DEMONSTRATIO MATHEMATICA
Vol. XXXV No 3 2002

Ali A. Mehemmed

AN APPLICATION OF KWAPIEN’S THEOREM
TO THE INVESTIGATION
OF THE STRUCTURE OF Ly-SPACE

Abstract. Our aim in this paper is to use Kwapieri’s theorem to show that the space
Ly is prime. This was a longstanding open question posed by Pelczyriski which was resolved
by Kalton {3]. The proof given here uses some new lemmas which can be of interest.

Consider these notations and terminologies.

A metrizable topological vector space (or metric linear space) is called an
F-space if it is complete for an invariant metric (for any invariant metric).

A sequence (f,) in Lo(p) is said to converge to f in measure if, given
€ > 0, there is an integer N such that for all n we have

p{z : |fa(z) - f(2)| 2 €}) <e.

By Lemma (2.1) in (2] any subset {g, : a € I} of the space Lo(u) has
a least upper bound, therefore, the space Lo(x) is an F-space with F-norm

|| ll, defined by ||f{i, = S(l, i-l_pfr‘f-[du, for any f € Lo(u), and its invariant

metric defined by d(f,g) = d(0, f — g) = Jo 7L, dp.
Let X and Y be two F-spaces, the symbol X @ Y denote the product
of XandY,ie. X®Y = {(z,y) : z € X,y € Y} with F-norm ||(z,y)|| =

Vii=l? + llvli*.

Let X;, X2, ... be a sequence of F-spaces with F-norms | -|| X,
Il ”X;""’ respectively. By (X; & Xo @ ...)g we denote the space of all
sequences (z;), where z; € X; such that (||z;]| Xi) € E with the norm
I{z:)ll = |I(“$i”X;)|IE' Moreover, if E, X1, Xa,... are Banach spaces, then
(X1® X2 ...)g is also a Banach space.

A subspace Y of an F-space X is said to be complemented in X if there
is a subspace Y; (a complement to Y') such that for each z € X there exist
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yin Y and y; in Y7 such that x =y +y; and if 0 = y 4 y; then y = 0 and
Y1 = 0.

See M. M. Day [8] in [4] for the proofs of the following:
1° The subspace Y is complemented in X iff there is a projection

P: X 28y.
2° If Y has a complement Y7 in X, then X =Y & Y.

An F-space X is primeif it is isomorphic to each of its infinite-dimension-
al complemented subspaces (i.e. X =~ X; @ X2 with X; infinite-dimensional,
then X = X;). And X is primary if X =~ Y ® Z implies that either ¥ or
Z =~ X. The space L, (1 < p < o0) is primary (see Kalton {3]).

We begin first by using Pelczyniski’s decomposition technique in proving
the following.

LEMMA L1 (1. If Lo= X ®Y and X = Lo ® X1, then X = L.

Proof. Notice that [[ro, Xn = X1 ® X2 @ ... with the norm ||z|| =
o127 ™| Xxll, which induced the product topology. If in [0,1] we con-

n=
struct a sequence (E,) of pairwise disjoint subsets of positive measures such

that [[;>; En = [0, 1], then Lo = \J22; Lo(E,), and each Lo(E,) = Lo.
Since
Lo Log®Lo®...
~(XeY)o(XaY)®...
~XeYeX)o(YoX)®...
~ X @ Ly,
we have
X=Li®d X,
= XDLod X,
rXOLodLyd X,
Lo X
=~ Lg. m
If A is a measurable subset of the unit interval [0,1] we may define a
projection on Lo by Pa(f) = x ,(f) for each f € Lo.

LEMMA 2 [1). If P is a projection on Lo and there exist measurable sets E
and A in [0, 1] of positive measures such that P4 o P| is an isomorphism

from Lo(E) onto Lo(A), then
P(Lo) ~ Lo.

Lo(E)
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Proof. Since P4(P(Lo(E))) = Lo(A), i.e.

Lo(E) —5> P(Lo(E))
PP lp A
Ly(A),

suppose {f.) is a sequence in Lo(E) and P(f,) — 0. Then P4(P(fr)) — 0,
so that f, — 0. Thus PlLo(E) : Lo(E) ontg P(Lo(E)) is an isomorphism. We
claim that P(Lo(E)) @ Lo(—A) = Ly.

Let ¢ € P(Lo(E)) N Lo(—A), then there exists f € Lo(E) such that
P(f) =g, and g € Lo(—A) so that P4(P(f)) = Pa(g) = x,(g9) = 0. But
since P4 o P is an isomorphism on Ly(E), f = 0. Thus P(LO(AE)) N Lo(—A)
= {0}.

Now suppose g € Lg. Then there exists an f € Lo(E) such that P4(P(f))
= Pa(g). Thus g = P(f) + (9 — P(f)). Since Pa(g — P(f)) = Palg) -
Pa(P(f)) =0, g - P(f) € Lo(-A), i.e. P(Lo(E)) & Lo(—A) = Lo.

Consequently, P(Lo(E)) ® (P(Lo) N Lo(—A)) = P(Lo). Since P(Lo(E))
~ Lo(A) = Ly, so by Lemma 1 we have P(Lg) ~ Lo. =

In [2] we modificate Kwapieri’s theorem as follows.

THEOREM 1 [2]. If T € L(Lo), then T(f) =Y o0 1 > ieq ginf © pin for each
f € Lo where

1) (A,) is a pairwise disjoint collection of sets of positive measure on [0,1].
2) {Ein,...,Ex, n} is a partition of [0,1] into sets of positive measure.

3) @in : SUPP gin — Ein.

In particular, T(f) = Y oo, gnf © n where
i — each g, € Lo,
ii — each ¢, : supp g, — [0, 1] is a non-singular measurable mapping,
ili — for almost all z in [0, 1], g» # O for only finitely many n.

Conversely, every mapping defined by T(f) = 3 oo, gnf © ¢ is a con-
tinuous linear operator on Lyg.

LEMMA 3 [1]. Suppose T € L(Lo) is defined by T(f) = > pe; 9xf © ¥k, and
T(f) = 31 Y2, ginf © @in is a canonical representation. Let E C E;,
and A C A, such that E and A have positive measures and p;, : A — E and
there exists an integer N such that gr(z) = 0, for allz € A whenk > N+1.
Then there exists Ag C A such that Ag has a positive measure and in = @;
for somej, 1<j<N.
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Proof. By assumption P4 o T : Ly(E) — Lo(A), and for f € Ly(E)
N
PA(T(f)) = ginf 0 pin = PA(ngfO(pk).
k=1

Suppose that m({x € A : pin(z) = p1(x)}) = 0. Then

A= |J {zed:pm(@)<r<e(z)}
r€QN(0,1)
U U {zeA:pi1(z) <7r < pin(z)} ae.
r€QN(0,1)

Thus, without loss of generality there exists 7 € @ N (0,1) such that if
Iy =[0,7), 1 = (r,1] and 4; = AN} (I)Np7 (J1), then m(4,) > 0. Con-
tinuing inductively we can choose intervals I, Iz, ..., Ix and Ji, Jo, ..., Jy,
each with positive length, and sets A;, A,..., AN of positive measures such
that 1 DI D ... D In, It NJk = B, vin(Ak) C Ir, and i (Ar) C Ji. Thus
InnJy=0forallk=1,...,N vin(AN) C In, and @r(AN) C Ji. Hence

PAN © T(XIN) = XANgianp.,—nl(IN) # O

N _
But P4, oT(xIN) =X,, Y kel KX =1 (Iy) = 0, because ¢, YIN)NAN =0,
ie. pr(AN) C Ji and Iy N Jy = 0.
This is a contradiction. =
Now we give our proof of the Kalton theorem [3] which shows that

the space Ly of all measurable functions on the unit interval is prime. In
our proof we will use the canonical representation form of the projection

P:Ly 28 X, P(f) = DN Zf;l ginf © Yin beside the form P(f) =
Yie19if 005
THEOREM 2 [3]. The space Lg is prime.

Proof. Suppose Lo X1 X3, and P: Ly onte X1 is a projection. Let
P(f)y = 37 1 El 1 9inf © @in be a canonical form for P. We may write

P(f)=E —19;f op;j. Thus

P(f) P2(f (Zgjfo(p]) = igi(igjf°¢j) 0 @;

ZZQ’(QJ 0 w;)(f o pj 0 ;).

i=1j

Put Y, = {z € [0,1] : gi(gj o p:)(z) = 0 for each 4,5 > n} since Y; C Y2 C
5 and m(2, —Y,) = m(~ N5z, Ys) = 0. Thus m(-Y;,) \, 0, there
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exists N, and a set A with m(A4) > 0, so that

P4P(f) = PA(ZN;gifoso,-) = m(%fjgxgj 0 @i)(f 0 9:095)).
i=1

i=1 j=1

For each i, 1 < 7 < N, we may choose 8; > 0 so that m({z € A :
lgi(z)] < 63}) > 0, where Zfil b < m(A NUs, suppgi). By replacing
A with A\ Uf\;l{z € A : |gi(z)| < 6;} we may assume that |g;| > 6; on
(suppg:) N A.

Since ; : supp g; — [0, 1] is measurable, there exists K; compact subset
of supp g; such that m(K;) > 0 and ¢;| X is continuous. Let K = Ufil K;,
then P4P : Ly(K) — Lo(A). By Lemma 3 for each ¢, 1 <4 < N, ¢; =
©iPE = Py(i)Pu(i) on a set of positive measure, i.e. ¥(i) = j, ¥(i) = k.

We shall take a compact set inside that set of positive measure. Thus we
have

P1 = Pp(1)P¥(1) = PuP¥(1) = Pir Pi PE(¥(1))-

Continuing inductively, ¢; = @i, @i, -+ - @iy,, On a compact set of positive
measure. But then some ; appears more than one time in ¢;, @i, -+ Qin,,-

So by rearranging indices we may assume @1 = Qo3 - - Pk for some
k, 1 < k < N on a compact set of positive measure K. It is clear that ¢
is one-to-one on ¢1(K). Also m(p;(K)) > 0. Otherwise, if m(p1(K)) = 0,
then m(K) < m(p7* (p1(K))) = 0. Also, ¢1(K) C (suppge) N A.

Now let Ag = ¢1(K). Then ¢y : Ag — @i (Ao) is a homomorphism (since
Ay is compact, ¢y is continuous and one-to-one). Also, m(pr(Ag)) > 0 by
the same argument that m(p,(K)) > 0. Thus, for each f € Lo(px(A4o)),
Ppo 0 P(f) = g f o k.

Hence, PAOPILD(%(AO)) : Lo(pr(Ao)) — Lo(Ap) is an isomorphism, and
its inverse is T defined by

T(f) = ——1foui
9k © Yy,
Note that ;! : pr(Ag) — Ao is also non-singular since
Ot = 0203 Pr—1.
At last by Lemma 2 we have
Xy ~ P(Lo) ~ Lo. m
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