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FIXED POINT THEOREMS USING DIAMETERS
OF LEVEL SETS AND THE NOTION OF R.G.I. MAPPING

Abstract. In this paper, we generalize and improve a recent result established by W.
A. Kirk and L. M. Saliga (see [3], Theorem 4.3, p. 149) by using a result of W. Walter (see
[4]). Indeed, We prove that the conclusions of Kirk-Saliga theorem are not only satisfied
but, moreover, they are equivalent for a wide class of contractive gauge functions. Our
main result contains also a new equivalent conclusion (see Property (4) in Theorem 2.2
below). As a consequence, we recapture (and improve the results of) a theorem proved by
M. Angrisani and M. Clavelli in [2]. Theorem 2.2 completes and improves the main result
of [1].

1. Introduction
In a recent paper (see [3], Theorem 4.3, p. 149), W. A. Kirk and
L. M. Saliga have proved the following theorem

THEOREM 1.1 ([3]). Let (M,d) be a complete metric space and suppose T :
M — M has bounded orbits and satisfies: there erists a < 1 such that

(K, S) d(Tz,Ty) < adiam(0O(z,y)) for all z,y € M.

Then we have:
(1) T has a unique fized point z € M, and limy_, 4o T*(z) = z for each
z€ M.
(2) lim. o+ diam(L.) = 0, and the mapping F : z + d(z,Tz) is an r.g.i..
(3) For each sequence {z,} C M; lim,d(z,,Tz,) =0 if and only if {z,}
converges to z.

Here, O(z,y) = O(z) U O(y), where O(z) := {z,Tz,T?z,...} for all
z,y € M;and L, := {x € M : F(z) < ¢} for all ¢ > 0. We recall (see
[2] and [3]) that a function G : M — R is said to be a regular-global-inf
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(rgi)at z € M if G(z) > infp(G) implies there exist ¢ > 0 such that
€ < G(z) —infpr(G) and a neighborhood N, of z such that G(y) > G(z) —¢
for each y € N,. If this condition holds for each z € M, then G is said to be
an r.g.i. on M. To prove Theorem 1.1, the authors have used the following
result of W. Walter (see [4]).

THEOREM 1.2 ([4]). Let (M, d) be a complete metric space and suppose T :
M — M has bounded orbits and satisfies the following condition:

(W) d(Tz,Ty) < ¢(diam(O(z,y))) for all z,y € M,

where ¢ is a contractive gauge function on M. This means that ¢ : RY — R*
is continuous, nondecreasing and satisfies ¢(s) < s for all s > 0. Then T
has a unique fized point z € M, and limy_, ;o T*(z) = z for each = € M.

A natural question was addressed by W.A. Kirk and L.M Saliga in [3].
Does the conclusion of Theorem 1.1 remain valid under the weaker assump-
tion of Theorem 1.2 ? Another question may also be addressed: are the
conclusions of Theorem 1.1 equivalent?

The main goal of this paper is to discuss these questions. The main con-
tribution is stated in Theorem 2.2, where we establish that the conclusions
of Theorem 1.1 are not only satisfied but, in fact, they are equivalent for
a wide class of contractive gauge functions. Moreover, we can add a new
equivalent property (see Property (4) in Theorem 2.2 below). Thus, our
result improves and generalizes Theorem 1.1. As a consequence, we recap-
ture (and improve the results of) a theorem proved by M. Angrisani and M.
Clavelli in [2]. This paper improves and completes also the main result of the
paper [1].

This paper is organized as follows. Section 2 contains the main result. In
Section 3, as application of the main result, we provide a result improving
and generalizing a theorem proved by M. Angrisani and M. Clavelli in [2].

2. Main result

2.1. Before stating the main result, we need to introduce some notations and
make some remarks. We note G the set of contractive gauge functions. We
denote G; the set of contractive gauge functions ¢ : Rt — R* for which there
exist a positive number 3 €]0,00] and an associated non-negative function
1 defined on [0, [ such that the two following properties are satisfied:

(P 1) lim¢—o 9(t) =0, and
(P2)Vte (0,8, Vs >0, s—¢(s) <t = s < Y(t).
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REMARK 2.1.1. Let ¢ be a contractive gauge function, then by a classical
result, it satisfies lim,, ¢™(s) = 0 for all s > 0.

REMARK 2.1.2. Let G, be the class of functions ¢ € G such that the mapping
6 :z— z—¢(z) from [0, +00[ onto [0, +00[ is strictly increasing. Let ¢ € G,
and let ¥ be the inverse of # on [0, +oo[. Then, it is easy to see that the
properties (P 1) and (P 2) are satisfied by the mappings ¢ and ¥ with
associated number § = oo. Thus the class G, is contained in the class G;.
Moreover, it is easy to see that this inclusion is strict.

We point out that the main result of the paper [1] consists in proving
that if the contractive gauge function ¢ belongs to the class G, then the
conclusions of Theorem 1.1 are true. The aim of this paper is to generalize
and complete the main result of [1] by proving the following theorem in which
we establish that the conclusions of Theorem 1.1 are satisfied and equivalent
and that they are equivalent to the fact that D : z — diam(O(z)) is an r.g.i.
mapping on M. More precisely, we have

THEOREM 2.2. Let (M, d) be a complete metric space and suppose T : M —
M has bounded orbits and satisfies the following condition:

(W) d(Tz,Ty) < ¢(diam(O(z,y))) for all z,y € M,
where ¢ € G1. Then the following assertions are satisfied and equivalent:

(1) T has a unique fized point z € M, and limy_, o T*(z) = z for each
T €EM.

(2) Ve > 0, the set L. is nonvoid, im,_ g+ diam(L.) = 0, and the mapping
F:zwd(z,Tz) is an r.g.i. on M.

(3) There exists a unique point z € M, such that, for each sequence {z,} C
M; lim, d(z,,Tz,) = 0 if and only if {z,} converges to z.

(4) The mapping D : z — diam(O(z)) is an r.g.1. on M.

In the proof of this theorem, we shall use the following lemma:

LEMMA 2.3. Let ¢ € G; and let § > 0 and v denote the associated function
defined on [0, B[ such that (P 1) and (P 2) are satisfied. Let (M,d) be a
complete metric space and suppose T : M — M has bounded orbits and
satisfies the condition:

(W) d(Tz,Ty) < ¢(diam(0(z,y))) for all z,y € M,
Suppose that T has a fixed point, say, z in M. Then z is unique and the
following property is satisfied,
(Q) Veel0,B8[Vue M, min{d(u,T(u)),d(u,z)} <e¢
= ¢ (diam(O(u) U {z})) < ¥ ().
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Proof. Let ¢ € G; and let ¥ denote the associated function defined on
[0, B[ such that (P 1) and (P 2) are satisfied. The general line of arguments
follows [1] and [3]. Let z be a fixed point of T Since ¢ is a gauge contractive
function, it is clear that z must be the unique fixed point of T. Let ¢ €]0, 8]
and let u € M such that min{d(u, T'(u)), d(u, z)} < €. Suppose, for example,
that d(u, z) < . Then since T'(z) = z,

d(u,Tu) < d(u,z) + d(T(u),T(2)) < € + ¢ (diam(O(u) U {z})).

To simplify the notations, we set 7 := diam(O(u) U {z}). We distinguish
two cases.

(a) diam(O(u) U {2}) = sup, d(T?(u), z). In this case let p > 0 be arbi-
trary and choose p so that sup, d(T%(u), 2) < d(T?(u),z) +p. Then if p = 0,
we have

diam(O(u) U {z}) < d(u,2)+ p
< €+ ¢ (diam(O(u) U {2})) + p,
from which we get 7 — ¢(7) < € + p. On the other hand, if p > 1,
diam(O(u) U {z}) < d(T?(u),T(2)) + p

< ¢ (diam(O(TP Y (u) U {2})) + p

< ¢ (diam(O(u) U {z})) + p.
Hence, we get 7—@(7) < p. Therefore, in the two cases, we obtain 7—¢(7) <
p + €, from which (since p > 0 is arbitrary) 7 — ¢(7) < €. By assumption,
we must have 7 < 9(e). It follows that ¢(7) < ¢ o ¢(e) < ¥(e).

(b) diam(O(u)U{z})=sup, d(T?(u), u). Since lim, d(T?(u), u) =d(z,u),
if one has sup, d(T?(u), ) = lim, d(T?(u), u) then

diam(O(u) U {z}) = d(z,u) < € + ¢ (diam(O(u) U {z})).
Thus we get 7 — ¢(7) < €, which gives as before ¢(7) < 9(¢). Hence we may
assume there exists ¢ > 1 such that diam(O(u) U {z}) = diam (O(u)) =
d(T%(u),u). In this case we have
diam(0O(u) U {z}) = diam (O(u)) = d(T%(u), u)
< d(u, 2) + d(T'(2), T%(w)
< e+ ¢ (diam(O(T9 N u)) U {z}))
< e+ ¢ (diam(O(u) U {z})).

Thus the number 7 = diam (O(u) U {z}) satisfies 7 — ¢(7) < €. It follows as
before that ¢(7) < ¥(e).
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If one supposes that d(u,Tu) < g, then by a similar argument, we can
prove that ¢(7) < ¥(e). Thus, Lemma 2.3 is completely proved. m

Proof of Theorem 2.2. Let ¢ € G; and let ¢ denote the associated function
defined on [0, B[ such that (P 1) and (P 2) are satisfied.

(i) We prove that (1) = (2). Let z be the unique fixed point of T It
is clear that z € L, for every ¢ > 0. Let € €]0,8[ and let u € L.. Then by
Lemma 2.3, we have

d(u,2) < d(u,T(u)) + d(T(u), T(z))
< e+ ¢(diam(O(u) U {z})) < e+ ¢(e).
We deduce
u,v € L, = d(u,v) < d(u,2) +d(v,z) < 2(e+ ¢ (¢€)),

and since lim, g+ % (¢) = 0 this proves the first part of (2). To prove that
F is an r.g.i., we use Proposition 1.2, of [3]. Let {z,} be a sequence such
that lim, F(z,) = infp(F) = 0 and lim, z, = z. By virtue of Lemma 2.3,
we must have £ = z. This implies that F is an r.g.i. function on M.

(ii) Let us prove (2) = (3). Consider {c, } a strictly decreasing sequence
of positive numbers converging to zero, and set A := N,L. , (where L._
means the closure of L. ). Then an application of Cantor’s intersection
theorem implies the existence of a unique element z € A. For every nonzero
integer n, since z € L,, we can find y, € L., such that d(yn,2) < L.
Therefore {y,} converges to z. For each integer n, we have 0 < F(y,) < c,.
Hence lim,, F(y,) = 0. Since F is supposed to be regular, then F(z) =
infpr F = 0. Thus z is a fixed point of T, it is unique since (W) is verified.
Let {z,} be a sequence in M such that lim, F(z,) = 0. Let ¢ €]0,0|,
and let ¢; > 0 such that diam(L,,) < €. There exists an integer Ny such
that F(z,) < c; for every integer n > N;. Then z,z, € L.,. Therefore,
d(zn,2) < €, for each integer n > Nj. Thus {x,} converges to the fixed
point z. Conversely, Let {z,} be a sequence in M converging to the fixed
point 2. We have

F(z,) < d(zn,2) + d(T(zn),T(2)) < d(zp, 2) + ¢ (diam(O(z,) U {z})).
Let € €]0,8[. By property (P 1), we can find at least a positive number
6 < € such that () < €. Let N; be an integer such that d(z,,z) < § for

all integer n > N;. Then according to Lemma 2.3, for all integer n > Nj,
we shall have

¢ (diam(0O(z,) U{z})) < 9(6) <e.
Thus we have shown that the sequence {F(z,)} converges to zero.
(iii) Let us prove (3) = (4). We start by remarking that the point z
involved in the assumption (3) must be fixed under T'. Since ¢ is a contractive



626 M. Akkouchi

gauge function, z is the unique fixed point of T. Then, we deduce that
infps D = 0. To prove that D is an r.g.i., we use Proposition 1.2, of [3].
Let {z,} be a sequence such that lim, D(z,) = 0 and lim, z,, = z. Since
F(z) < D(z) for all z € M, we get lim,, F(z,) = 0. By assumption, we must
have lim, z, = 2. Then, z = z. Thus D is an r.g.i. function on M.

(iv) Let us prove that (4) = (1). Let zo be any arbitrary point in M,
and set z,41 = T(z,) for all integer n. By using mathematical induction,
it is easy to prove the following

(R) d(T"(2), T"(y)) < ¢" (diam (O(z,y))) Vz,y € M.

We deduce from (R) two conclusions. The first one is that the sequence {z,, } is
Cauchy. The second one (according to Remark 2.1.1) is that lim,, D(z,)=0.
Since (M, d) is complete, then there exists an element z € M such that
lim, z, = z. It is clear from (R) that this limit z is independent from z.
Since D is an r.g.i. function, we deduce that D(z) = infp (D) = 0, wich
implies that z is the unique fixed point under T and that all the Picard
sequences converge to z.

(v) Thus the four properties are equivalent. To complete the proof we
observe that (1) is satisfied by virtue of Walter’s theorem. m

3. A related result
M. Angrisani and M. Clavelli have proved in [2] the following result.

THEOREM 3.1 [2]. Let (M, d) be a complete metric space and suppose T' is a
self-mapping of M satisfying: there exists a < 1 such that for each x,y € M

(3.1) d(Tz,Ty) < amax{d(z,y),d(z,Tz),d(y,Ty),d(z, Ty), d(y, Tz)}
Then infp (F) =0, lim._ o+ diam(L.) =0 and F is an r.g.i. on M.

Using our main result we provide the following generalization and im-
provement of this theorem. More precisely, we have the following

THEOREM 3.2. Let (M,d) be a complete metric space and suppose T is a
self-mapping of M satisfying: there exists ¢ € Gy with associated number
B = +o0o such that for each z,y € M
(4,C)

d(Tz,Ty) < ¢ (max{d(z,y),d(z, Tz), d(y, Ty), d(z, Ty), d(y,Tz)}) .

Then the self-mapping T has bounded orbits, and the following properties
are satisfied and equivalent:

(1) T has a unique fized point z € M, and limy— 0o T*(z) = z for each
z € M.

(2) Ve > 0, the set L. is nonvoid, lim,_,o+ diam(L.) = 0, and the mapping
F:z—d(z,Tz) is an r.g.i. on M.
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(3) There exists a unique point z € M, such that, for each sequence {z,} C
M; lim, d(z,,Tz,) = 0 if and only if {z,} converges to z.
(4) The mapping D : z — diam(O(z)) is an r.g.7. on M.

Proof. (a) Let z € M. For each integer n we set O, (z):={z,Tz,...,T"(z)}.
It is easy to verify that

(3.2.1) diam(0,(Tz)) < ¢(diam(Op4+1(z)))

and that for each integer n > 1 there exists an integer k, € {1,2,...,n}
such that

(3.2.2) diam(Oy(z)) = d(z, T* (z)).
Then, with the help of (3.2.1) and (3.2.2), we obtain

diam(Oy(z)) = d(z, T*(z) < d(z,Tz) + d(Tz, T* (z))
<d(z,Tz) + diam(Onr-1(Tz))
<d(z,Tz)+ ¢(diam(O,(x))).

By property (P 2), we deduce that diam(O,(z)) < ¥ (d(z,Tz)), for every
integer n > 1. Since O(z) = U,On(z), we conclude that

diam(0(z)) = s:xlp diam(Ox(z)) < ¢ (d(z,Tz)) < oo.

This proves that T has bounded orbits.

(b) Since T has bounded orbits and satisfies condition (A,C), it follows
immediately that T must satisfy also the condition (W). Therefore, by using
Theorem 2.2, the four properties are satisfied and equivalent. This completes
the proof of Theorem 3.2. =
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