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ON NONLINEAR INTEGRAL EQUATIONS
IN SOME FUNCTION SPACES

Abstract. There are established some conditions for existence of solutions of a non-
linear integral equation T'f = f + g, where T is a convolution-type integral operator.

1. Preliminaries

Let (22, T, 1) be a o-finite, complete measure space and let L%(f2) denote
the space of all ¥-measurable, finite p-a.e., real valued functions f on §2,
with equality p-a.e. Let + : @ x @ — Q be a commutative operation on
Q such that L%(Q) is invariant with respect to +, i.e. f € L°(Q) implies
f(-+5) € L%Q) for all s € Q.

Let K : 2 xR — R be a Carathéodory function, i.e. K(t,u) is X-measur-
able with respect to t € §2 for every u € R and is continuous with respect
to u for every ¢t € Q. If, moreover, K(¢t,0) = 0 for all £t € Q, we call K a
Carathéodory kernel function.

We are going to investigate the existence of solution of the nonlinear
integral equations of type

(1) J K(t, £(t+ 9))du(t) = f(s) + 9(s),
Q

where g € L%(f) is given, generated by the convolution-type (nonlinear)
integral operator T defined by

(2) (Tf)(s) = K(t, f(t+s)du(t), seQ
Q

We shall look for solutions f of this equation belonging to some subspaces
L3(92) of L°(Q), being LY(2) a modular function space. By DomT we shall
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denote the domain of the operator T, i.e. the set of all f € L°(2) such that
(2) exists for u-a.e. s € Q and it is a ¥-measurable function of s € 2.

If K is a Carathéodory function, it is easily seen that for f € L°(2) we
have K(-, f(- +s)) € LO(R) for all s € Q2. In order to be able to apply the
Fubini-Tonelli theorem, we should know that K (¢, f(¢ + s)) is a measurable
function on Q x Q. Let Xy be the smallest o-algebra of subsets of {2 x Q con-
taining the sets of type A x B for A, B € X, and let £, be any o-algebra of
subsets of 2 x Q such that ¥y C X,. We denote by ug the product measure
on Xo, i.e. pg(A x B) = u(A)u(B) for A, B € ¥, and we denote by p, any
extension of the measure ug from ¥ to £r. We denote by K the class of all
Carathéodory functions K : xR — R such that the function K : Ox{) - R
defined by K(s,t) = K(t, f(t + s)) is £ -measurable for every f € L%({).
Functions K € K, will be called X-regular Carathéodory functions.

EXAMPLE 1. Let u be a o-finite and complete measure on the o-algebra ¥ of
all Lebesgue measurable subsets of Q = R and let 42 be the product measure
on the o-algebra 2 of all Lebesgue measurable subsets of R?. Let + be a
commutative operation on R such that R, L°(R) are invariant. We shall write
o(s,t) = s +t, and we suppose that o is (£2, )-measurable, i.e. if A € &
then 0 ~1(A) € £2. Moreover, we suppose that u? is o-absolutely continuous
(0-a.c.) with respect to p, i.e. if A € ¥ and u(A4) = 0, then p2(c1(4)) =0
([13], [11], [3]). Under these assumptions, every Carathéodory function K :
0 x R — R is S2-regular, i.e. the function K(s,t) = K(t, f(t + s)) is £2-
measurable for every f € LO(Q) (see [3]).

REMARK 1. It is obvious that if K is a X -regular Carathéodory function,
then its absolute value |K| defined by |K|(t,u) = |K(t,u)| is also a -
regular Carathéodory function. Thus, the integral

| IK( f(E+9)|dun(s, t),
QxQ

exists for every f € L%(Q). By the Fubini-Tonelli theorem, the integral
VIK(, £+ 9))ldu(t),
Q

exists for a.e. s € 2 and is a X-measurable function of the variable s € ).

2. Notations and definitions

We are going now to define the modular function spaces Lg(Q) which
will play the role of field of solutions of the integral equation. For the sake
of convenience, we recall some notions concerning such spaces (see [12]).

A functional p : L%(Q2) — R{ = [0, +00)] is called a modular on L°(£) if
it satisfies the following conditions:
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1) p(0) =0,
2) p(—=f) = p(f),
3) plaf + Bg) < p(f) + p(g) for f,g € L°(Q),a,6>0,a+ [ =1.

If moreover p satisfies the condition

3°) p(af +Bg) < ap(f) + Bp(g) for f,g € L°(N), 2, > 0,0+ B =1,

then p is called a convez modular on L°(£2). The linear space Lg(Q) of func-
tions f € L%(Q) such that p(Af) — 0 as A — 07 is called the modular space
generated by p. In case of a convex modular p, the map || - ||, : LY(Q) — R§
= [0, +00[ defined by

(3) I fllp = inf{u > 0: p(f/u) < 1}

is a norm on LY(12). Consequently ||fn — fll, = 0 (fn,f € L3(2),n =
1,2,...) is equivalent to the condition p(A(f, — f)) — 0 as n — oo for every
A > 0. Besides the norm convergence, there is defined in Lg(Q) the modular
convergence (p-convergence) by the condition p(A(f, — f)) = 0asn — o0
for some A > 0; these kinds of convergence are not equivalent, in general.

We will say that Lg(ﬂ) is measure bounded (see [14]), if || ||, — 0 implies
frn — 0 in measure on £2. It is obvious that every norm-closed subset of a
measure bounded modular space Lg(Q) is also measure bounded.

EXAMPLES 2.

(a) A norm p = ||-|| in a normed linear space X C L%(Q) is always a convex
modular and || - || = || - [l,, L3(2) = X; in this case, norm convergence
and modular convergence are equivalent.

(b) Let @ be the family of all functions ¢ : @ x Rf — R} such that o(t, u)
is a X-measurable function of ¢ for every u > 0 and is a nondecreasing,
continuous function of u for every t € (2, such that (¢, 0) = 0, p(¢t,u) >
0 for w > 0 and ¢(t,u) — +o00 as u — +oo for all t € 2. Then p defined
by the formula

(4) p(f) = § o, 17 (®))du()
Q

for f € L%(9) is a modular on L%(Q2). If p(t,u) is a convex function of
u > 0 for all t € Q, then p is a convex modular on L%(?) and in this
case the family of such functions ¢ will be denoted by ®.. The modular
space Lg(Q) is called a generalized Orlicz space or Musielak-Orlicz space
and is denoted by L¥(Q).

It is easily seen that if the function ¢ satisfies the further condition:
for every € > 0 and A € ¥ with u(A) < 400, we have

84(€) := ess infycg0(t,€) > 0,
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then the Musielak-Orlicz space L¥ is measure bounded.

If o depends only on the second variable u, then (4) becomes of the
form

p(f) = § oI ()))dp(t),
Q

and L¥(Q) is called an Orlicz space; the family of such functions will
be denoted by #° and by ®9 the convex ones.

It is clear that every Orlicz space is measure bounded.

3. An embedding result

Let L : @ — RY be a E-measurable function such that L # 0 and
L e LYR). Let ¢ : © x Rf — RY be such that 9(t,u) is a L-measurable
function of ¢t € Q for all w > 0, and a continuous, concave and nondecreasing
function of u > 0 for every t € , such that ¥(¢,0) = 0, ¥(¢,u) > 0 for u > 0,
P(t,u) — 0o as u — oo for all t € Q. The family of all functions v satisfying
the above assumptions will be denoted by V. For a given function ¢ € ¥, a
Yr-regular Carathéodory kernel function K will be called (L, v)o-Lipschitz
if |K(t,uw)] < L(t)yY(t, |ul) for all t € Q and u € R.

We shall still need the following assumption on the modular p on L(Q2).
We say that p is subbounded with respect to the operation + on €2, if there
are a constant C > 1 and a nonnegative function h € L*°(Q2) such that for
every f € Lg(Q) and s € (), there holds the inequality

p(f(-+5)) < p(Cf) + h(s).
If the above inequality holds with h = 0, we call p strongly subbounded with
respect to the operation + on €.

The following theorem is obtained by an easy change of the proof of
Theorem 1 in [13].

THEOREM 1. Let p be a conver modular on L9(Q), subbounded with respect to
the operation + on Q. Let K be a Lr-regular, (L,)o-Lipschitz Carathéodory
function with L: Q - RY, 0 # L € LY(Q). Finally, let

J L@&w(t, )IF(#)ldu(t) < +oo
Q

for every f € LY(Q). Then there holds
L) c DomT.

EXAMPLE 3. Let ¢ € 8% be an N-function, i.e. lim,_ o+ u~t¢(u) = 0 and
limy 0o v~ p(u) = +o00. Then the function ¢* : Rf — R{ defined by
©*(u) = sup,soluv — @(v)] for u > 0, called coniugate to ¢ in the sense
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of Young (see [12]), also belongs to @0 and it is an N-function. The modu-
lars
p(f) = Y o(If(®))du(t) and p*(£) = | o*(1F($)])dn(t)
Q 1)

define two Orlicz spaces L?(Q2) = L9(f2) and LY (Q) = Lg. (). It is obvious
that when  is a locally compact group with respect to the operation +,
p, p* are always subbounded with respect to +, since they are invariant with
respect +.

Now, let K be a X-regular, (L, v )o-Lipschitz Carathéodory kernel func-
tion with L : @ — R{ such that 0 # L € L!(2) and ¢ € ¥. Moreover, let
L(-)¥(-,1) € L¥*(Q). It is easily deduced from Theorem 1 that then there
holds L9(€2) € DomT.

4. Main results

In [13] and [11] there was obtained a theorem on existence and uniqueness
of a solution f € Lg(ﬂ) of the integral equation (1), applying Banach fixed
point principle.

Here, we are going to prove an existence theorem for solutions of (1) in
Lg(Q), applying Schauder fixed point principle. This principle states in case
of a Banach space X with norm || - || that if T maps a nonempty, compact,
convex subset Cy of X into itself continuously, then there exists a point
zp € Cp such that T'zg = z¢ (see e.g. [5)]).

The following proposition is an immediate consequence of the Schauder
fixed point principle:

PROPOSITION 1. Let X be a Banach space with norm || - || and let Cp be a
nonempty, closed, convex subset of X. Let T : Cy — Cy be a continuous map
of Cp into itself such that the image TCy of Cy is conditionally compact in
X. Then there exists a point xg € Cy such that Tzq = xp.

We shall apply Proposition 1 in case when X = LY(Q) or X = EB(Q),
where p is a convex modular in L%(2) and E(R2) is the set of finite elements
of LY(f), i.e. the set of functions f € L) such that p(Af) < +oo for all
A > 0. We have ES(Q) C LY(Q2) and we provide both spaces with the norm
Il - llp, defined by (3). It is well-known that Eg(Q) is a norm-closed sub-
space of L3(€2) and so if the space Lg(Q) is complete and measure bounded
with respect to the norm | - ||, then EJ(f) is also complete and measure
bounded with respect to || - || ,. In the sequel we shall need still some further
assumptions on a modular p on L%(Q). We call p to be monotone if from
f,9 € L%(Q), |f] < |g| follows p(f) < p(g). Let us remark that in case when
p is a norm in Lg(Q), and p is monotone, the normed vector space Lg(Q)
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is called a preideal space (see e.g. [14]). A monotone modular p satisfies the
equality p(|f]) = o(f) for every f € L%(Q2). We say that p is J-convez, if
for every p : @ — R such that p € L}(Q) and |jp|l1 = 1 and for every
measurable F : @ x  — R there holds the inequality

p(§pF(,t)du(t)) < [ p(B)p(F(-,8))du(t),
Q Q

both sides of this inequality being meaningful. (For connections between
J-convexity and convexity of a modular see e.g. [4]). Finally, we say that the
pair {p, %} with ¢ € ¥ is c-properly directed, if there exists a number ¢ > 0
such that for every A > 0 there exists a number C > 0 such that A™1C) > ¢
and for each f € LO(f), f > 0, there holds the inequality

plCXY(t, | £ ()] < p(AS)

for all t € Q up to a fixed set Qy € ¥ of measure zero. If ¥(,u) = u, for
every t € Q, and u > 0, then {p, v} is a c-properly directed pair with ¢ =1
and C) = A. There holds the following embedding theorem:

THEOREM 2. Let the modular p on L%(Q) be convez, finite, monotone, J-
convezr and strongly subbounded with a constant C > 1 with respect to the
operation +. Let K be a Tr-reqular, (L,v)o-Lipschitz Carathéodory kernel
function, L: Q — R}, with 0 # L € LY(Q), ¥ € ¥, L(-)¥(-, 1) € L}(Q) and
S L()¥(t, 1)1 f(t)ldu(t) < +oo for every f € Lg(Q). Moreover, let {p, vy} be
a c-properly directed pair. Denote by X any of the two spaces Lg(ﬂ), ES(Q)
and put Bo(X) = {f € X : ||fll, £ 1}. Let Tf(s) = §q K(t, f(t + 5))dpu(t)
and T\f = Tf — g, where g € X is such that ||g|l1 £ 0 < 1. Finally let us
suppose that ||L|l1 < cC~(1 — 6). Then Ty maps B,(X) into itself.

Proof. First, let us remark that by Theorem 1, X C L(€) C DomT. Apply-
ing the monotonicity of p, the (L, )o-Lipschitz condition and J-convexity
of p we obtain for arbitrary a > 0

p(aT ) < pla JIK( f(t+))ldu())

<o}

Q

< [ p®plellLllw(t, 1 £t + ) DIdu()-

Q

Let A > 0 be fixed. Since the pair {p, 1} is c-properly directed, taking o > 0
so small that a||L|j; < C) we obtain

pledl Ll 1 f (¢ + D] < p(AIf(E +-)1)-

< B-e R

(Ll |F(E+))du(t))
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Hence, by the strong subboundedness of p with a constant C' > 1, we obtain

p(aTf) < [ p(t)p(AIf(t + ))du(t)
Q

< { p(t)p(ACf)du(t) = p(ACf).
Q

Taking a = C\/||L||1, we thus obtain
C»
p(72-11) < p3C1)
l|L{l2
for A > 0. But A71C)y, > ¢ for A > 0, so from the last inequality we obtain

C
o (WW) < p(XCS)

for A > 0. If we put A = 1/u, we get
cT -
o(SF) < otuien)

ull Ll
for u > 0. Hence we obtain the inequality
C
(5) ITFllp < —NLUL -

Since ||L||1 < cC~}(1 —6), we get
ITfll, < (1 =0)Ifllp,
if f € X. Now, supposing f € B, we have {|f|, <1 and so
ITifll,<(1-6)+6=1.
This shows that T} : B, — B,.

It is easily seen that from Proposition 1 and Theorem 2 there follows the
following

THEOREM 3. Let all assumptions of Theorem 2 be satisfied, and let the space
L%(Q) be complete with respect to the norm || - ||, and measure bounded. Let
X = LS(Q) or X = ES(Q). Finally, let us suppose that the image TB,(X)
of the unit ball B,(X) in X by means of the operator defined by (2) is
conditionally compact in X and T is continuous in B,(X). Then the integral
equation (1) has a solution f € B,(X).

Here we formulate some sufficient conditions which guarantees the con-
tinuity of the operator T : B,(X) — B,(X) with conditionally compact
range.

From now on we will work with a locally compact and o-compact abelian
group (2, +), endowed with its Haar measure u. In order to do it we need
to introduce some notions concerning the operator taken into consideration.
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First of all let us remark that if p is a norm in Lg(Q) and is monotone, then
LY(9) is a preideal space (see [14]). We may write

(TF)(s) = | K(t, £+ s))dplt) = | K (¢ 5, F(©)du(t), s € Q,
Q Q
and we will put
(TF)(s) = [ IK(t — 5, F(t)ldu(t), s € .
0
Moreover it is easy to see that T : B,(X) — By(X).

Now for a sequence of measurable sets F,, C Q, with E;y DO EB»,...,
mes(NE,) = 0, we will write briefly E,, | @, while E,, T E means that E, C
E and E\E,, | 0. Moreover we will denote by Pg, the projection operator on
En, ie. Pg,(9)(t,s) = xE.(s)9(t, s), for any measurable function g defined
on  x . If the function g depends on s only, then simply Pg,(g)(s) =
XE.()9(s).

Now, we say that the operator T': B,(X) — B,(X) is uniformly regular
(see [14]) if there holds the following conditions:

(a) for any sequence E, C Q,E, | 0,

i K(t—-, fe)du@)l| =0
Jm, s [ S (e sl 0,
and B
lim sup | Pe.Tfllp = 0;
n=+00 £¢ B, ()| flloo <1 g
(b) there exists sets Q; T Q such that for every € > 0 and for any sequence
Qn 1 0 with @, C Q) x Q4 (for some fixed k), there holds:

lim sup mes{s € Q: S |Po, K(t—s, f(t))|dt > e} =0.
" feB,(0),1flleo<1 Q

Then, from [14] we may formulate the following theorem:

THEOREM 4. Let X be measure bounded and let the operator T : B,(X) —
B,(X) be uniformly regular. Then T is continuous with conditionally com-
pact range.

REMARKS.

1. In [9] there is a description of complete continuity of integral operators
of Urysohn type in LP-spaces. In particular, corresponding results can
be obtained for convolution integral operators.

2. For Musielak-Orlicz spaces, there are known some necessary and suf-
ficient conditions in order that a set A C X be conditionally compact
in X, where X = L(Q) or X = E)(R2), (see e.g. (8], [7], [12]).
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3. In case of a general modular p on L°(Q2) there are not known any
necessary and sufficient conditions in order that a set A C X be con-
ditionally compact in X, where X = Lg(Q) or X = E)(Q).
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