
DEMONSTRATIO MATHEMATICA 
Vol. XXXV No 3 2002 

Mohamed Akkouchi 

FIXED POINT THEOREMS USING DIAMETERS 
OF LEVEL SETS AND THE NOTION OF R.G.I. MAPPING 

Abstract. In this paper, we generalize and improve a recent result established by W. 
A. Kirk and L. M. Saliga (see [3], Theorem 4.3, p. 149) by using a result of W. Walter (see 
[4]). Indeed, We prove that the conclusions of Kirk-Saliga theorem are not only satisfied 
but, moreover, they are equivalent for a wide class of contractive gauge functions. Our 
main result contains also a new equivalent conclusion (see Property (4) in Theorem 2.2 
below). As a consequence, we recapture (and improve the results of) a theorem proved by 
M. Angrisani and M. Clavelli in [2], Theorem 2.2 completes and improves the main result 
of [1]. 

1. Introduction 
I n a r ecen t p a p e r (see [3], T h e o r e m 4.3, p . 149), W . A . K i r k a n d 

L. M . Sa l iga h a v e p r o v e d t h e fo l lowing t h e o r e m 

THEOREM 1.1 ([3]). Let (M,d) be a complete metric space and suppose Τ : 
M —> M has bounded orbits and satisfies: there exists a < 1 such that 

(.Κ, S) d(Tx, Ty) < a diam(0(x, y)) for all x,y e M. 

Then we have: 
(1) Τ has a unique fixed point ζ € M, and lim;t_*+00 Tk(x) — ζ for each 
χ € M. 
(2) limc_>o+ diam(Lc) = 0, and the mapping F : χ ι—> d(x,Tx) is an r.g.i.. 
(3) For each sequence { i n } C M ; l i m n d ( x n , T x n ) = 0 if and only if {xn} 
converges to z. 

Here , 0{x,y) = 0(x) U 0(y), w h e r e 0{x) := {x,Tx,T2x,...} fo r all 
x,y e M] a n d Lc : = {x e M : F(x) < c} for all c > 0. W e recal l (see 
[2] a n d [3]) t h a t a f u n c t i o n G : M —• R is sa id t o b e a regu la r -g loba l - in f 
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(r.g.i.) at χ G M if G(x) > ini M {G) implies there exist e > 0 such that 
e < G(x) — ini M (G) and a neighborhood Nx of χ such that G (y) > G (χ) — e 
for each y € Nx. If this condition holds for each χ G M, then G is said to be 
an r.g.i. on M. To prove Theorem 1.1, the authors have used the following 
result of W. Walter (see [4]). 

THEOREM 1.2 ([4]). Let (M,d) be a complete metric space and suppose Τ : 
M —» M has bounded orbits and satisfies the following condition: 

(W) d(Tx,Ty) <4>(diam(0(x,y))) for all x,y e M, 

where φ is a contractive gauge function on M. This means that φ : K+ —> R+ 

is continuous, nondecreasing and satisfies </>(s) < s for all s > 0. Then Τ 
has a unique fixed point ζ Ε M, and limfc_»+00 Tk(x) = ζ for each χ 6 M. 

A natural question was addressed by W.A. Kirk and L.M Saliga in [3]. 
Does the conclusion of Theorem 1.1 remain valid under the weaker assump-
tion of Theorem 1.2 ? Another question may also be addressed: are the 
conclusions of Theorem 1.1 equivalent? 

The main goal of this paper is to discuss these questions. The main con-
tribution is stated in Theorem 2.2, where we establish that the conclusions 
of Theorem 1.1 are not only satisfied but, in fact, they are equivalent for 
a wide class of contractive gauge functions. Moreover, we can add a new 
equivalent property (see Property (4) in Theorem 2.2 below). Thus, our 
result improves and generalizes Theorem 1.1. As a consequence, we recap-
ture (and improve the results of) a theorem proved by M. Angrisani and M. 
Clavelli in [2]. This paper improves and completes also the main result of the 
paper [1], 

This paper is organized as follows. Section 2 contains the main result. In 
Section 3, as application of the main result, we provide a result improving 
and generalizing a theorem proved by M. Angrisani and M. Clavelli in [2], 

2. Main result 

2.1. Before stating the main result, we need to introduce some notations and 
make some remarks. We note Q the set of contractive gauge functions. We 
denote Q\ the set of contractive gauge functions φ : ]R+ —> R + for which there 
exist a positive number β e]0, oo] and an associated non-negative function 
φ defined on [0,/3[ such that the two following properties are satisfied: 

(Ρ 1) limt_»o i>(t) = 0, and 
(P 2) Vi € [0,ß[, Vs > 0, s - <f>(s) <t=^s< i>{t). 
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REMARK 2.1.1. Let φ be a contractive gauge function, then by a classical 
result, it satisfies l imn 0 n ( s ) = 0 for all s > 0. 

REMARK 2.1.2. Let G2 be the class of functions φ E Q such that the mapping 
θ : χ ι—• χ — φ(χ) from [0, +οο [ onto [0, +οο [ is strictly increasing. Let φ E G2 

and let φ be the inverse of θ on [0, +oo[ . Then, it is easy to see that the 
properties ( Ρ 1) and (P 2) are satisfied by the mappings φ and φ with 
associated number β = oo. Thus the class G2 is contained in the class Q\. 

Moreover, it is easy to see that this inclusion is strict. 

We point out that the main result of the paper [1] consists in proving 
that if the contractive gauge function φ belongs to the class G2 then the 
conclusions of Theorem 1.1 are true. The aim of this paper is to generalize 
and complete the main result of [1] by proving the following theorem in which 
we establish that the conclusions of Theorem 1.1 are satisfied and equivalent 
and that they are equivalent to the fact that D : χ ι—• diam{0{x)) is an r.g.i. 
mapping on M . More precisely, we have 

THEOREM 2.2. Let ( M , d) be a complete metric space and suppose Τ : M —* 

M has bounded orbits and satisfies the following condition: 

{W) d(Tx, Ty) < φ(άίατη(0(χ, y))) for all x,y Ε M, 

where φ E G1· Then the following assertions are satisfied and equivalent: 

(1) Τ has a unique fixed point ζ 6 M, and lim^+oo Tk(x) = ζ for each 

χ e M. 

(2) Vc > 0, the set Lc is nonvoid, l im c _ 0 + diam(Lc) = 0, and the mapping 

F : χ ι—> d(x, Tx) is an r.g.i. on M. 

(3) There exists a unique point ζ € M , such that, for each sequence {xn} C 
M ; l im„ d(xn,Txn) — 0 if and only if { x n } converges to z. 

(4) The mapping A : X H diam(0(x)) is an r.g.i. on M. 

In the proof of this theorem, we shall use the following lemma: 

LEMMA 2.3. Let φ E G1 and let β > 0 and φ denote the associated function 

defined on [0,/3[ such that ( P I ) and (P 2) are satisfied. Let (M,d) be a 

complete metric space and suppose Τ : M —> M has bounded orbits and 

satisfies the condition: 

('W) d(Tx,Ty) < φ(άίατη(0(χ,y))) for all x,y Ε M, 

Suppose that Τ has a fixed point, say, ζ in M. Then ζ is unique and the 

following property is satisfied, 

( Q ) Ve Ε ]0, β[ Vu 6 M , min {d{u, T{u)), d(u, ζ ) } < ε 

=> φ (diam(0(u) U { ζ } ) ) <φ(ε). 
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Proof . Let φ G Gì and let ψ denote the associated function defined on 
[0,/3[ such that (Ρ 1) and (P 2) are satisfied. The general line of arguments 
follows [1] and [3]. Let ζ be a fixed point of T. Since φ is a gauge contractive 
function, it is clear that ζ must be the unique fixed point of T. Let ε €]0, β[ 
and let u € M such that min{ci(u, T(u)), d(u, ζ)} < ε. Suppose, for example, 
that d(u, ζ) < ε. Then since T(z) = z, 

d(u, Tu) < d(u, z) + d(T(u), T(z)) <ε + φ (diam(0{u) U {z} ) ) . 

To simplify the notations, we set τ := diam(0(u) U {z}). We distinguish 
two cases. 

(a) diam(0(u) U {z}) = suppd(Tp(u),z). In this case let ρ > 0 be arbi-
trary and choose ρ so that supp d(Tp(u),z) < d(Tp(u), z)+p. Then if ρ = 0, 
we have 

diam(0(u) U {z}) < d(u, ζ) + ρ 

<ε + φ (diam(0{u) U {z})) + p, 

from which we get τ — φ(τ) < ε + p. On the other hand, if ρ > 1, 

diam(0(u) U {z}) < d(Tp(u), T(z)) + ρ 
< φ (diam(0(Tp-l(u) U {ζ})) + ρ 

< φ (diam(0(u) U {z})) + p. 

Hence, we get τ — φ(τ) < p. Therefore, in the two cases, we obtain τ — φ(τ) < 
ρ + ε, from which (since ρ > 0 is arbitrary) τ — φ(τ) < ε. By assumption, 
we must have r < ψ(ε). It follows that φ(τ) < φ ο ψ(ε) < ψ(ε). 

(b) diam(0(u) U {z}) = supp d(Tp(u), u). Since limpd{Tp(u),u) = d{z,u), 
if one has suppd(Tp(u),u) = limpd(Tp(u),u) then 

diam(0(u) U {z}) = d(z, u) < ε + φ (diam(0{u) U {z} ) ) . 

Thus we get τ — φ(τ) < e, which gives as before φ(τ) < ψ (ε). Hence we may 
assume there exists q > 1 such that diam(0(u) U {z}) = diam(0(u)) = 
d{Tq{u),u). In this case we have 

diam(0(u) U {z}) = diam(0{u)) = d{Tq{u),u) 
<d{u,z) + d(T{z),Tq{u)) 
<ε + φ (diam(0(Tq~1(u)) U {z})) 
< ε + φ (diam(0(u) U {z}) ) . 

Thus the number r = diam (0{u) U {z}) satisfies r - φ(τ) < ε. It follows as 
before that φ(τ) < ψ{ε). 



Fixed point theorems 625 

If one supposes that d(u, Tu) < ε, then by a similar argument, we can 
prove that φ{τ) < ψ (ε). Thus, Lemma 2.3 is completely proved. • 

Proof of Theorem 2.2. Let φ G Q\ and let φ denote the associated function 
defined on [0, ß[ such that (Ρ 1) and (P 2) are satisfied. 

(i) We prove that (1) = > (2). Let ζ be the unique fixed point of T. It 
is clear that ζ G Lc for every c > 0. Let ε G]0,β[ and let u G L£. Then by 
Lemma 2.3, we have 

d(u , z ) < d(u,T(u)) + d(T{u),T(z)) 

<ε + φ (diam{0(u) U { ζ } ) ) < ε + ψ (ε). 

We deduce 

u,v G Le d(u, v) < d(u, z) + d(v, z) < 2 (ε -f ψ (ε)) , 

and since lim£_>0+ ψ (ε) = 0 this proves the first part of (2). To prove that 
F is an r.g.i., we use Proposition 1.2, of [3]. Let { x n } be a sequence such 
that limn F(xn) = infM(-f) = 0 and limn xn = x. By virtue of Lemma 2.3, 
we must have χ = ζ. This implies that F is an r.g.i. function on M. 

(ii) Let us prove (2) (3). Consider {cn} a strictly decreasing sequence 
of positive numbers converging to zero, and set A := DnLCn , (where LCn 

means the closure of LC n). Then an application of Cantor's intersection 
theorem implies the existence of a unique element ζ ξ A. For every nonzero 
integer n, since ζ € LCn, we can find yn G LCn such that d(yn,z) < 
Therefore { y n } converges to z. For each integer n, we have 0 < F(yn) < cn. 
Hence limn F(yn) = 0. Since F is supposed to be regular, then F(z) — 
inf^f F = 0. Thus ζ is a fixed point of Τ, it is unique since (W) is verified. 
Let { x n } be a sequence in M such that l i m n F ( x n ) = 0. Let ε e]0,/3[, 
and let c\ > 0 such that diam(LCl) < ε. There exists an integer Ni such 
that F(xn) < Ci for every integer η > Ni. Then z,xn G LCl. Therefore, 
d(xn,z) < ε, for each integer η > Ni. Thus {xn} converges to the fixed 
point z. Conversely, Let {xn} be a sequence in M converging to the fixed 
point z. We have 

F(xn) < d{xn, z) + d(T(xn), T(z)) < d(xn, ζ) + φ (diam(0(xn) U { z } ) ) . 

Let ε g]0,/?[. By property (Ρ 1), we can find at least a positive number 
δ < ε such that ψ(δ) < ε. Let N¡ be an integer such that d(xn,z) < δ for 
all integer η > Ng. Then according to Lemma 2.3, for all integer η > N¿, 
we shall have 

φ (diam{0(xn) U { ζ } ) ) < ψ(δ) < ε. 

Thus we have shown that the sequence { F ( x n ) } converges to zero. 
(iii) Let us prove (3) =Φ> (4). We start by remaxking that the point ζ 

involved in the assumption (3) must be fixed under T. Since φ is a contractive 
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gauge function, ζ is the unique fixed point of T. Then, we deduce that 
infjv/ D = 0. To prove that D is an r.g.i., we use Proposition 1.2, of [3]. 
Let {xn} be a sequence such that lim„£)(a;n) — 0 and lim„:z;n = x. Since 
F(x) < D(x) for all χ € M, we get lim„ F(xn) = 0. By assumption, we must 
have limn xn = z. Then, ζ = x. Thus D is an r.g.i. function on M. 

(iv) Let us prove that (4) =Φ- (1). Let xq be any arbitrary point in M, 
and set xn+i '•= T(xn) for all integer n. By using mathematical induction, 
it is easy to prove the following 

(R) d(Tn(x), Tn(y)) < φη (diam (0(x, y))) Vx, y G M. 
We deduce from (R) two conclusions. The first one is that the sequence { x n } is 
Cauchy. The second one (according to Remark 2.1.1) is that limn D(xn) = 0. 
Since (M,d) is complete, then there exists an element ζ Ε M such that 
lim„ xn = z. It is clear from (R) that this limit ζ is independent from XQ. 
Since D is an r.g.i. function, we deduce that D(z) — i n fM(D) = 0, wich 
implies that ζ is the unique fixed point under Τ and that all the Picard 
sequences converge to z. 

(v) Thus the four properties are equivalent. To complete the proof we 
observe that (1) is satisfied by virtue of Walter's theorem. • 

3. A related result 
M. Angrisani and M. Clavelli have proved in [2] the following result. 

THEOREM 3.1 [2]. Let (M, d) be a complete metric space and suppose Τ is a 
self-mapping of M satisfying: there exists a < 1 such that for each x,y Ε M 

(3.1) d(Tx, Ty) < a m a x { d { x , y ) , d { x , T x ) , d ( y , T y ) , d { x , T y ) , d ( y , T x ) } 
Then ÌIIÌM(F) = 0, limc_0+ diam(Lc) = 0 and F is an r.g.i. on M. 

Using our main result we provide the following generalization and im-
provement of this theorem. More precisely, we have the following 

THEOREM 3.2. Let (M, d) be a complete metric space and suppose Τ is a 
self-mapping of M satisfying: there exists φ 6 Gl with associated number 
β — +00 such that for each x,y € M 
(.A,C) 

d(Tx, Ty) < φ (max {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d{y, Tx)}). 
Then the self-mapping Τ has bounded orbits, and the following properties 
are satisfied and equivalent: 
(1) Τ has a unique fixed point ζ 6 M, and limfe^+oo Tk(x) = ζ for each 
χ Ε M. 
(2) Ve > 0, the set Lc is nonvoid, limc_0+ diam(Lc) = 0, and the mapping 
F : χ ι—> d(x,Tx) is an r.g.i. on M. 
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(3 ) There exists a unique point ζ 6 M, such that, for each sequence { x n } C 
M; \imnd(xn,Txn) — 0 if and only if {xn} converges to z. 

(4 ) The mapping D : χ diam(0(x)) is an r.g.i. on M. 

P r o o f , (a) Let xEM. For each integer η we set On{x) '—{x, T x , . . . ,Tn(x)}. 
It is easy to verify that 

(3.2.1) diam(On(Tx)) < (¡>{diam{On+i(x))) 

and that for each integer τι > 1 there exists an integer kn G {1 ,2 , . . . ,n} 
such that 

(3.2.2) diam(On(x)) = d(x, Tkn (x)). 

Then, with the help of (3.2.1) and (3.2.2), we obtain 

diam(On(x)) = d(x,Tk"(x) < d(x,Tx) + d(Tx,Tkn(x)) 

< d(x,Tx) + diam(On-i(Tx)) 

< d(x,Tx) + φ(άίαπι(Οη(χ))). 

By property (P 2), we deduce that diam(On(x)) < ψ (d(x,Tx)), for every 
integer η > 1. Since 0(x) = U n O n ( x ) , we conclude that 

diam(0(x)) = s u p diam(On(x)) < φ (d(x,Tx)) < oo . 
η 

This proves that Τ has bounded orbits. 
(b) Since Τ has bounded orbits and satisfies condition (A,C), it follows 

immediately that Τ must satisfy also the condition (W). Therefore, by using 
Theorem 2.2, the four properties are satisfied and equivalent. This completes 
the proof of Theorem 3.2. • 
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