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2k-INNER PRODUCTS IN REAL LINEAR SPACES

Abstract. The notion of 2k-inner product is introduced as a generalization of usual
inner product and Q-inner product ([4]-[8]). As a consequence, is defined the notion of
2k-normed space and some properties, e.g. uniformly convexity, Giteaux differentiability
and Riesz property of the dual, are given.

1. Introduction

In the last decade, the second author gave (see [4]-[9]) an extension of the
usual notion of inner product, namely the quaternionic inner product, or,
for short, the @-inner product. Some of the properties of an inner product
and of the associated norm, such as:

(i) uniform convexity,
(ii) Gateaux differentiability,
(iii) equivalence of Birkhoff orthogonality with the inner product orthogo-
nality,
(iv) the Riesz form of linear continuous functionals

were reobtained in this new framework.

The present paper is devoted to a generalization of both the classical
inner product and the @Q-inner product. In the first section we introduce the
concept of 2k-inner products and prove the properties (i)-(ii) above. Also,
it is proved that a 2k-inner product space is a smooth space of (BD)-type
in the sense of Dragomir, and two remarkable identities, equivalent with
the parallelogram identity, are given. The following two sections deal with
the properties (iii) and (iv) and some results related to projections are ob-
tained.
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2. Main properties of 2k-inner products

Let X be a real linear space and k # 0 a natural number. As usual, we
shall denote X% = X x ... x X. We introduce the following new concept:
L —

2k times
DEFINITION 1. A mapping (-,...,-) : X?* — R is said to be a 2k-inner
product if:
(i) (o121 + 022223, ..., T2k41) = o1 (21,73, ..., Top+1)
+ a2(z2, 3, - - -, Tok+1), 01,02 € R;

(1) (%(1), . ,wa(%)) = (z1,...,2Z2k), 0 € Sak, where Sy denotes the set
of all permutations of the indices {1,...,2k};

(iii) (z,...,z) > 0ifz #0;

(iv) Cauchy-Buniakowski-Schwarz’s inequality (CBS for short)

2k
l(wl’ s 7m2k)l2k < H (Ilii, v ,(Ei)
3=1
with equality if and only if z1, ..., zo; are linear dependent.
The pair (X, (-,...,-)) is called 2k-inner product space. Let us remark

that our notion is different from the n-inner product of Misiak ([10}).
For k£ = 1 we have the usual notion of inner product and for k = 2 we
obtain the notion of Q-inner product from (4]-[8]. Also, it follows that

(0,z2,...,z9¢) =0and (azi,...,azy) = a?* (z1,..-,Z2k) -
ExAMPLE 1.
n 2k .
) X=R", (21,...,2%) = i§1 (j=1:c;~) if z; = (m},,x;’) )

II) Let (2,4, u) be a measure space consisting of a set 2, a o-algebra A
of subsets of €2, and a countably additive and positive measure yx on
A with 41 (Q) < co. Then on X = L% (Q, A, 1) we have the 2k-inner

product
2k
(11:1,. ..,Il:gk) = S HIL‘i (t)d/.l,(t) .
Qi=1
A remarkable class of 2k-inner products is provided by:

PROPOSITION 1. An usual inner product (-,-) on X gives rise to a 2k-inner
product on X for every k.

Proof. By induction after k. Let us suppose that the given inner product
yields the 2k-inner product (-,...,)2x. Then
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(wlx sy m2k+2)2k+2

= 2%k + 1 [(a:l? mZ) (2123, ) I2k+2)2k + (131,.’1:3) (1122, T4, - 7-772k+2)2k, +...

+ (21, Tokt2) (23, - - Takt1)ok)
is a (2k + 2)-inner product. =
In the following we call simple the above type of 2k-inner products.
EXAMPLE 2.
(i) For k = 2 ([6, p. 76], [8, p. 20]) we have the following 4-inner product:

(:El, I9,Z3, :1}4)4 = - [(2:1, .'1:2) (:B3, .’E4) + (.’1)1, .’1:3) (.’132, .124) + ((L‘l, CB4) (:L‘2, .’Eg)] .

3
(ii) For k£ = 3 we have the 6-inner product
(11:1, ey .’)36)6
= 25 {(01,22) (@8, 20) (55, 76) + (23, 5) (24, ) + (23,76) (31, 5)]
+ (21, 23) (2, T4) (25, 76) + (22, T5) (T4, T6) + (72, T6) (4, T5)]
+ (21, 24) [(2, 23) (5, 26) + (22, T5) (3, T6) + (72, T6) (73, T5)]
+ (21, 75) (22, %3) (74, T6) + (72, Z4) (23, T6) + (22, T6) (23, 74)]
+ (21, 76) (22, 73) (74, T5) + (T2, T4) (23, T5) + (22, T5) (3, 74)] }-
(iii) In the general case we have (2k — 1)!' =1-3....- (2k — 1) terms. So,

for k=4 we have 7' =3 -5-7 = 105 terms.

The previous proposition leads to the definition of orthogonal basis. Let
us suppose that X has dimension n and let B = {e;}1<i<n be a basis for X.
For k =1 as usual B is said to be orthogonal if (e;,e;) = 6;; and for k > 1
we define recurrently using the relation from the proof of Proposition 1. For
example, B is orthogonal for a Q-inner product if

1
(eil, €iz» eisvei4) = 5 (52'11'261'31'4 + 6i1i36i2i4 + 6i1i46i2i3) .

Then, for ¢ # j, we have (e;, e;,¢ej,¢e5) = % and (e, e;,€;,€5) =0.
A first property is:

ProposiTION 2. If (-,...,-) is a 2k-inner product then || - |or : X —

1
Ry, ||zllek = (z,...,z)2%* is a norm on X for which the following gener-
alization of parallelogram identity holds

21 times 2(k—i) times
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Proof. By definition of the 2k—norm, we get

]]z+y||2k=ik: 2k (Zy.oyy Yyuou ey y )
2k ~ i 3 y Ly ’ )
i times 2k—1 times

However,
(113, <oy Yy ¥ ) < ||93||12k”y||§£ﬂ
i times 2k—i times
and then

2%
2k ; _~
Iz + yl3% < Z ( i ) IIxH%kHyH%’E = (|z)ax + llyll2x)**
i=0

which gives the triangle inequality. The relations
[zll2x 20, [|zllx =0 =0

and ||Azjl2k =| A | llz|l2k, A a real number, immediately follow. The paral-
lelogram identity is obvious. =

REMARK 1.

(i) For Example 1 part I, we have

lolla = (3 (=)™ %

ifr= (a:i)lsl.Sn.
(ii) CBS has the form

2k
| (@1, 228) | < I lill2s.
i=1

(iii) If (-,...,")q is & simple 2k-inner product with the inner product (,-)
as generator then || - ||ox is exactly the norm || - || of (-, ). Also, we have
2(k—1
("E""’z’y)% = ”‘T”2§c )(.’E,y),

a relation important for orthogonality theory, see Remark 2 part (ii)
of Section 3.

The previous result leads to:

DEFINITION 2. A real normed space is said to be a 2k-normed space if its
norm is defined by a 2k-inner product.

An important property of 2k—normed spaces is provided by:

THEOREM 1. A 2k-normed space is uniformly convez.
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Proof. Let 0 < € < 2 and z,y € X with |z|lax < 1, |lyllax < 1 and
|z ~ yllox > €. Applying the parallelogram identity and the CBS inequality,
we have that

k
2(k—1 k
Iz + ylI3% Z( )H 1Zyloe ™ = Nl — yli3

=0

< 9% _ 2 _ o2 [1 _ (%)Zk]

T+y e\ 2K\ 3
Hs-1-0-G))7)

5(5)=1—<1—(§)2k>ﬁ

we have § (¢) > 0, which gives the desired result. =

and then

Putting

Another remarkable result of this section is:

THEOREM 2. The norm of a 2k-normed space is Gdteaux differentiable with:
(z,...,z,y)
7(z,y) = (|| l2%) () () = —H—”W’ z #0.

Proof Let z,y € X, z # 0 and ¢ # 0 a real number. Since

Lo+ et~ 1e1%) =2 3 (%) @ratyoty)
t Ylizk 2k _t . yer s Ty Y, ..., Y ),

— \ i
= i times 2k—i times

we have
tim = (o + 1B - I2lBf) = 2% (z,...,2,9).
Also, from

[z +ty||2’° - |l=li3

(= + tylig, + l=i5e) E lz + tyllzg il

1
n (lz + tyllax — llzllok) = =

we get
.1 2k(z,...,z,y)
lim = (lz + tyllae — llzll2e) = 1
t=01 2|\, kll<ll5;
which is the required relation. =
Let us recall, following [9], the following notions:
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DEFINITION 3.

(i) On a normed linear space (X,||-||) the semi-inner-product (-,-)p :
X x X >R,

@ 9)r =l 5 (Iy + alP = u]?)

is called semi-inner-product in the Tapia sense.
(ii) A smooth normed space is called of (D)-type if there exists

y 1
(@, )y = lim =~ [(z,y + t2)7 ~ (2, y)7]

and a space of (D)-type is called of (BD)-type if there exists a real

number k so that (m,y)lT < k2||ly)|2. The least number k is called the
boundedness modulus.

The following result is known.

PROPOSITION 3 ([9, p. 1]). A normed linear space is smooth if and only if
(-,*)p is linear in the first variable.

A straightforward computation for the 2k—normed spaces gives:

PROPOSITION 4. A 2k-normed space is smooth since

(y’ A | y’ w)
2(k—1) °
iz ™
Also, a 2k-normed space is of (BD)-type with boundedness modulus 1 be-

!
cause (z,y)r = ||yliZ.

(CU,Z/)T =

We finish this section with two identities in a 2k-inner space. A simple
calculation gives the equivalences:

1 1 2

2 2 2

= 2° — =

@t b+c+a+b a+c
2b

a2 =2 ey 2 4 C

btc atb atc
Using the above parallelogram identity let

a=|lz+ y“’2ck, c= |z - y||§k and

k
2k
b= I 1 G N T A
(Z (2 (k - 7’)) (\W—/ u2(k—i) times))

=0 2i times

(ST
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to obtain
1
kooook 3
k
e = ol + (S G @02 3200y )
2i times 2(k—1i) times
1
* kooook 3
k
o+l + (2 G0 @02 %y )
2i times 2(k—1) times
_ 2
Iz + yli5, + llz - yli5
and
Iz + yll%,

(NI

k
_ Nk 2k
o=l + (5 Gata) @ 3oy )

2i times 2(k—1) times
Iz — w5,

k
k
o+l + (X )@z 30y )

21 times 2(k—1i) times

+

B

k 1
2(2 (2([3111))(32,71:7 Yoo sy ))2

2i times 2(k—1) times

iz +ylik, + llz — ylik,

3. 2k-Orthogonality
We shall begin with:

DEFINITION 4. If z,y € (X, (,...,)) then z is said to be 2k-orthogonal to
y if (z,...,z,y) = 0 and we denote this fact by z Lo y.

REMARK 2.

(i) Obviously, z Lo z = z = 0.
(ii) From Remark 1 part (iii), it follows that for a simple 2k-inner product
generated by (-,-) we have z Loy y &z Lo y.

Let us recall that on a normed space (X, ||-||), z is called Birkhoff orthog-
onal toy if ||z + Ay|| > ||z|| for all real A and denote this fact by z L g y. The
following characterization of Birkhoff orthogonality is due by R. C. James:
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PRrOPOSITION 5 ([11, p. 92]). z Lpy & 7 (z,y) < 0 < 74 (z,y) where

1 1
_ = lim - - = lim — - :
7 (@ y) =lm o (lo+ eyl = llll), 74 (2,9) = Tm 2 (lz + tyll - =)
The following lemma is useful:

LemMma 1. If (X, (,...,*)) is a 2k-inner product space then the 2k-orthogo-
nality is equivalent with Birkhoff orthogonality.

Proof. If z L g y then applying Proposition 5 it results that
0<7(2,9) S0 < 71 (z,y)
which implies
T(z,y) =7-(2,y) =74 (z,9) =0
and then z Lyt y. Conversely, if z L9, ¥ and = # 0 then

(z,...,2,9)
T (2,y) =74 (T,y) = ——p—7 > =0
“-T”z]c

and applying Proposition 5 we have the conclusion. a

This result has an important consequence. Thus, applying Ex. 24 from
(3, V. 66] it results that z Lg; y is equivalent with y Lo z if and only if
Il - l|l2k is generated by an usual inner product. For example, this is the case
of simple 2k-inner products, see Remark 1 part (iii) or Remark 2 part (ii).

DEFINITION 5. Given a subset Y C (X, (-,...,)), the set Y12 = {2 € X;
z Lo y for all y € Y} is called the 2k-orthogonal complement of Y.

Remark that YNY 12 = {0} and if \ € Rand z € Y12 then Az € Y12
showing that Y12 is a linear subspace. However, from Proposition 4, X is
smooth and applying Ex. 26 from [3, V. 66] it results that Y2+ is a linear
subspace.

The following orthogonal decomposition theorem holds.

PROPOSITION 6. Let Y be a closed linear subspace in a complete 2k-inner
product space (X, (-,...,)). Then, for z € X there exists a unique y € Y
and z € Y12* such that z = y + z.

Proof. Ezistence. From uniform convexity it follows that X is reflexive ({11,
p. 368]), and thus there exists a projection of z on Y, i.e., an element y € Y
such that

llz = yllok < llz —y [|2x
for all ' € Y. Denoting z = z — y we have the required relation.
Now, we prove that z € Y12, For y € Y we have
Iz + 2 llak = llz — (y = M) llaw 2 1z — yllze = llzll2x
for all real A and then z Lg ¢'. Applying Lemma 1 we obtain z € Y12+,
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Unicity. The above y is in Py (z), where Py (z) denotes the set of best
approximation elements in Y referring to z. Since X is uniformly convex it
results that X is strictly convex and then Py (z) contains a unique element

([L1, p. 110]). =

In the following we obtain some results in the spirit of [10], which appear
as a counterpart of the above results.

Let a € X\{0} and denote by X (a) the linear subspace generated by a.
Let us consider the mapping

e X X, pra(a) = (B 00)

||al 2%k
It follows that:
PROPOSITION 7.

(i) pre is independent of the choice of ain X (a) i.e. for A € R we have
PTre = PTa-
(ii) prq is a projection onto X (a).
(i1i) For arbitrary x € X, a is 2k-orthogonal to z — pryz and
flpra (2) 2k < |2 ll2%-
Proof. The proof is as follows.
(i) We observe that

(Aa,...,Aa,z) A (a,... a,2)

Praa (z) = a= a=prq(z).
: [ReAE: A% lali3k *
(ii) We note that pr, is onto because pr, (a) = a. Obviously, pr, is linear
and:
a,...,a,prq(z a,...,a)(a,...,a,x
p’r‘a(pra(w))=( a( ))G,Z( )( )a:p'ra(z).

a3 llal2

(iii) We remark that

(ay...,a,2 —pre(z)) = (a,...,a,z) — (a,...,a,pre (z))

—(a am)_(a,...,a)(a,...,a,x)_o
yreey Uy =
llalizk
and
l(a,...,a,z)||lallzx |(a,...,a,2)]|
lpra () ll2x = = —
lall3f lali3r
llallar~" |1zl 2
< —HQ:HT = |lzl|2x,
2k

and the proposition is proved. =
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4. The Riesz property

Let us denote by X* the usual dual of X, that is, the space of linear
continuous functionals f : X — R. Fix an element y € X and consider the
functional f: X - R, f (z) := (z,y,...,y). It follows that f € X* with

If (@)1 < Yellaxliyli3i ™" for allz € X,

hence
LA < llyli3E".
Also,
1 llllze > f (v) = llwli3E,
so that

171 =yl 2

Conversely, we shall show that any f € X* has the above form if X is
complete, obtaining the following generalization of the Riesz representation
theorem:

THEOREM 3. If (X, (+,...,-)) is a complete 2k-inner product space and f €
X* then there ezists an element y € X such that f (z) = (z,vy,...,y) for all
z € X and |If]l = llyli3e ™.

Proof If f =0 then y = 0. If f # 0 let g € X with f (zo) # 0. Applying
the Proposition 6 for o and Y = Ker (f) which is a closed linear subspace
of X, there is a unique yo € Ker (f) and a unique 2zp € Ker (f)J‘”c such
that g = yo + 2¢. It results that 29 & Ker (f).

Let A € R with
2\2k-1 _ [ (z0)

I

and y = Azp. Because f (z) z0 — f (20) z € Ker (f) for all z € X we have

zo Lok (f(z) 20 — f(20) 2),
that is,
(f(z)z0— f(20)Z,20,..-,20) =0
which implies

f (=0)

f(z)= W(w,zo,...,zo) =X*"1(z 2,...,20)
2k

= (z, A20,...,A20) = (2,9,...,¥)
forallze X. u

Finally, we shall prove the theorem of unicity for the representation ele-
ment.
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THEOREM 4. Let (X,(-,...,-)) be a complete 2k-inner product space and
f € X*\ {0}. Then there ezists an unique u € X with ||ullax = 1 such that
f @)= fli(z,u,...,u) forallz € X.

Proof. Eristence. As above, there exists a zp € Ker (f)2*\ {0} such that

f(z)_f(zo) (:z: w 2 )

~ Nzollzk \7 Nlzollax” " ll2oll2e

for all x € X and

_ f(20)
“f” - ||Z0”2k'
With i
_( f(20) -
2= (en)
we get

_ flzo) (20 A
r@ =1 (o it )

= I (2, 2 2 ) = @),

llzoll2” " llzollx
where u = "%‘ﬁ; Obviously |ull2x = 1.

Unicity. We have f(u) = ||f||- Since (X, (,)) is strictly convex and u
satisfy the last relations, by the Krein theorem ({11, p. 110}), it follows that
4 is unique. m
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