Let x, y 6 Χ, χ φ 0 and t φ 0 a real number. Since 

1 / ν 1 2fc_1 /2ÄA 
7(l l« + i y | l ä - I W I ä ) = ι Σ ( ¿ ) 

i times 2k—i times 

we have 

Also, from 

lim -t (||x + y\\fk - 11x11») = 2 k ( x , . . . ,x,y). 

^ {\\x + tyhk - I M h ) = j 
x + ty\\?k-\\x\\fk 

k 
Σ 
i=1 (II« + tyWìk + IMI**) Σ II« + <3/11» ÑMIsúb1 

we get 

l imy( | |x + t y | | 2 f c - | | x | b ) = § ^ - l f ' 2 / ) 

t-o t 2 | | x | | ^ | | x | | fc-i: 

2k 

which is the required relation. • 
Let us recall, following [9], the following notions: 
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D E F I N I T I O N 3 . 

(i) On a normed linear space (Χ, || · ||) the semi-inner-product (·, ·)τ : 

I x l - t l , 

(x,y)T :=limi(||y + ix||2-|M|2) 
íj.0 21 

is called semi-inner-product in the Tapia sense. 
(ii) A smooth normed space is called of (D)-type if there exists 

{x, y)'T := lim Ì [{χ, y + tx)T - (χ, y)T] 

and a space of (D)-type is called of (BD)-type if there exists a real 
number k so that (x,y) T < &2||ΐ/||2. The least number k is called the 
boundedness modulus. 

The following result is known. 

P R O P O S I T I O N 3 ( [ 9 , p . 1 ] ) . A normed linear space is smooth if and only if 
(·, ·)τ is linear in the first variable. 

A straightforward computation for the 2k—normed spaces gives: 

P R O P O S I T I O N 4 . A 2k-normed space is smooth since 

(x,y)i 
M i t 1 ' 

Also, a 2k-normed space is of (BD)-type with boundedness modulus 1 be-
cause (x,y)T = \\y\\lk. 

We finish this section with two identities in a 2A;-inner space. A simple 
calculation gives the equivalences: 

a2 + c2 = 2 1 2 

b + c a + b a + c 

a2 + c2 — 2b2 + 
a c 2b 

b + c a + b a + c 
Using the above parallelogram identity let 

o = lls + A . c = II® - vWik a n d 

ò = = ( Σ L f ) ) 2 V 2 \k~1)) * s 2(k—i) times ' 2i times 
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to obtain 

k \ i 
II® - y\\ìk + ( Σ y 1 _- 1 y / ) ) 2 

2i times 2(fc-i) times 

1 
+ ^ Γ 

2i times 2(k-i) times 

\x + y\\k2k + \\x-y\\ìk 

and 

2 k 
k - 1 
K N 2 

+ 

- yll2fc + ( .Σ )) 
2 i ti) 

' i=0 
2i times 2(fc-i) times 

k 1 

2i times 2(fe-i) times 

2i times 2(fc-i) times 

\\x + y\\ïh + \\x - y\\u 

3. 2/c-Orthogonality 
We shall begin with: 

DEFINITION 4. If χ, 2/ G ( Χ , ( · , · · · , ·)) then χ is said to be 2k-orthogonal to 
y if (x,..., χ, y) = 0 and we denote this fact by χ J_2FC 2/· 

R E M A R K 2. 

(i) Obviously, χ i-2fc % =>· ® = 0. 
(ii) From Remark 1 part (iii), it follows that for a simple 2/c-inner product 

generated by (·, ·) we have χ ±2k y x -L-2 y· 

Let us recall that on a normed space (Χ, ||·||), χ is called Birkhoff orthog-
onal to y if + Xy\\ > ||a;|| for all real λ and denote this fact by χ ± b y- The 
following characterization of Birkhoff orthogonality is due by R. C. James: 
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PROPOSIT ION 5 ( [11, p. 92 ] ) . χ ± B y τ- (x, y) < 0 < τ + (χ, y) where 

τ - { χ , y ) lim ^ (||χ + ty\\ - ||ζ||), T+{x,y) := lim ^ (||χ + ty\\ - ||χ||). 

The following lemma is useful: 

L E M M A 1. If ( X , (·,..., ·)) is a 2k-inner product space then the 2k-orthogo-

nality is equivalent with Birkhoff orthogonality. 

Proo f . If χ ±b y then applying Proposition 5 it results that 

0 < T - ( x , y ) < 0 < r + { x , y ) 

which implies 

τ (x, y) = r_ (x, y) = r+ {x, y) = 0 

and then x ±2k y• Conversely, if x ±2fc y and i / O then 

r_ (x, y) = T+ (x, y) = — — = 0 

and applying Proposition 5 we have the conclusion. • 

This result has an important consequence. Thus, applying Ex. 24 from 
[3, V. 66] it results that χ ±2k y is equivalent with y J_2fc x if and only if 
II • 112 fc is generated by an usual inner product. For example, this is the case 
of simple 2/c-inner products, see Remark 1 part (iii) or Remark 2 part (ii). 

DEFINITION 5. Given a subset Y d ( X , ( · , . . . , · ) ) , the set Y±2k = {z e X; 

ζ J-2fc y for all y E y } is called the 2k-orthogonal complement of Y. 

Remark that Yr\Y±2k = {0 } and if λ e R and ζ G Y ± 2 k then λζ e YX2fc 

showing that Y-L2fc is a linear subspace. However, from Proposition 4, X is 
smooth and applying Ex. 26 from [3, V. 66] it results that Y ± 2 k is a linear 
subspace. 

The following orthogonal decomposition theorem holds. 

P R O P O S I T I O N 6 . Let Y be a closed, linear subspace in a complete 2k-inner 

product space ( X , (·,..., ·)). Then, for χ £ X there exists a unique y Ε Y 

and ζ G Y-i~2k such that χ — y + ζ. 

Proo f . Existence. From uniform convexity it follows that X is reflexive ([11, 
p. 368]), and thus there exists a projection of χ on Y, i.e., an element y Ε Y 
such that 

Ila; - y||2fc < Ila; - y'hk 
for all y' G Y. Denoting ζ = χ - y we have the required relation. 

Now, we prove that ζ G Y ± 2 k . For y' G Y we have 

II« + V I I 2* = ||œ - { y - V ) hk > Ik - yhk = I M b 
for all real λ and then ζ J_ß y'. Applying Lemma 1 we obtain ζ G y-1-«. 
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Unicity. The above y is in Ργ ( χ ) , where Ργ ( χ ) denotes the set of best 
approximation elements in Y referring to x. Since X is uniformly convex it 
results that X is strictly convex and then Ργ (χ) contains a unique element 
([11, p. 110]). . 

In the following we obtain some results in the spirit of [10], which appear 
as a counterpart of the above results. 

Let a E -X"\{0} and denote by X (a) the linear subspace generated by a. 
Let us consider the mapping 

ν- ν / s (a,..., a, χ) pra : X —> X,pra (x) := — — a . 
IMI l ì 

It follows that: 

PROPOSITION 7. 

(i) pra is independent of the choice of ain X (a) i.e. for λ € R toe have 

W\a — Wa-
lii) pra is a projection onto X (a). 

(iii) For arbitrary χ E X , a is 2k-orthogonal to χ — prax and 

IIpre(x) ||2fc < ||x||2*. 
P roo f . The proof is as follows. 

(i) We observe that 

(λα, . . . ,λα,χ) X2k ( α , . . . ,α,χ) 
W\a (Χ) = ... ||2fc λ α = xofcii 112k β = W " 

Ι | λ α | | $ A2fc H <x [J 
(ii) We note that pra is onto because pra (a) — a. Obviously, pra is linear 

and: 
( g , . . . , g , p r a ( x ) ) ( a , . . . , a) (a,..., a, x) _ 

W a { w M ) llalli a ~ IMI» 
(iii) We remark that 

{ α , . , . , α , χ - pra (x)) = (a,... ,α,χ) - (a,..., a, pra ( x ) ) 

(a,..., a) (α,.,.,α,χ) 

- ( o H i = ° 

and 
|(a, . . . ,a,x) | | |a | |2fc | ( a , . . . , α,χ) | 

IIP»"« (x) I h = 
« w r 1 

< M i t ' M n _ | | T i | 
^ M ||2fc-l - Wxhk, 

and the proposition is proved. 
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4. The Riesz property 
Let us denote by X* the usual dual of X, that is, the space of linear 

continuous functionals / : X —> R. Fix an element y E X and consider the 
functional / : X —> R, / (x) := (x, y,..., y). It follows that / 6 X* with 

l/(®) I < IMblMI^T1 for ali χ e x, 
hence 

Also, 

so that 

11/11 < llvllg-1. 

Il/llll»ll2fc>/(y) = ||y|lä, 

e - 1 · 
Conversely, we shall show that any / G X* has the above form if X is 

complete, obtaining the following generalization of the Riesz representation 
theorem: 

THEOREM 3. If (X, (·,..., ·)) is a complete 2k-inner product space and f G 

X* then there exists an element y G X such that f (χ) = (x,y,... ,y) for all 
xeX and 11/11 = Μ\%~1· 
P r o o f . If / = 0 then y = 0. If / φ 0 let x0 G X with / (X0) Φ 0. Applying 
the Proposition 6 for xo and Y = Ker ( / ) which is a closed linear subspace 
of X, there is a unique yo G Ker ( / ) and a unique ZQ E Ker (/)J"2fc such 
that XQ = yo + ZQ- It results that ZQ £ Ker ( / ) . 

Let λ G R with 

Λ 2k—1 f(X0) 
INI:* Il2fc 

and y = XZQ. Because / (Χ) ZQ — f (ZQ) X G Ker ( / ) for all x G X we have 

ZQ ±2K (/ ( X ) ZQ - f {ZQ) X) , 

that is, 
( / fa) Z 0 - f ( ¿ t i ) X , Z 0 , . . . , ZQ) = 0 

which implies 

F (*) = FRW (*»«>.••·> - Λ2*"1 {X, ZQ, . . . } ZQ) 
\\zohk 

= (x, Xzo,..., Xzo) = (x,y,...,y) 

for all x G X . • 

Finally, we shall prove the theorem of unicity for the representation ele-
ment. 
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T H E O R E M 4 . Let (X, (·,..., ·)) be a complete 2k-inner product space and 
f G X* \ { 0 } . Then there exists an unique u G X with ||U||2FC = 1 such that 
f i x ) - 11/11 (x>u> •••,u) for all χ Ε X. 

P r o o f . Existence. As above, there exists a zq G Κ er ( / )± 2 f c \ {0} such that 

tí \ f ( z o ) ( zo zo 
f ( x ) = ñ Π x> Ikolbfc V ' I k o l h f e ' " " ' \\zohk 

for all χ G X and 

II/II = w j i r - -
F O | | 2 K 

With 
l/2fc—1 

X=(J1*o± 
V I / ( z o ) 

we get 

( l ) " 1 1 / 1 1 1 / M l ( x · l l X ' ' - M M b ) 

- • " ^ ' ( ' • i i k W Ò - V U * . * . . . . « ) . 

where u = Obviously ||n||2fc = 1. 
Unicity. We have / (u) = | |/ | | . Since (X, ( ,)) is strictly convex and u 

satisfy the last relations, by the Krein theorem ([11, p. 110]), it follows that 
u is unique. • 
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