

Ali A. Mehemed

AN APPLICATION OF KWAPIEŃ'S THEOREM
 TO THE INVESTIGATION
 OF THE STRUCTURE OF L_0 -SPACE

Abstract. Our aim in this paper is to use Kwapien's theorem to show that the space L_0 is prime. This was a longstanding open question posed by Pełczyński which was resolved by Kalton [3]. The proof given here uses some new lemmas which can be of interest.

Consider these notations and terminologies.

A metrizable topological vector space (or metric linear space) is called an *F-space* if it is complete for an invariant metric (for any invariant metric).

A sequence $\langle f_n \rangle$ in $L_0(\mu)$ is said to converge to f in *measure* if, given $\varepsilon > 0$, there is an integer N such that for all n we have

$$\mu(\{x : |f_n(x) - f(x)| \geq \varepsilon\}) < \varepsilon.$$

By Lemma (2.1) in [2] any subset $\{g_\alpha : \alpha \in I\}$ of the space $L_0(\mu)$ has a least upper bound, therefore, the space $L_0(\mu)$ is an *F-space* with *F-norm* $\|\cdot\|_0$ defined by $\|f\|_0 = \int_0^1 \frac{|f|}{1+|f|} d\mu$, for any $f \in L_0(\mu)$, and its invariant metric defined by $d(f, g) = d(0, f - g) = \int_0^1 \frac{|f-g|}{1+|f-g|} d\mu$.

Let X and Y be two *F-spaces*, the symbol $X \oplus Y$ denote the product of X and Y , i.e. $X \oplus Y = \{(x, y) : x \in X, y \in Y\}$ with *F-norm* $\|(x, y)\| = \sqrt{\|x\|^2 + \|y\|^2}$.

Let X_1, X_2, \dots be a sequence of *F-spaces* with *F-norms* $\|\cdot\|_{X_1}, \|\cdot\|_{X_2}, \dots$, respectively. By $(X_1 \oplus X_2 \oplus \dots)_E$ we denote the space of all sequences $\langle x_i \rangle$, where $x_i \in X_i$ such that $\langle \|x_i\|_{X_i} \rangle \in E$ with the norm $\|\langle x_i \rangle\| = \|\langle \|x_i\|_{X_i} \rangle\|_E$. Moreover, if E, X_1, X_2, \dots are Banach spaces, then $(X_1 \oplus X_2 \oplus \dots)_E$ is also a Banach space.

A subspace Y of an *F-space* X is said to be *complemented* in X if there is a subspace Y_1 (a complement to Y) such that for each $x \in X$ there exist

y in Y and y_1 in Y_1 such that $x = y + y_1$ and if $0 = y + y_1$ then $y = 0$ and $y_1 = 0$.

See M. M. Day [8] in [4] for the proofs of the following:

- 1° The subspace Y is complemented in X iff there is a projection $P : X \xrightarrow{\text{onto}} Y$.
- 2° If Y has a complement Y_1 in X , then $X \approx Y \oplus Y_1$.

An F -space X is *prime* if it is isomorphic to each of its infinite-dimensional complemented subspaces (i.e. $X \approx X_1 \oplus X_2$ with X_1 infinite-dimensional, then $X \approx X_1$). And X is *primary* if $X \approx Y \oplus Z$ implies that either Y or $Z \approx X$. The space L_p ($1 \leq p < \infty$) is primary (see Kalton [3]).

We begin first by using Pełczyński's decomposition technique in proving the following.

LEMMA 1 [1]. *If $L_0 \approx X \oplus Y$ and $X \approx L_0 \oplus X_1$, then $X \approx L_0$.*

Proof. Notice that $\prod_{n=1}^{\infty} X_n = X_1 \oplus X_2 \oplus \dots$ with the norm $\|x\| = \sum_{n=1}^{\infty} 2^{-n} \|X_n\|$, which induced the product topology. If in $[0, 1]$ we construct a sequence $\langle E_n \rangle$ of pairwise disjoint subsets of positive measures such that $\coprod_{n=1}^{\infty} E_n = [0, 1]$, then $L_0 \approx \bigcup_{n=1}^{\infty} L_0(E_n)$, and each $L_0(E_n) \approx L_0$.

Since

$$\begin{aligned} L_0 &\approx L_0 \oplus L_0 \oplus \dots \\ &\approx (X \oplus Y) \oplus (X \oplus Y) \oplus \dots \\ &\approx X \oplus (Y \oplus X) \oplus (Y \oplus X) \oplus \dots \\ &\approx X \oplus L_0, \end{aligned}$$

we have

$$\begin{aligned} X &\approx L_0 \oplus X_1 \\ &\approx X \oplus L_0 \oplus X_1 \\ &\approx X \oplus L_0 \oplus L_0 \oplus X_1 \\ &\approx L_0 \oplus X \\ &\approx L_0. \blacksquare \end{aligned}$$

If A is a measurable subset of the unit interval $[0, 1]$ we may define a projection on L_0 by $P_A(f) = \chi_A(f)$ for each $f \in L_0$.

LEMMA 2 [1]. *If P is a projection on L_0 and there exist measurable sets E and A in $[0, 1]$ of positive measures such that $P_A \circ P|_{L_0(E)}$ is an isomorphism from $L_0(E)$ onto $L_0(A)$, then*

$$P(L_0) \approx L_0.$$

Proof. Since $P_A(P(L_0(E))) = L_0(A)$, i.e.

$$\begin{array}{ccc} L_0(E) & \xrightarrow{P} & P(L_0(E)) \\ & \searrow P_A P & \downarrow P_A \\ & & L_0(A), \end{array}$$

suppose $\langle f_n \rangle$ is a sequence in $L_0(E)$ and $P(f_n) \rightarrow 0$. Then $P_A(P(f_n)) \rightarrow 0$, so that $f_n \rightarrow 0$. Thus $P|_{L_0(E)} : L_0(E) \xrightarrow{\text{onto}} P(L_0(E))$ is an isomorphism. We claim that $P(L_0(E)) \oplus L_0(-A) = L_0$.

Let $g \in P(L_0(E)) \cap L_0(-A)$, then there exists $f \in L_0(E)$ such that $P(f) = g$, and $g \in L_0(-A)$ so that $P_A(P(f)) = P_A(g) = \chi_A(g) = 0$. But since $P_A \circ P$ is an isomorphism on $L_0(E)$, $f = 0$. Thus $P(L_0(E)) \cap L_0(-A) = \{0\}$.

Now suppose $g \in L_0$. Then there exists an $f \in L_0(E)$ such that $P_A(P(f)) = P_A(g)$. Thus $g = P(f) + (g - P(f))$. Since $P_A(g - P(f)) = P_A(g) - P_A(P(f)) = 0$, $g - P(f) \in L_0(-A)$, i.e. $P(L_0(E)) \oplus L_0(-A) = L_0$.

Consequently, $P(L_0(E)) \oplus (P(L_0) \cap L_0(-A)) = P(L_0)$. Since $P(L_0(E)) \approx L_0(A) \approx L_0$, so by Lemma 1 we have $P(L_0) \approx L_0$. ■

In [2] we modificate Kwapień's theorem as follows.

THEOREM 1 [2]. *If $T \in \mathcal{L}(L_0)$, then $T(f) = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} g_{in} f \circ \varphi_{in}$ for each $f \in L_0$ where*

- 1) $\langle A_n \rangle$ is a pairwise disjoint collection of sets of positive measure on $[0, 1]$.
- 2) $\{E_{1n}, \dots, E_{K_n n}\}$ is a partition of $[0, 1]$ into sets of positive measure.
- 3) $\varphi_{in} : \text{supp } g_{in} \rightarrow E_{in}$.

In particular, $T(f) = \sum_{n=1}^{\infty} g_n f \circ \varphi_n$ where

i — each $g_n \in L_0$,

ii — each $\varphi_n : \text{supp } g_n \rightarrow [0, 1]$ is a non-singular measurable mapping,

iii — for almost all x in $[0, 1]$, $g_n \neq 0$ for only finitely many n .

Conversely, every mapping defined by $T(f) = \sum_{n=1}^{\infty} g_n f \circ \varphi_n$ is a continuous linear operator on L_0 .

LEMMA 3 [1]. *Suppose $T \in \mathcal{L}(L_0)$ is defined by $T(f) = \sum_{k=1}^{\infty} g_k f \circ \varphi_k$, and $T(f) = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} g_{in} f \circ \varphi_{in}$ is a canonical representation. Let $E \subset E_{in}$ and $A \subset A_n$ such that E and A have positive measures and $\varphi_{in} : A \rightarrow E$ and there exists an integer N such that $g_k(x) = 0$, for all $x \in A$ when $k \geq N+1$. Then there exists $A_0 \subset A$ such that A_0 has a positive measure and $\varphi_{in} = \varphi_j$ for some j , $1 \leq j \leq N$.*

Proof. By assumption $P_A \circ T : L_0(E) \rightarrow L_0(A)$, and for $f \in L_0(E)$

$$P_A(T(f)) = g_{in} f \circ \varphi_{in} = P_A \left(\sum_{k=1}^N g_k f \circ \varphi_k \right).$$

Suppose that $m(\{x \in A : \varphi_{in}(x) = \varphi_1(x)\}) = 0$. Then

$$\begin{aligned} A &= \bigcup_{r \in Q \cap (0,1)} \{x \in A : \varphi_{in}(x) < r < \varphi_1(x)\} \\ &\cup \bigcup_{r \in Q \cap (0,1)} \{x \in A : \varphi_1(x) < r < \varphi_{in}(x)\} \text{ a.e.} \end{aligned}$$

Thus, without loss of generality there exists $r \in Q \cap (0,1)$ such that if $I_1 = [0, r)$, $J_1 = (r, 1]$ and $A_1 = A \cap \varphi_{in}^{-1}(I_1) \cap \varphi_1^{-1}(J_1)$, then $m(A_1) > 0$. Continuing inductively we can choose intervals I_1, I_2, \dots, I_N and J_1, J_2, \dots, J_N , each with positive length, and sets A_1, A_2, \dots, A_N of positive measures such that $I_1 \supset I_2 \supset \dots \supset I_N$, $I_k \cap J_k = \emptyset$, $\varphi_{in}(A_k) \subset I_k$, and $\varphi_k(A_k) \subset J_k$. Thus $I_N \cap J_N = \emptyset$ for all $k = 1, \dots, N$ $\varphi_{in}(A_N) \subset I_N$, and $\varphi_k(A_N) \subset J_k$. Hence

$$P_{A_N} \circ T(\chi_{I_N}) = \chi_{A_N} g_{in} \chi_{\varphi_{in}^{-1}(I_N)} \neq 0.$$

But $P_{A_N} \circ T(\chi_{I_N}) = \chi_{A_N} \sum_{k=1}^N g_k \chi_{\varphi_k^{-1}(I_N)} = 0$, because $\varphi_k^{-1}(I_N) \cap A_N = \emptyset$, i.e. $\varphi_k(A_N) \subset J_k$ and $I_N \cap J_N = \emptyset$.

This is a contradiction. ■

Now we give our proof of the Kalton theorem [3] which shows that the space L_0 of all measurable functions on the unit interval is prime. In our proof we will use the canonical representation form of the projection $P : L_0 \xrightarrow{\text{onto}} X$, $P(f) = \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} g_{in} f \circ \varphi_{in}$ beside the form $P(f) = \sum_{j=1}^{\infty} g_j f \circ \varphi_j$.

THEOREM 2 [3]. *The space L_0 is prime.*

Proof. Suppose $L_0 \approx X_1 \oplus X_2$, and $P : L_0 \xrightarrow{\text{onto}} X_1$ is a projection. Let $P(f) = \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} g_{in} f \circ \varphi_{in}$ be a canonical form for P . We may write $P(f) = \sum_{j=1}^{\infty} g_j f \circ \varphi_j$. Thus

$$\begin{aligned} P(f) = P^2(f) &= P \left(\sum_{j=1}^{\infty} g_j f \circ \varphi_j \right) = \sum_{i=1}^{\infty} g_i \left(\sum_{j=1}^{\infty} g_j f \circ \varphi_j \right) \circ \varphi_i \\ &= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} g_i (g_j \circ \varphi_i) (f \circ \varphi_j \circ \varphi_i). \end{aligned}$$

Put $Y_n = \{x \in [0, 1] : g_i(g_j \circ \varphi_i)(x) = 0 \text{ for each } i, j > n\}$ since $Y_1 \subset Y_2 \subset \dots$, and $m(\bigcap_{n=1}^{\infty} Y_n) = m(-\bigcap_{n=1}^{\infty} Y_n) = 0$. Thus $m(-Y_n) \searrow 0$, there

exists N , and a set A with $m(A) > 0$, so that

$$P_A P(f) = P_A \left(\sum_{i=1}^N g_i f \circ \varphi_i \right) = P_A \left(\sum_{i=1}^N \sum_{j=1}^N g_i (g_j \circ \varphi_i) (f \circ \varphi_i \circ \varphi_j) \right).$$

For each i , $1 \leq i \leq N$, we may choose $\delta_i > 0$ so that $m(\{x \in A : |g_i(x)| < \delta_i\}) > 0$, where $\sum_{i=1}^N \delta_i < m(A \cap \bigcup_{i=1}^N \text{supp } g_i)$. By replacing A with $A \setminus \bigcup_{i=1}^N \{x \in A : |g_i(x)| < \delta_i\}$ we may assume that $|g_i| \geq \delta_i$ on $(\text{supp } g_i) \cap A$.

Since $\varphi_i : \text{supp } g_i \rightarrow [0, 1]$ is measurable, there exists K_i compact subset of $\text{supp } g_i$ such that $m(K_i) > 0$ and $\varphi_i|_{K_i}$ is continuous. Let $K = \bigcup_{i=1}^N K_i$, then $P_A P : L_0(K) \rightarrow L_0(A)$. By Lemma 3 for each i , $1 \leq i \leq N$, $\varphi_i = \varphi_j \varphi_k = \varphi_{\psi(i)} \varphi_{\Psi(i)}$ on a set of positive measure, i.e. $\psi(i) = j$, $\Psi(i) = k$.

We shall take a compact set inside that set of positive measure. Thus we have

$$\varphi_1 = \varphi_{\psi(1)} \varphi_{\Psi(1)} = \varphi_{i_1} \varphi_{\Psi(1)} = \varphi_{i_1} \varphi_{i_2} \varphi_{\Psi(\Psi(1))}.$$

Continuing inductively, $\varphi_i = \varphi_{i_1} \varphi_{i_2} \cdots \varphi_{i_{N+1}}$ on a compact set of positive measure. But then some φ_i appears more than one time in $\varphi_{i_1} \varphi_{i_2} \cdots \varphi_{i_{N+1}}$.

So by rearranging indices we may assume $\varphi_1 = \varphi_2 \varphi_3 \cdots \varphi_k \varphi_1$ for some k , $1 \leq k \leq N$ on a compact set of positive measure K . It is clear that φ_k is one-to-one on $\varphi_1(K)$. Also $m(\varphi_1(K)) > 0$. Otherwise, if $m(\varphi_1(K)) = 0$, then $m(K) \leq m(\varphi_1^{-1}(\varphi_1(K))) = 0$. Also, $\varphi_1(K) \subset (\text{supp } g_k) \cap A$.

Now let $A_0 = \varphi_1(K)$. Then $\varphi_k : A_0 \rightarrow \varphi_k(A_0)$ is a homomorphism (since A_0 is compact, φ_k is continuous and one-to-one). Also, $m(\varphi_k(A_0)) > 0$ by the same argument that $m(\varphi_1(K)) > 0$. Thus, for each $f \in L_0(\varphi_k(A_0))$, $P_{A_0} \circ P(f) = g_k f \circ \varphi_k$.

Hence, $P_{A_0} P|_{L_0(\varphi_k(A_0))} : L_0(\varphi_k(A_0)) \rightarrow L_0(A_0)$ is an isomorphism, and its inverse is T defined by

$$T(f) = \frac{1}{g_k \circ \varphi_k^{-1}} f \circ \varphi_k^{-1}.$$

Note that $\varphi_k^{-1} : \varphi_k(A_0) \rightarrow A_0$ is also non-singular since

$$\varphi_k^{-1} = \varphi_2 \varphi_3 \cdots \varphi_{k-1}.$$

At last by Lemma 2 we have

$$X_1 \approx P(L_0) \approx L_0. \blacksquare$$

Acknowledgement. The author expresses his gratitude to Professor M. Mączyński for his help and advice during the preparation of this paper. This paper was written while the author was a post-doctoral research fellow of the Warsaw University of Technology.

References

- [1] A. A. Mehemmed, *Kwapień's theorem*, Master of Science thesis, University of South Carolina, U.S.A., 1983.
- [2] A. A. Mehemmed, *Algebraic proofs of Kwapień and Lamperti theorems*, Demonstratio Math. 32 (1999), 401–412.
- [3] N. J. Kalton, *The endomorphisms of L_p ($0 \leq p \leq 1$)*, Indiana Univ. Math. J. vol. 27, no. 1 (1978).
- [4] A. Pełczyński, *Projections in certain Banach spaces*, Studia Mathematica, T. XIX (1960).

WARSAW UNIVERSITY OF TECHNOLOGY
INSTITUTE OF MATHEMATICS

Plac Politechniki 1
00-661 WARSAW, POLAND

Mail address of the author:
THE UNIVERSITY OF EL-FATEH
P.O.BOX 13611
TRIPOLI, LIBYA

Received November 27, 1998; revised August 3, 2001.