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Riemann-Hilbert type problems with an additional multiplicative invo-
lution in commutative Leibniz algebras with logarithms are examined in 
PR[13]. Results obtained there can be applied not only to problems with a 
transformation of argument but also to problems with the conjugation (in 
the complex sense). 

In the present paper there are considered similar problems in several 
variables with Riemann-Hilbert condition posed on each variable separately. 
For instance, these problems correspond in the classical case to problems for 
polyanalytic functions on polydiscs (cf. HD[1], Ms[l]). 

In order to find solutions to a generalized Riemann-Hilbert problem, 
we consider algebras with logarithms induced by a linear operator D and 
with an involution S. In commutative algebras solutions will be obtained in a 
similar manner as in the classical case (cf. Example 2.1). In noncommutative 
algebras we shall need some additional assumptions and some modifications 
of considerations used in the commutative case. We should point out that 
logarithmic and antilogarithmic mappings are non-linear. 

The next step is to consider such problems with an additional involution 
which, by assumption, is multiplicative. This involution may correspond in 
the classical case to an involutive transformation of argument and/or to the 
conjugation in the complex sense: χ —> χ (cf. PR[13], Examples 2.2, 2.3). 

In order to consider multidimensional problems, we shall generalize prob-
lems mentioned above to a Cartesian product of a (finite) number of algebras 
with logarithms and involutions. 

1. Preliminaries 
Let X be a linear space over a field F of scalars of the characteristic zero. 

Recall that L(X) is the set of all linear operators with domains and ranges 
in X and L0(X) = {A e L(X) : dom A = X}. 

If X is an algebra over F with a D E L(X) such that x, y E dom D implies 
xy,yx € dom D, then we shall write D € A(X). The set of all commutative 
algebras belonging to A(X) will be denoted by A(X). If D G A(X) then 

ÍD(x,y) = D(xy) - cD[xDy + [Dx)y] for x,y e dom D, 

where cjj is a scalar dependent on D only. Clearly, f o is a bilinear (i.e. 
linear in each variable) form which is symmetric when X is commutative, i.e. 
when D € A(X). This form is called a non-Leibniz component. Non-Leibniz 
components have been introduced for right invertible operators D ζ A(X) 
(cf. PR[6], Section 6.1). If D 6 A(X) then the product rule in X can be 
written as follows: 

D(xy) = cD[xDy + (Dx)y} +fD(x,y) for x,y€domD. 
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If D G A(X) is right invertitile then the algebra X is said to be a D-algebra. 
We shall consider in A(X) the following sets: 

• the set of all multiplicative mappings (not necessarily linear) with 
domains and ranges in X: M(X) = {A : dom A C X, A(xy) = A(x)A(y) 
for x,y G dom A}; 

• the set I(X) of all invertible elements belonging to X; 
• the set R(X) of all right invertible operators belonging to L(X); 
• the set TZD = {R E LQ(X) : DR = 1} of all right inverses to a 

D G R(X); 
• t h e s e t Td — {F G L0(X) : F2 = F, FX = ker D a n d 3 R e n O FR = 

0} of all initial operators for a D G R(X)', 
• the set 1{X) of all invertible operators belonging to L(X). 

Clearly, if ker D φ {0} then the operator D is right invertible, but not 
invertible. Here the invertibility of an operator A G L(X) means that the 
equation Ax — y has a unique solution for every y E X. Elements of the 
kernel of a D G R{X) are said to be constants. If D G 1{X) then Fp — {0} 
and Κ D — {-D-1}. We also have dom D = RX φ ker D independently of the 
choice of an K D (cf. PR[6]). 

It is well-known that F is an initial operator for a D G R{X) if and only 
if there is an R G TZD such that F = I — RD on dom D. Moreover, if F' is 
any projection onto ker D then F' is an initial operator for D corresponding 
to the right inverse R' — R — F'R independently of the choice of an R G TZd 
(cf. PR[6]). 

Suppose that D G A(X). Let ΩΓ,Ω; : dom D —• 2dom D be multifunc-
tions defined as follows: 

Clru = {x G dom D : Du = uDx\, 
(1.1) ) ; 

= {χ G dom D : Du = (Dx)u} 
for u G dom D . The equations 

^ Du = uDx for (u, x) G graph ΩΓ , 

Du = (Dx)u for (u,x) G graph Ω; 

are said to be the right and left basic equations, respectively. Clearly, 

Ω~1χ = {u G dom D : Du = uDx}, Ω ^ χ = {ti£ dom D : Du = (Dx)u} 
for χ G dom D. The multifunctions Ω^,Ω; are well-defined and dom ΩΓ Π 
dom Ω; D ker D. 

Suppose that ( u r , x r ) G graph Ω;, (ui,xi) G graph ClT, Lr,Li are se-
lectors of ΩΓ, Ω/, respectively, and Er,E¡ are selectors of Ω"1, Ω;""1, re-
spectively. By definitions, Lrur G dom Ω"1, ErxT G dom ΩΓ, L¡u¡ G 
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dom Ωζ
-1, Ε[Χ[ E dom Ω; and the following equations are satisfied: 

Dur = uTDLrur, DErxr = (Erxr)Dxr; 
Dui = (DLiui)ui, DEixi = (Dxi)(E¡xi). 

Any invertible selector Lr of ΩΓ is said to be a right logarithmic mapping 
and its inverse ET — Lr is said to be a right antilogarithmic mapping. If 
(•ur,xr) G graph ΩΓ and Lr is an invertible selector of ΩΓ then the element 
Lrur is said to be a right logarithm of ur and Erxr is said to be a right 
antilogarithm of xT. By (7[ΩΓ] we denote the set of all pairs (L r ,E r ) , where 
Lr is an invertible selector of ΩΓ and ET = L~l. Respectively, any invertible 
selector L¡ of Ω/ is said to be a left logarithmic mapping and its inverse 
Ει = L f 1 is said to be a left antilogarithmic mapping. If (u¡,x¡) E graph Ω; 
and Li is an invertible selector of Ω/ then the element Liu is said to be a left 
logarithm of u¡ and E¡x¡ is said to be a left antilogarithm of x¡. By £?[Ω;] we 
denote the set of all pairs (L¡, Ει), where L; is an invertible selector of Ω; 
and Ει — Lf1. 

If D E A(X) then ΩΓ = Ω; and we write ΩΓ = Ω and Lr = L¡ = L, 
Er = El = E, (L,E ) G G [Ω]. Selectors L,E of Ω and Ω - 1 are said to 
be logarithmic and antilogarithmic mappings, respectively. For any (u, χ) E 

elements Lu, Ex are said to be logarithm of u and antilogarithm of x, 
respectively (cf. PR[8]). 

Clearly, by definition, for all (L r ,E r ) G ί?[ΩΓ], ( u r , x r ) C graph ΩΓ, 
(Li, Ει) Ε (m, χι) E graph Ω; we have 

(1.3) ErLrur = ur, LrErxr — xr; EiLiui = ui, L¡E¡xi = x¡; 
(1.4) DETxr = (ErxT)DxT, Dur = urDLrur·, 

DEixi = (Dxi)(Eixi) , Dut = (DLtui)ui. 
A right (left) logarithm of zero is not defined. If (L r , Er) E (Li,E¡) E 
0[Ωι] then Lr(kevD \ {0}) C kerL>, Er(keiD) C ker D, Lj(kerD \ {0}) C 
kerD, Ei(ker D) C kerD. In particular, Er(0),Et(0) € kerD. 

If D E R{X) then logarithms and antilogarithms are uniquely deter-
mined up to a constant. 

If D E A(X) and if D satisfies the Leibniz condition: D(xy) — xDy + 
(Dx)y for x,y E dom D then X is said to be a Leibniz algebra. 

Let D E A(X) and let (L,E ) E G [Ω], A logarithmic mapping L is said 
to be of the exponential type if L(uv) = Lu + Lv for u,v E dom Ω. If L is of 
the exponential type then E(x + y) — (Ex)(Ey) for x,y E dom Ω. We have 
proved that a logarithmic mapping L is of the exponential type if and only 
if X is a Leibniz commutative algebra (cf. PR[8])). In Leibniz commutative 
algebras with D E R(X) a necessary and sufficient conditions for u E dom Ω 
is that u E I{X) (cf. PR[8]). 
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By Lgr(£)), Lgi(D), Lg(Z>) we denote the classes of these algebras with 
D G R(X) and with unit e G dom Ω for which there exist invertible selectors 
of ΩΓ, Ω/, Ω, respectively, i.e. there exist ( L r , Er) 6 (?[ΩΓ], (Li, Ει) G G(üi), 

respectively. 

In the sequel we shall consider multidimensional Leibniz algebras, i.e. a 
Cartesian product of finite number of Leibniz algebras with logarithms. 

Suppose then that we are given η commutative algebras X j (over the 
field F) with Dj G R(Xj) and with units ej G Xj and multifunctions Ω^ 
( j = 1 , . . . , n ) . We assume that X j G L j ( D j ) , ( L j , E j ) G and ej G 
dom Ω.,· (j = 1 , . . . , n). Consider the Cartesian product 

Χ = X 1 x . . . χ Xn 

with the coordinatewise addition and multiplications of elements, multipli-
cation of elements by scalars and coordinatewise operations of all mappings 
acting on X j , i.e. for all χ = ( x u . . . , xn), y = ( y u . . . , yn), t = { h , . . . , t n ) G 
F 1 , Tj G L{Xj) ( j = 1 , . . . , η) we have 

( 1 . 5 ) x + y = (xi + y i , . . . . , x n + yn), xy = (xiVi,· • • ,xnyn), 

(1.6) tx = ( t 1 x 1 , . . . , t n x n ) , 

Tx = {T\X\,..., T n x n ) whenever Xj G dom T j . 

Clearly, X has the unit e. Namely, e = ( e i , . . . , en). 
Consequently, we shall write 

(1.7) I ( X ) = ( Jp fx ) , . . . , I ( X n ) ) , Ω = (Ωχ,... ,Ω„), 
(L,E) = ( ( L 1 , E 1 , . . . , ( L n , E n ) ) , G[n] = {G[n1],...ìG[Vn]), 

L ( D ) = ( L 1 ( D 1 ) , . . . , L n ( D n ) ) , A ( X ) = ( A ( X 1 ) , . . . , A ( X n ) ) . 

Similar denotations are admitted in non-commutative cases. Namely, 

(1.8)(L r ,£ r) = ( ( L r l , E r l , . . . , ( L r n , E r n ) ) , (?[ΩΓ] = (θ[ΩΓ ΐ ] , . . . , 0[ΩΓη]), 
Lr(D) = (L r l (D i ) , . . . , L r n ( D n ) ) , A ( X ) = { A ( X 1 ) , . . . , A ( X n ) ) . 

[Lh Ει) = ( ( L n , E l u . . . , (Lin, Ein)), = (G[nn},..., G[fìIn]), 

Ll(D) = { L ì l { D 1 ) , . . . , L l n { D n ) ) . 

If Dj G A (Xj) (j = 1 , . . . , n) satisfy the Leibniz condition then D G A(X) 
also satisfy that condition and X is said to be a Leibniz algebra (of dimen-
sion n). 

If in order to prove some statement it is enough to prove it for an arbi-
trarily fixed j ( j = 1 , . . . , n), we shall omit that proof and we refer either to 
PR[8] (Chapter 14) or to PR[13], respectively, i.e. to one-dimensional case: 
n = 1. 
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We shall denote the identity operators in all spaces X\,..., Xn by the 
same letter I, since it does not lead here to any misunderstanding. 

2. Commutative case 
Here and in the sequel we shall consider an n-dimensional commutative 

Leibniz algebra X E L(D) (cf. (1 .5 ) , (1 .6) , (1 .7 ) ) . 

THEOREM 2 .1 (cf. P R [ 3 ] for η = 1). Let η e Ν and let j = 1 ,.,.,η. 
Let Xj be linear spaces over an algebraically closed field F with involutions 
Sj E Lo(Xj) (i-e. Sj = I, Sj φ I)· Then for an arbitrarily fixed 1 < j < η 
Pf = \{I + Sj) and Pj = |(7 — Sj) are disjoint projectors giving partition 
of unity: (P^ = P f ; Pf P~ = P~Pf = 0 and Pf + Pj = I. Moreover, 
Pj+-P~ = Sj and SjPf = PfSj = ±Pp. So that, if we write Xf = PfXj, 
x^ = PfXj for Xj E Xj, then we have 

Xj = Xf ® XJ\ xf £ X f ; Sjxf = x f ; SjxJ = -xj for Xj E Xj. 

COROLLARY 2.1 . Let all assumptions of Theorem 2 .1 be satisfied. Let 1 < 
j < η be arbitrarily fixed. If Uj E Xj, uf = Pfuj and 

(2.1) uf — uj = Vj, where Vj E Xj, 

then Uj = Svj. In particular, if υ j = 0 then Uj = 0. 

LEMMA 2.1 (cf. P R [ 8 ] for Η = 1) . Let η Ε Ν. Let D E A ( X ) , where 
X E Lg(£)) is an τι-dimensional Leibniz algebra with unit e and with an 
involution S = (Si,...,Sn) E L0(X). Let (L, E) E G [Ω]. Then the follow-
ing conditions are equivalent: 

(i) Lu± E X± for all u E dom Ω; 
(ii) Εν± E for all ν E dom Ω - 1 ; 

(iii) P±Lu± = ±Lu^1 for all u E dom Ω; 
(iv) P±Ev± = ±Ev± for all ν E dom Ω - 1 . 
Let η G Ν be arbitrarily fixed. We admit the following condition: 

(A)N Let F be algebraically closed. Let D E A(X), where Χ E Lg (D) 
is an n-dimensional Leibniz algebra with unit e and with an involution 
S E L0(X), (L,E) Ε σ[Ω] and 
(2.2) L(X+ Π dom Ω) C X + , L{X~ Π dom Ω) C X~. 
In particular, (2.2) implies that X ¿ Π dom Ω C dom Ω - 1 . 

LEMMA 2.2 (cf. P R [ 8 ] for η = 1) . Suppose that Condition (A)N is satisfied. 
Then 

(i) uv E whenever u, ν Ε Χ±Γ\ dom Ω; 
(ii) (u*)" 1 G I ( X ± ) whenever u* E I(X±). 
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On the other hand, we have 

PROPOSITION 2.1 (cf. PR[8] for η = 1 ) . Suppose that X is a commutative al-
gebra over a field F with a multiplicative involution S G LQ{X, i.e. S(xy) = 
(.Sx)(Sy) for x,y G X. Then x±y± G X+, x+y',x'y+ G X~ for all 
x,y G X. 

PROPOSITION 2.2 (cf. PR[8] for η = 1). Suppose that Condition (A)n is 
satisfied. Then the involution S is not multiplicative. 

Proposition 2.2 is important, since there are several examples of functio-
nal-differential equations with a multiplicative involution which can be also 
solved by means of algebraic methods (cf. PR[4], PR[5], PR[6]). Namely, 
any transformation of argument is a multiplicative operation (cf. also PR[8], 
PR[9], PR[12], PR[13]). However, by Proposition 2.2, any involution under 
consideration cannot be multiplicative if Condition (A)n is assumed. 

Homogeneous n-dimensional Riemann-Hilbert problem. Suppose that 
Condition (A)„ is satisfied. Find an x0 = (χ0χ,... ,x0n) G dom Ω such 
that 

(2.3) XQ" = ÜXQ , where a G dom Ω is given. 

T H E O R E M 2 . 2 (cf. P R [ 8 ] for η = 1 ) . Suppose that Condition ( A ) „ is satis-
fied. If α φ àie then the homogeneous Riemann-Hilbert problem (2.3) has a 
solution 

(2.4) x0 = E(P+La) + E{-P~La) and = E(±P±La) 6 I{X). 

If a = ±e then the only solution of (2.3) is XQ = 0. 

Clearly, the solution (2.4) is dependent on the choice of selectors L. 

COROLLARY 2 . 2 (cf. P R [ 8 ] for η = 1 ) . If all assumptions of Theorem 2 . 2 are 
satisfied then the solution to the problem (2.3) can be written in the form: 
x0 = (a + e)E(—P~ La). 

Consider now the set of all elements from Y C X having k-th roots: 

Ik(Y) - {x £ Y : 3 v e j ( y ) yk = x} (k e Ν). 

Here η € Ν is fixed (for η = 1 cf. PR[8]). If χ G Ik(Y) and yk = χ then we 
write y = x1/k (k G Ν). By definition, χ G I(Y). 

COROLLARY 2 . 3 (cf. P R [ 8 ] for η — 1 ) . Suppose that all assumptions of 
Theorem 2.2 are satisfied and a G Ì2(dom Ω). Then the solution to the 
problem (2.3) can be written in the form: xq = (o5 + )[£?(5La)]ä. 
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Nonhomogeneous τι-dimensional Riemann-Hilbert problem. Suppose 
that Condition (A)„ is satisfied. Find an χ 6 dom Ω such that 

(2.5) x+ = ax" + b, where a e dom Ω, b € X are given. 

THEOREM 2.3 (cf. PR[8] for η = 1). Suppose that Condition (A)n is satis-
fied. If α φ ±e and xo is a solution of the homogeneous Riemann-Hilbert 
problem (2.3) then the nonhomogeneous Riemann-Hilbert problem (2.5) has 
a solution 

(2.6) χ = x0 + ^(xoSy0 + yoSxo), 

where yo = a~lbE{P~ La) = a~lb(P~xo)-1. 

If a = e then a solution to (2.5) is χ — Sb. If a = — e then a solution to 
(2.5) is χ = b. 

COROLLARY 2 . 4 (cf. P R [ 8 ] for η = 1 ) . Suppose that Condition ( A ) N is 
satisfied. If α φ ±e and xi,x2 are two solutions to the nonhomogeneous 
Riemann-Hilbert problem (2.5) then their difference χ = x\ — X2 is a solu-
tion to the homogeneous problem ( 2 . 3 ) . If a = e then the problem ( 2 . 5 ) has 
a unique solution χ = Sb. If a = —E then (2.5) has a unique solution χ = b. 

COROLLARY 2 .5 (cf. P R [ 1 3 ] for η = 1 ) . Suppose that Condition ( A ) N is 
satisfied and Α Φ ±e , XQ is a solution of the homogeneous Riemann-Hilbert 
problem (2.3) then the nonhomogeneous Riemann-Hilbert problem (2.5) has 
solutions of the form 

(2.7) χ = xo + S(xoyo), where yo — a~1bE(P~ La) — a~1b(P~xo)-1· 

If a = e then the problem (2.5) has a unique solution χ = Sb. If a = —E 
then (2.5) has a unique solution χ = b. 

EXAMPLE 2 . 1 . Let Η € Ν. Let j = 1 , . . . ,N. Let I Ì J C C be domains with 
the boundaries dfl j = Tj which are pairwise disjoint (for η > 1) closed 
regular arcs, i.e Tj = {z = zj(t) : aj < t < ßj, Zj(aj) — Zj(ßj)}, where 
the functions Zj € C1(aj, ßj), are one-to-one, z'j(t) φ 0 for t € (aj,ßj) and 
lmii-^.+o z'j(t) = hmt^ßj-o z'5{t) φ 0. 

We assume that the system Γ = ( Γ ι , . . . , ^ ) is oriented (cf. for instance, 
PR[5]). It means that the plane is divided into components Ωο, Ωχ,. . . , Ω η 

and we associate the sign "-" with the component Ωο containing the point 
oo, and the sign " + " with the components having a common boundary with 
Ωο· Next, we associate the sign "-" with the components having a common 
boundary with components having the sign " + " , but not with Ωο, and so 
on. Hence on the left of each of these arcs lies a domain with the sign " + " , 
and on the right, a domain with the sign "-". If η = 1 then Ωο = C \ Ωχ 
(cf. PR[8], Chapter 14; PR[13]). 
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We have to find a vector function Φ = ( Φ ι , . . . ,Φ η ) with Φ-, piecewise 
analytic in the domains Ω+ = Ω.,· and SÌJ = C\flj, bounded at infinity and 
such that their boundary values Φ + and Φ~ satisfy the following condition 
on the oriented system Γ: 

(2.8) φ+(ί) = σ,·(ί)φ-(ί) + ^·(ί) for teTj, (j = 1,... ,n) 

where functions gj, Gj are given. The solution of the problem is well-known 
(for η — 1 cf. for instance, Michlin Mi[l], Pogorzelski P[l], Meister Me[l], 
Wegert Wg[l],[2], Wendland Wn[l]; for η > 1, cf. for instance, BD[1], Ms[l]). 
In order to solve (2.8), we have to use properties of logarithmic and expo-
nential functions (cf. Anosov and Bolibruch AB[1]) and of singular integral 
operators Sj (j — l , . . . , n ) defined by the Cauchy principal value of an 
integral, namely, 

(2.9) ( S j v X t j ) = ¿ lim J - ^ U r ^ 
TCI ε—»0 J Τ — LA r.Aí^eC : |z—tj |<ε} J 

= Λ \ ^ - d r (tj G Tj) (j = 1,..., n). 
7τι J τ — tj 

In the case, when gj,Gj belong to the space H,1(Tj) of functions satisfying 
the Holder condition on T j with an exponent μ, 0 < μ < 1, (j = 1 , . . . ,π), 
the singular integral operators Sj defined by (2.9) are involutions in the 
space Xj = Ημ(Τ^): Sj = I on Xj. Thus there are disjoint projectors Pj~ 
and P~ giving the partition of unit and such that Φ+ = Pj~Xj, Φ J = 
P^Xj for an Xj G Xj ( j = 1 , . . . , n ) . Clearly, Xj are also commutative 
algebras over C with the pointwise multiplication. It not difficult to verify 
that the operators Sj defined by (2.9), the operators Dj = gj- and the 
usual logarithmic functions satisfy Condition (A)n with S = (Si,...,Sn) 
and D = (Di,..., Dn). Thus χ — Φ is to be found if we apply logarithms 
to the homogeneous problem (2.8) (i.e. with gj = 0 for j = 1 , . . . , n). 

Then the non-homogeneous problem is solved by a use of the already 
found solution to the homogeneous problem (cf. Formula (2.7)). 

This problem can be also formulated and solved in the same manner if 
some of T j are oriented systems of finite sets of closed regular arcs. • 
N O T E 2.1. If X is a commutative Leibniz algebra for a D G L(X) then 
X is a Leibniz algebra for a D' = dD, where d G X \ {0} . Indeed, for all 
χ, y G dom D' = dom D we have 

D'(xy) = dD(xy) = d(xDy + yDx) = xdDy + ydDx = xD'y + yD'x. 

In particular, if D G R{X), R G 1Z& and g = Re G I(X), then X is a Leibniz 
algebra for Dn — gnD (η G Ν). If η = 1, then antilogarithms induced by 



638 D. P r z e w o r s k a - R o l e w i c z 

D' = gD are E'(Xg) = gx = E(XLg). Observe that in the classical case 
of the operator D = ^ and R = jJ in C[0,T] we have Dn = tn£. The 
corresponding logarithms are (up to an additive constant) Lx — lnx , as in 
the case of the operator D = ^ and antilogarithms are ctx (c G Μ). • 

Multidimensional Riemann-Hilbert problem with multiplicative involu-
tion. Suppose that Condition (A)n is satisfied, Tj G LQ(X) are multiplicative 
involutions with projectors QÎ giving the partition of unity ( j = 1 , . . . ,n), 
Τ — ( Τ ί , . . . ,T n ) and α(ί) = αο + αχί, where αο,αι ,ό G dom Ω are given. 
By definition, Τ is also a multiplicative involution. Find an a; £ dom Ω such 
that 

(2.10) x+ = a(T)x + b. 

We shall use the following theorem, different than results obtained before 
for equations with involutions (cf. PR[3], PR[5], PR[8], PR[12]). 

THEOREM 2.4 (cf. PR[13] for Η = 1). Suppose that Condition (A)n is sat-
isfied and X is A commutative algebra over F with unit e, Τ G LQ(X) is a 
multiplicative involution with projectors Q^ giving the partition of unity, 
a(t) — ao + a\t, where αο,αι G X are given and either Tak = ak or 
Tak =akT, k = (0,1). 

(i) If a(± 1) = αο ± oi G I(X) then the equation 

(2.11) a(T)x = y, yeX 

has a unique solution 

(2.12) x = (a2o- a\)-la{-T)y. 

(ii) If ao = ± o i and α (±1) = αο ± οχ G I(X), then a(T) = o ( ± l ) Q ± 

and all solutions of Equation (2.12) are of the form 

(2.13) χ = [ a ( ± l ) ] - 1 y + where x^ G X^ are arbitrary. 

COROLLARY 2.6 (cf. PR[13] for η = 1). Theorem 2.4 holds without the as-
sumption that Τ is multiplicative i f , in particular, ao, ai are scalar multiples 
of unit e. 

NOTE 2.2. Suppose that the involution Τ appearing in Theorem 2.4 satisfies 
the condition: Tak —akT G J (k = 0 ,1) , where J is a proper two-sided ideal 
in the algebra X . Then we may apply Theorem 2.4 to the quotient algebra 
X/J and we obtain similar results up to an additive component belonging 
to J (cf. PR[5], PR[13] for η = 1). • 

THEOREM 2.5 (cf. PR[13] for η = 1). Suppose that Condition (A)N is satisfied 
and Α Φ ±e , Tj G LQ(X) are multiplicative involutions with projectors Q^ 
giving the partition of unity ( j = 1,..., η), Τ = (Γι,..., Tn), a(t) — οο+οιί, 
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where αο>θι £ dom Ω are given and either Tak = ak or Tak = akT (k = 

0,1). Let 

(2.14) x0 = E(P+La0) + E(-P~La0), 

a'0 = e, = ai(e + oo) _ 1 ) , α ' ( ί ) = a ( i ) — el — α'χί, 

(2.15) ft'^e + aö1)*». 

Ifa'(t) satisfies all assumptions of Theorem 2.4, í/ien f/ie problem (2.10) /ias 
solutions of the form: 

(2.16) χ = a'(T)x~ + b' + [(oo - e)2 - (οι - α ί ) 2 ] - 2α ' ( -Γ ) (6 ' - b). 

EXAMPLE 2.2 (cf. PR[13] for η = 1). Let Γ,· = {z : |z| = r,·}, (r¿ > 0) ( j = 

1,..., n). Suppose that X and S are defined as in Example 2.1. Consider 
the following problem: Find a vector function Φ = (Φ ι , . . . ,Φ η ) with Φ̂  
piecewise analytic in the domains Ω * = Ω j and Ω~ = C \ Ω^, bounded at 
infinity and such that their boundary values Φ* and Φ" satisfy the following 
condition: 

(2.17) Φ+(ί ) = σ , · 0 ( ί )Φ- ( ί ) + σ , · 1 ( ί ) φ ; ( ^ ( ΐ ) ) + σ^(ΐ )Φ7(/ ι , · ( ί ) ) + 5,·(ί) 

for t 6 Tj, ( j = 1 . . ,n), 

where functions gj,hj,Gkj {k — 0,1,2; j — 1 , . . . ,n) are given, hj(Tj) C Tj, 
hjihjit)) = t, h'^t) φ 0 for t e Tj, Gk(hj(t)) = Gk(t) (k = 0 , 1 , 2 = 
1 n). Write: (Tx)(t) = (xiih^t),..., xn(hn(t))) for χ 6 X,t€ Γ ,· ( j = 

1...., n. Clearly, Γ is a multiplicative involution and TGk = Gk (k = 0,1,2). 
Thus we can apply Theorem 2.5 in order to solve the problem (2.17). 

In particular, if for a j we have Tj = M (i.e. rj — oo), hj(t) = —t for 
t G Tj , then the functions Gjk are even. Indeed, for k = 0,1,2 we have 
Gjk(t) = (TGjk)(t) = Gjk(-t). m 

EXAMPLE 2.3 (cf. PR[13] for η = 1). Let j = 1,... ,n. Let Γ~ = Γ,·, i.e. 
~z e T j whenever ζ e Tj. Suppose that X and S are defined as in Example 
2.1. Consider the following problem: Find a vector function Φ = (Φ1 ; . . . , Φη ) 
with Φ ι , . . . ,Φ η piecewise analytic in the domains Ω ^ = Ω^ and Ω~ = 
C\Ctj, bounded at infinity and such that their boundary values Φ+ and Φ" 
satisfy the following condition: 

(2.18) Φ+(ί ) = G j o m j ( t ) + G j ^ ^ + G j ^ ç f W + gj i t ) 

for t Ε Τ j, ( j = l , . . . , n ) , 

where functions gj,Gjk (k = 0,1,2) are given, Gjk = Gjk (k = 0,1,2). 
Clearly, the functions Gjk are real. Write: (Tx ) = χ = ( x j , . . . , x^) for 
χ E X. Clearly, Τ is a multiplicative involution and TGjk = Gjk = GJk 
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(k = 0,1,2). Thus we can apply Theorem 2.5 in order to solve the problem 
(2 .18) . • 

3. Noncommutative case 
In this section instead of Condition (A)n we shall admit either the con-

dition 

(A)^, where η € Ν (cf. PR[8], PR[13] for π = 1). Let F be algebraically 
closed. Let D G A(X). Suppose that X G Lgi (D) is a Leibniz algebra with 
unit e and with an involution S G L0(X), uv G X± whenever u, υ G X± 

and DS = SD on dorn D, (L¡,Ei) G G[fìi] and 

(3.1) Li(X+ G dorn Ω,) C Χ+, Lt(X~ η dom Ω,) C Χ~. 

or the condition 

(A)£, where η G Ν (cf. PR[8], PR[13] for η = 1). Let F be algebraically 
closed. Let D G Α (Χ). Suppose that X G Lg T(D) is a Leibniz algebra with 
unit e and with an involution S G LQ(X), UV G whenever u,v G X ± 

and DS = SD on dom D, (LR, ER) G G[fir] and 

(3.2) Lr(X
+ η dom ΩΡ) C L r ( X - η dom ΩΡ) C X~. 

In particular, (3.1) implies that X ± f l d o m Cl¡ C dom Ω(
_1, (3.2) implies that 

X ± Π dom ΩΓ C dom Ω"1 . 

N O T E 3 . 1 (cf. P R [ 1 3 ] for η = 1). Let either Condition (A)^ or Condition 
(A)£ be satisfied. The assumed condition that uv G X± whenever u, ν G 

X± 

in the commutative case is proved by Lemma 2.2. It is so, because in that case 
logarithms are of the exponential type. Without this property, we cannot 
prove a lemma corresponding to Lemma 2.2. 

We should point out also that here, in the noncommutative algebras, 
we shall need essentially the property that D and S commute each with 
another. Thus Condition (A)n is not a particular case of Conditions (A)^ 
and (A);. . 
LEMMA 3.1 (cf. PR[8], PR[13] for η = 1). Let D G A(X). Suppose that X G 
Lgi(Z)) is a Leibniz algebra with unit e and with an involution S € LQ(X) 
and (Li, Ει) G <3[Ω;] (X G Lg r (D) and (Lr,Er) G (?[ΩΓ], respectively). 
Then the following conditions are equivalent for u¡ G dom Ω;, uT G dom ΩΓ, 
vi G dom Ω;-1, vr G dom Ω" 1 : 

(i) Liuf C X± (Lruf C X^, respectively); 
(ii) Eivf- C X± (Ervf C X±, respectively.); 

(iii) P^Liuf1 — úiLiuf (P^Lruf = ±Lruf, respectively); 
(iv) P±Eivf- = ±Eivf (P±Ervf = ±Ervf, respectively). 
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Homogeneous τι-dimensional Riemann-Hilbert problem. Let either Con-
dition (A)^ or Condition (A)£ be satisfied. Find an x0 = (xoii • · · > x0n) G X 

such that 

(3.3) = axçj, ( j = 1 , . . . , n), 

where a G I{X) Π dom Ω;. (a Ε I(X) Π dom ΩΓ, respectively). 

THEOREM 3.1 (cf. PR[8], PR[13] for η = 1). Suppose that Condition (A)^ 

(Condition (A)^, respectively) holds. Then the Riemann-Hilbert problem 

(3.3) has a solution if and only if there a u such that 

(3.4) u+a — au~ = Da (au+—u~a = Da, respectively). 

If it is the case and D E R{X), then the solution, we are looking for, is 

(3.5) x0 = ElP+(Ru + z) + EiP~(Ru + z), where ζ E ker D 

(x0 = ErP+(Ru + z) + ErP (Ru + z), respectively). 

Moreover, = EiP±(Ru + z) € I(X), xf = ElP±(Ru + ζ) e I{X), 

respectively. 

THEOREM 3.2 (cf. PR[8], PR[13] for η — 1). Suppose that either Condition 

(A)[j or Condition ( A ) [ holds. If 

(3.6) a X ~ a _ 1 C X~ (a~1X+a C X+, respectively), 

then the Riemann-Hilbert problem (3.3) has a solution of the form (3.5), 
where 

(3.7) u = DLiP+a-a~l{DLiP~a)a\ 

(u = a(DLrP+a)a~1 - DLrPa, respectively). 

COROLLARY 3.1 (cf. PR[8], PR[13] for Η = 1). Suppose that all assumptions 

of Theorem 3.2 are satisfied. Then P~a € I(X) Π dom ΩΓ (P~a Ε I(X) Π 
dom Ω;, respectively) and 

u = DLiP+a + a~1[DLr(P~ a)~l]a 

(u = a(DLiP+a)a~1 + DLr(P~a)~1, respectively). 

Nonhomogeneous n-dimensional Riemann-Hilbert problem. Let either 
Condition (A)^ or Condition (A)^ be satisfied. Let a 6 I ( X ) Π dom Ω/, 
(a e I(X) Π dom ΩΓ, respectively). Find an χ — (χχ,..., xn) 6 X such that 

(3.8) χ* = ajX~ 4- bj, where bj E X, ( j = 1, . . . ,n). 

THEOREM 3.3 (cf. PR[8], PR[13] for η = 1). Suppose that all assumptions of 
Theorem 3.2 are satisfied, Α Φ ± e and XQ is a solution of the homogeneous 
problem (3.3). Then the nonhomogeneous τι-dimensional Riemann-Hilbert 
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problem (3.8) has a solution of the form 

(3.9) χ = x0 + ^[xoSyo + (Sxo)yo\, yo = {xo )-1α-1&. 

If either a — e or a — —e then (3.8) has a unique solution, namely χ = Sb 
or χ = b, respectively. 

COROLLARY 3.2 (cf. PR[8], PR[13] for η - 1. Suppose that either Condition 
(A)^ or Condition (A)£ is satisfied. If α φ ±e and χ',χ" are two solutions 
to the non-homogeneous τι-dimensional Riemann-Hilbert problem (3.8) then 
their difference χ = x' — x" is a solution to the homogeneous problem (3.3). 
If a — e then the problem (3.8) has a unique solution χ = Sb (cf. Corollary 
2A). If a = — e then (3.8) has a unique solution χ = b. 

COROLLARY 3.3 (cf. PR[8], PR[13] for η - I. Suppose that either Condition 
(A)' t or Condition (A)£ is satisfied. Then the involution S is not multiplica-
tive (cf. Proposition 2.2). 

The already obtained solutions to the Riemann-Hilbert problem can be 
used in order to solve linear equations with involutions in Leibniz algebras 
with logarithms. Namely, we have 

EXAMPLE 3 . 1 (cf. P R [ 1 3 ] for η = 1) . Suppose that either Condition (A)n 

or Condition (A)£ or Condition (A)^ is satisfied. Consider the equation: 

(3.10) (al + bS)x = y, where a,b,y ζ X. 

Since al + bS = a(P+ + P~) + b{P+ - P~) = (a + b)P+ + (a - b)P~, 
Equation (3.10) can be rewritten as follows 

(3 .11) (a + b)x+ + (a - b)x~ = y. 

If α = ±ò and a ± b € I(X) then solutions to this equations exist if and 
only if (a ± b)~ If it is the case, then x^ = (α ± 6) 1y + where 

G X ^ is arbitrary. 
Suppose now that (α + 6) _ 1(a — ò) € I (X) € dom Ω (dom ΩΓ, dom Ω/, 

respectively). Then Equation (3.11) can be written as 

x+ = (a + b)~1(a - + (a + ò)"1?/, 

i.e. we have a Riemann-Hilbert problem x+ = äx~+y with ä = (α+6)_1(ο— 
b) and b=(a + b)~ly. 

Solutions to Equation (3.10) have been obtained earlier in another way 
under other assumptions, for instance, that a, b commute (anticommute) 
with the involution 5 (cf. PR[3]-PR[5], PR[12], PR[13] for η = 1). 

Having already solved Equation (3.10), we can solve the equation 

(3.12) (al + bS + cT)x = y, where a,b,c,yEX, 



Multidimensional Riemann-Hilbert problems 643 

where Τ € Lo (X) is a multiplicative involution satisfying all assumptions of 
Theorem 2.5. • 

This method without any essential change can be applied to problems 
with the Hilbert transform, a singular integral with the Cauchy kernel on a 
curve closed at infinity (cf. PR[2]), also with the cotangent Hilbert transform 
in appropriate spaces of functions. 

The dependence of solutions on the choice of selectors has been examined 
in PR[8] for η = 1. 
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