

Carlo Bardaro, Julian Musielak, Gianluca Vinti

ON NONLINEAR INTEGRAL EQUATIONS IN SOME FUNCTION SPACES

Abstract. There are established some conditions for existence of solutions of a nonlinear integral equation $Tf = f + g$, where T is a convolution-type integral operator.

1. Preliminaries

Let (Ω, Σ, μ) be a σ -finite, complete measure space and let $L^0(\Omega)$ denote the space of all Σ -measurable, finite μ -a.e., real valued functions f on Ω , with equality μ -a.e. Let $+$: $\Omega \times \Omega \rightarrow \Omega$ be a commutative operation on Ω such that $L^0(\Omega)$ is invariant with respect to $+$, i.e. $f \in L^0(\Omega)$ implies $f(\cdot + s) \in L^0(\Omega)$ for all $s \in \Omega$.

Let $K : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a *Carathéodory function*, i.e. $K(t, u)$ is Σ -measurable with respect to $t \in \Omega$ for every $u \in \mathbb{R}$ and is continuous with respect to u for every $t \in \Omega$. If, moreover, $K(t, 0) = 0$ for all $t \in \Omega$, we call K a *Carathéodory kernel function*.

We are going to investigate the existence of solution of the nonlinear integral equations of type

$$(1) \quad \int_{\Omega} K(t, f(t + s))d\mu(t) = f(s) + g(s),$$

where $g \in L^0(\Omega)$ is given, generated by the *convolution-type (nonlinear) integral operator* T defined by

$$(2) \quad (Tf)(s) = \int_{\Omega} K(t, f(t + s))d\mu(t), \quad s \in \Omega.$$

We shall look for solutions f of this equation belonging to some subspaces $L_{\rho}^0(\Omega)$ of $L^0(\Omega)$, being $L_{\rho}^0(\Omega)$ a modular function space. By $\text{Dom}T$ we shall

1991 *Mathematics Subject Classification*: 47G10, 45G05, 47H30, 46E30.

Key words and phrases: integral operator, compact operator, convolution-type integral operator, Orlicz space, modular space.

denote the *domain of the operator* T , i.e. the set of all $f \in L^0(\Omega)$ such that (2) exists for μ -a.e. $s \in \Omega$ and it is a Σ -measurable function of $s \in \Omega$.

If K is a Carathéodory function, it is easily seen that for $f \in L^0(\Omega)$ we have $K(\cdot, f(\cdot + s)) \in L^0(\Omega)$ for all $s \in \Omega$. In order to be able to apply the Fubini-Tonelli theorem, we should know that $K(t, f(t + s))$ is a measurable function on $\Omega \times \Omega$. Let Σ_0 be the smallest σ -algebra of subsets of $\Omega \times \Omega$ containing the sets of type $A \times B$ for $A, B \in \Sigma$, and let Σ_π be any σ -algebra of subsets of $\Omega \times \Omega$ such that $\Sigma_0 \subset \Sigma_\pi$. We denote by μ_0 the product measure on Σ_0 , i.e. $\mu_0(A \times B) = \mu(A)\mu(B)$ for $A, B \in \Sigma$, and we denote by μ_π any extension of the measure μ_0 from Σ_0 to Σ_π . We denote by \mathcal{K}_π the class of all Carathéodory functions $K : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ such that the function $\widetilde{K} : \Omega \times \Omega \rightarrow \mathbb{R}$ defined by $\widetilde{K}(s, t) = K(t, f(t + s))$ is Σ_π -measurable for every $f \in L^0(\Omega)$. Functions $K \in \mathcal{K}_\pi$ will be called Σ_π -regular Carathéodory functions.

EXAMPLE 1. Let μ be a σ -finite and complete measure on the σ -algebra Σ of all Lebesgue measurable subsets of $\Omega = \mathbb{R}$ and let μ^2 be the product measure on the σ -algebra Σ^2 of all Lebesgue measurable subsets of \mathbb{R}^2 . Let $+$ be a commutative operation on \mathbb{R} such that \mathbb{R} , $L^0(\mathbb{R})$ are invariant. We shall write $\sigma(s, t) = s + t$, and we suppose that σ is (Σ^2, Σ) -measurable, i.e. if $A \in \Sigma$ then $\sigma^{-1}(A) \in \Sigma^2$. Moreover, we suppose that μ^2 is σ -absolutely continuous (σ -a.c.) with respect to μ , i.e. if $A \in \Sigma$ and $\mu(A) = 0$, then $\mu^2(\sigma^{-1}(A)) = 0$ ([13], [11], [3]). Under these assumptions, every Carathéodory function $K : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is Σ^2 -regular, i.e. the function $\widetilde{K}(s, t) = K(t, f(t + s))$ is Σ^2 -measurable for every $f \in L^0(\Omega)$ (see [3]).

REMARK 1. It is obvious that if K is a Σ_π -regular Carathéodory function, then its absolute value $|K|$ defined by $|K|(t, u) = |K(t, u)|$ is also a Σ_π -regular Carathéodory function. Thus, the integral

$$\int_{\Omega \times \Omega} |K(t, f(t + s))| d\mu_\pi(s, t),$$

exists for every $f \in L^0(\Omega)$. By the Fubini-Tonelli theorem, the integral

$$\int_{\Omega} |K(t, f(t + s))| d\mu(t),$$

exists for a.e. $s \in \Omega$ and is a Σ -measurable function of the variable $s \in \Omega$.

2. Notations and definitions

We are going now to define the modular function spaces $L_\rho^0(\Omega)$ which will play the role of field of solutions of the integral equation. For the sake of convenience, we recall some notions concerning such spaces (see [12]).

A functional $\rho : L^0(\Omega) \rightarrow \overline{\mathbb{R}_0^+} = [0, +\infty]$ is called a *modular* on $L^0(\Omega)$ if it satisfies the following conditions:

- 1) $\rho(0) = 0$,
- 2) $\rho(-f) = \rho(f)$,
- 3) $\rho(\alpha f + \beta g) \leq \rho(f) + \rho(g)$ for $f, g \in L^0(\Omega)$, $\alpha, \beta \geq 0$, $\alpha + \beta = 1$.

If moreover ρ satisfies the condition

- 3') $\rho(\alpha f + \beta g) \leq \alpha \rho(f) + \beta \rho(g)$ for $f, g \in L^0(\Omega)$, $\alpha, \beta \geq 0$, $\alpha + \beta = 1$,

then ρ is called a *convex modular* on $L^0(\Omega)$. The linear space $L_\rho^0(\Omega)$ of functions $f \in L^0(\Omega)$ such that $\rho(\lambda f) \rightarrow 0$ as $\lambda \rightarrow 0^+$ is called the *modular space generated by ρ* . In case of a convex modular ρ , the map $\|\cdot\|_\rho : L_\rho^0(\Omega) \rightarrow \mathbb{R}_0^+ = [0, +\infty[$ defined by

$$(3) \quad \|f\|_\rho = \inf\{u > 0 : \rho(f/u) \leq 1\}$$

is a norm on $L_\rho^0(\Omega)$. Consequently $\|f_n - f\|_\rho \rightarrow 0$ ($f_n, f \in L_\rho^0(\Omega)$, $n = 1, 2, \dots$) is equivalent to the condition $\rho(\lambda(f_n - f)) \rightarrow 0$ as $n \rightarrow \infty$ for every $\lambda > 0$. Besides the norm convergence, there is defined in $L_\rho^0(\Omega)$ the modular convergence (ρ -convergence) by the condition $\rho(\lambda(f_n - f)) \rightarrow 0$ as $n \rightarrow \infty$ for some $\lambda > 0$; these kinds of convergence are not equivalent, in general.

We will say that $L_\rho^0(\Omega)$ is *measure bounded* (see [14]), if $\|f\|_\rho \rightarrow 0$ implies $f_n \rightarrow 0$ in measure on Ω . It is obvious that every norm-closed subset of a measure bounded modular space $L_\rho^0(\Omega)$ is also measure bounded.

EXAMPLES 2.

- (a) A norm $\rho = \|\cdot\|$ in a normed linear space $X \subset L^0(\Omega)$ is always a convex modular and $\|\cdot\| = \|\cdot\|_\rho$, $L_\rho^0(\Omega) = X$; in this case, norm convergence and modular convergence are equivalent.
- (b) Let Φ be the family of all functions $\varphi : \Omega \times \mathbb{R}_0^+ \rightarrow \mathbb{R}_0^+$ such that $\varphi(t, u)$ is a Σ -measurable function of t for every $u \geq 0$ and is a nondecreasing, continuous function of u for every $t \in \Omega$, such that $\varphi(t, 0) = 0$, $\varphi(t, u) > 0$ for $u > 0$ and $\varphi(t, u) \rightarrow +\infty$ as $u \rightarrow +\infty$ for all $t \in \Omega$. Then ρ defined by the formula

$$(4) \quad \rho(f) = \int_{\Omega} \varphi(t, |f(t)|) d\mu(t)$$

for $f \in L^0(\Omega)$ is a modular on $L^0(\Omega)$. If $\varphi(t, u)$ is a convex function of $u \geq 0$ for all $t \in \Omega$, then ρ is a convex modular on $L^0(\Omega)$ and in this case the family of such functions φ will be denoted by Φ_c . The modular space $L_\rho^0(\Omega)$ is called a *generalized Orlicz space* or *Musielak-Orlicz space* and is denoted by $L^\varphi(\Omega)$.

It is easily seen that if the function φ satisfies the further condition: for every $\varepsilon > 0$ and $A \in \Sigma$ with $\mu(A) < +\infty$, we have

$$\delta_A(\varepsilon) := \text{ess inf}_{t \in A} \varphi(t, \varepsilon) > 0,$$

then the Musielak-Orlicz space L^φ is measure bounded.

If φ depends only on the second variable u , then (4) becomes of the form

$$\rho(f) = \int_{\Omega} \varphi(|f(t)|) d\mu(t),$$

and $L^\varphi(\Omega)$ is called an *Orlicz space*; the family of such functions will be denoted by Φ^0 and by Φ_c^0 the convex ones.

It is clear that every Orlicz space is measure bounded.

3. An embedding result

Let $L : \Omega \rightarrow \mathbb{R}_0^+$ be a Σ -measurable function such that $L \neq 0$ and $L \in L^1(\Omega)$. Let $\psi : \Omega \times \mathbb{R}_0^+ \rightarrow \mathbb{R}_0^+$ be such that $\psi(t, u)$ is a Σ -measurable function of $t \in \Omega$ for all $u \geq 0$, and a continuous, concave and nondecreasing function of $u \geq 0$ for every $t \in \Omega$, such that $\psi(t, 0) = 0$, $\psi(t, u) > 0$ for $u > 0$, $\psi(t, u) \rightarrow \infty$ as $u \rightarrow \infty$ for all $t \in \Omega$. The family of all functions ψ satisfying the above assumptions will be denoted by Ψ . For a given function $\psi \in \Psi$, a Σ_π -regular Carathéodory kernel function K will be called $(L, \psi)_0$ -Lipschitz if $|K(t, u)| \leq L(t)\psi(t, |u|)$ for all $t \in \Omega$ and $u \in \mathbb{R}$.

We shall still need the following assumption on the modular ρ on $L^0(\Omega)$. We say that ρ is *subbounded* with respect to the operation $+$ on Ω , if there are a constant $C \geq 1$ and a nonnegative function $h \in L^\infty(\Omega)$ such that for every $f \in L_\rho^0(\Omega)$ and $s \in \Omega$, there holds the inequality

$$\rho(f(\cdot + s)) \leq \rho(Cf) + h(s).$$

If the above inequality holds with $h = 0$, we call ρ *strongly subbounded* with respect to the operation $+$ on Ω .

The following theorem is obtained by an easy change of the proof of Theorem 1 in [13].

THEOREM 1. *Let ρ be a convex modular on $L^0(\Omega)$, subbounded with respect to the operation $+$ on Ω . Let K be a Σ_π -regular, $(L, \psi)_0$ -Lipschitz Carathéodory function with $L : \Omega \rightarrow \mathbb{R}_0^+$, $0 \neq L \in L^1(\Omega)$. Finally, let*

$$\int_{\Omega} L(t)\psi(t, 1)|f(t)| d\mu(t) < +\infty$$

for every $f \in L_\rho^0(\Omega)$. Then there holds

$$L_\rho^0(\Omega) \subset \text{Dom}T.$$

EXAMPLE 3. Let $\varphi \in \Phi_c^0$ be an N -function, i.e. $\lim_{u \rightarrow 0^+} u^{-1}\varphi(u) = 0$ and $\lim_{u \rightarrow \infty} u^{-1}\varphi(u) = +\infty$. Then the function $\varphi^* : \mathbb{R}_0^+ \rightarrow \mathbb{R}_0^+$ defined by $\varphi^*(u) = \sup_{v>0} [uv - \varphi(v)]$ for $u \geq 0$, called *conjugate to φ* in the sense

of Young (see [12]), also belongs to Φ_c^0 and it is an N -function. The modulars

$$\rho(f) = \int_{\Omega} \varphi(|f(t)|) d\mu(t) \text{ and } \rho^*(f) = \int_{\Omega} \varphi^*(|f(t)|) d\mu(t)$$

define two Orlicz spaces $L^\varphi(\Omega) = L_\rho^0(\Omega)$ and $L^{\varphi^*}(\Omega) = L_{\rho^*}^0(\Omega)$. It is obvious that when Ω is a locally compact group with respect to the operation $+$, ρ, ρ^* are always subbounded with respect to $+$, since they are invariant with respect $+$.

Now, let K be a Σ_π -regular, $(L, \psi)_0$ -Lipschitz Carathéodory kernel function with $L : \Omega \rightarrow \mathbb{R}_0^+$ such that $0 \neq L \in L^1(\Omega)$ and $\psi \in \Psi$. Moreover, let $L(\cdot)\psi(\cdot, 1) \in L^{\varphi^*}(\Omega)$. It is easily deduced from Theorem 1 that then there holds $L_\rho^0(\Omega) \subset \text{Dom}T$.

4. Main results

In [13] and [11] there was obtained a theorem on existence and uniqueness of a solution $f \in L_\rho^0(\Omega)$ of the integral equation (1), applying Banach fixed point principle.

Here, we are going to prove an existence theorem for solutions of (1) in $L_\rho^0(\Omega)$, applying Schauder fixed point principle. This principle states in case of a Banach space X with norm $\|\cdot\|$ that if T maps a nonempty, compact, convex subset C_0 of X into itself continuously, then there exists a point $x_0 \in C_0$ such that $Tx_0 = x_0$ (see e.g. [5]).

The following proposition is an immediate consequence of the Schauder fixed point principle:

PROPOSITION 1. *Let X be a Banach space with norm $\|\cdot\|$ and let C_0 be a nonempty, closed, convex subset of X . Let $T : C_0 \rightarrow C_0$ be a continuous map of C_0 into itself such that the image TC_0 of C_0 is conditionally compact in X . Then there exists a point $x_0 \in C_0$ such that $Tx_0 = x_0$.*

We shall apply Proposition 1 in case when $X = L_\rho^0(\Omega)$ or $X = E_\rho^0(\Omega)$, where ρ is a convex modular in $L^0(\Omega)$ and $E_\rho^0(\Omega)$ is the set of finite elements of $L_\rho^0(\Omega)$, i.e. the set of functions $f \in L^0(\Omega)$ such that $\rho(\lambda f) < +\infty$ for all $\lambda > 0$. We have $E_\rho^0(\Omega) \subset L_\rho^0(\Omega)$ and we provide both spaces with the norm $\|\cdot\|_\rho$, defined by (3). It is well-known that $E_\rho^0(\Omega)$ is a norm-closed subspace of $L_\rho^0(\Omega)$ and so if the space $L_\rho^0(\Omega)$ is complete and measure bounded with respect to the norm $\|\cdot\|_\rho$, then $E_\rho^0(\Omega)$ is also complete and measure bounded with respect to $\|\cdot\|_\rho$. In the sequel we shall need still some further assumptions on a modular ρ on $L^0(\Omega)$. We call ρ to be *monotone* if from $f, g \in L^0(\Omega)$, $|f| \leq |g|$ follows $\rho(f) \leq \rho(g)$. Let us remark that in case when ρ is a norm in $L_\rho^0(\Omega)$, and ρ is monotone, the normed vector space $L_\rho^0(\Omega)$

is called a *preideal space* (see e.g. [14]). A monotone modular ρ satisfies the equality $\rho(|f|) = \rho(f)$ for every $f \in L^0(\Omega)$. We say that ρ is *J-convex*, if for every $p : \Omega \rightarrow \mathbb{R}_0^+$ such that $p \in L^1(\Omega)$ and $\|p\|_1 = 1$ and for every measurable $F : \Omega \times \Omega \rightarrow \mathbb{R}_0^+$ there holds the inequality

$$\rho\left(\int_{\Omega} p(t)F(\cdot, t)d\mu(t)\right) \leq \int_{\Omega} p(t)\rho(F(\cdot, t))d\mu(t),$$

both sides of this inequality being meaningful. (For connections between J-convexity and convexity of a modular see e.g. [4]). Finally, we say that the pair $\{\rho, \psi\}$ with $\psi \in \Psi$ is *c-properly directed*, if there exists a number $c > 0$ such that for every $\lambda > 0$ there exists a number $C_{\lambda} > 0$ such that $\lambda^{-1}C_{\lambda} \geq c$ and for each $f \in L^0(\Omega)$, $f \geq 0$, there holds the inequality

$$\rho[C_{\lambda}\psi(t, |f(\cdot)|)] \leq \rho(\lambda f)$$

for all $t \in \Omega$ up to a fixed set $\Omega_0 \in \Sigma$ of measure zero. If $\psi(t, u) = u$, for every $t \in \Omega$, and $u \geq 0$, then $\{\rho, \psi\}$ is a c-properly directed pair with $c = 1$ and $C_{\lambda} = \lambda$. There holds the following embedding theorem:

THEOREM 2. *Let the modular ρ on $L^0(\Omega)$ be convex, finite, monotone, J-convex and strongly subbounded with a constant $C \geq 1$ with respect to the operation $+$. Let K be a Σ_{π} -regular, $(L, \psi)_0$ -Lipschitz Carathéodory kernel function, $L : \Omega \rightarrow \mathbb{R}_0^+$, with $0 \neq L \in L^1(\Omega)$, $\psi \in \Psi$, $L(\cdot)\psi(\cdot, 1) \in L^1(\Omega)$ and $\int_{\Omega} L(t)\psi(t, 1)|f(t)|d\mu(t) < +\infty$ for every $f \in L_{\rho}^0(\Omega)$. Moreover, let $\{\rho, \psi\}$ be a c-properly directed pair. Denote by X any of the two spaces $L_{\rho}^0(\Omega)$, $E_{\rho}^0(\Omega)$ and put $B_{\rho}(X) = \{f \in X : \|f\|_{\rho} \leq 1\}$. Let $Tf(s) = \int_{\Omega} K(t, f(t+s))d\mu(t)$ and $T_1f = Tf - g$, where $g \in X$ is such that $\|g\|_1 \leq \theta < 1$. Finally let us suppose that $\|L\|_1 \leq cC^{-1}(1 - \theta)$. Then T_1 maps $B_{\rho}(X)$ into itself.*

Proof. First, let us remark that by Theorem 1, $X \subset L_{\rho}^0(\Omega) \subset \text{Dom}T$. Applying the monotonicity of ρ , the $(L, \psi)_0$ -Lipschitz condition and *J*-convexity of ρ we obtain for arbitrary $\alpha > 0$

$$\begin{aligned} \rho(\alpha Tf) &\leq \rho\left(\alpha \int_{\Omega} |K(t, f(t+\cdot))|d\mu(t)\right) \\ &\leq \rho\left(\int_{\Omega} p(t)\alpha\|L\|_1\psi(t, |f(t+\cdot)|)d\mu(t)\right) \\ &\leq \int_{\Omega} p(t)\rho[\alpha\|L\|_1\psi(t, |f(t+\cdot)|)]d\mu(t). \end{aligned}$$

Let $\lambda > 0$ be fixed. Since the pair $\{\rho, \psi\}$ is c-properly directed, taking $\alpha > 0$ so small that $\alpha\|L\|_1 \leq C_{\lambda}$ we obtain

$$\rho[\alpha\|L\|_1\psi(t, |f(t+\cdot)|)] \leq \rho(\lambda|f(t+\cdot)|).$$

Hence, by the strong subboundedness of ρ with a constant $C \geq 1$, we obtain

$$\begin{aligned}\rho(\alpha Tf) &\leq \int_{\Omega} p(t)\rho(\lambda|f(t + \cdot)|)d\mu(t) \\ &\leq \int_{\Omega} p(t)\rho(\lambda Cf)d\mu(t) = \rho(\lambda Cf).\end{aligned}$$

Taking $\alpha = C_{\lambda}/\|L\|_1$, we thus obtain

$$\rho\left(\frac{C_{\lambda}}{\|L\|_1}Tf\right) \leq \rho(\lambda Cf)$$

for $\lambda > 0$. But $\lambda^{-1}C_{\lambda} \geq c$ for $\lambda > 0$, so from the last inequality we obtain

$$\rho\left(\frac{c}{\|L\|_1}\lambda Tf\right) \leq \rho(\lambda Cf)$$

for $\lambda > 0$. If we put $\lambda = 1/u$, we get

$$\rho\left(\frac{cTf}{u\|L\|_1}\right) \leq \rho(u^{-1}Cf)$$

for $u > 0$. Hence we obtain the inequality

$$(5) \quad \|Tf\|_{\rho} \leq \frac{C}{c}\|L\|_1\|f\|_{\rho}.$$

Since $\|L\|_1 \leq cC^{-1}(1 - \theta)$, we get

$$\|Tf\|_{\rho} \leq (1 - \theta)\|f\|_{\rho},$$

if $f \in X$. Now, supposing $f \in B_{\rho}$, we have $\|f\|_{\rho} \leq 1$ and so

$$\|T_1f\|_{\rho} \leq (1 - \theta) + \theta = 1.$$

This shows that $T_1 : B_{\rho} \rightarrow B_{\rho}$.

It is easily seen that from Proposition 1 and Theorem 2 there follows the following

THEOREM 3. *Let all assumptions of Theorem 2 be satisfied, and let the space $L_{\rho}^0(\Omega)$ be complete with respect to the norm $\|\cdot\|_{\rho}$ and measure bounded. Let $X = L_{\rho}^0(\Omega)$ or $X = E_{\rho}^0(\Omega)$. Finally, let us suppose that the image $TB_{\rho}(X)$ of the unit ball $B_{\rho}(X)$ in X by means of the operator defined by (2) is conditionally compact in X and T is continuous in $B_{\rho}(X)$. Then the integral equation (1) has a solution $f \in B_{\rho}(X)$.*

Here we formulate some sufficient conditions which guarantees the continuity of the operator $T : B_{\rho}(X) \rightarrow B_{\rho}(X)$ with conditionally compact range.

From now on we will work with a locally compact and σ -compact abelian group $(\Omega, +)$, endowed with its Haar measure μ . In order to do it we need to introduce some notions concerning the operator taken into consideration.

First of all let us remark that if ρ is a norm in $L_\rho^0(\Omega)$ and is monotone, then $L_\rho^0(\Omega)$ is a preideal space (see [14]). We may write

$$(Tf)(s) = \int\limits_{\Omega} K(t, f(t+s))d\mu(t) = \int\limits_{\Omega} K(t-s, f(t))d\mu(t), s \in \Omega,$$

and we will put

$$(\tilde{T}f)(s) = \int\limits_{\Omega} |K(t-s, f(t))|d\mu(t), s \in \Omega.$$

Moreover it is easy to see that $\tilde{T} : B_\rho(X) \rightarrow B_\rho(X)$.

Now for a sequence of measurable sets $E_n \subset \Omega$, with $E_1 \supseteq E_2, \dots$, $\text{mes}(\cap E_n) = 0$, we will write briefly $E_n \downarrow \emptyset$, while $E_n \uparrow E$ means that $E_n \subseteq E$ and $E \setminus E_n \downarrow \emptyset$. Moreover we will denote by P_{E_n} the projection operator on E_n , i.e. $P_{E_n}(g)(t, s) = \chi_{E_n}(s)g(t, s)$, for any measurable function g defined on $\Omega \times \Omega$. If the function g depends on s only, then simply $P_{E_n}(g)(s) = \chi_{E_n}(s)g(s)$.

Now, we say that the operator $T : B_\rho(X) \rightarrow B_\rho(X)$ is *uniformly regular* (see [14]) if there holds the following conditions:

(a) for any sequence $E_n \subseteq \Omega$, $E_n \downarrow \emptyset$,

$$\lim_{n \rightarrow +\infty} \sup_{f \in B_\rho(\Omega)} \left\| \int\limits_{E_n} |K(t-\cdot, f(t))|d\mu(t) \right\|_\rho = 0$$

and

$$\lim_{n \rightarrow +\infty} \sup_{f \in B_\rho(\Omega), \|f\|_\infty \leq 1} \|P_{E_n} \tilde{T}f\|_\rho = 0;$$

(b) there exists sets $\Omega_k \uparrow \Omega$ such that for every $\varepsilon > 0$ and for any sequence $Q_n \downarrow \emptyset$ with $Q_n \subseteq \Omega_k \times \Omega_k$ (for some fixed k), there holds:

$$\lim_{n \rightarrow +\infty} \sup_{f \in B_\rho(\Omega), \|f\|_\infty \leq 1} \text{mes}\{s \in \Omega : \int\limits_{\Omega} |P_{Q_n} K(t-s, f(t))|dt \geq \varepsilon\} = 0.$$

Then, from [14] we may formulate the following theorem:

THEOREM 4. *Let X be measure bounded and let the operator $T : B_\rho(X) \rightarrow B_\rho(X)$ be uniformly regular. Then T is continuous with conditionally compact range.*

REMARKS.

1. In [9] there is a description of complete continuity of integral operators of Urysohn type in L^p -spaces. In particular, corresponding results can be obtained for convolution integral operators.
2. For Musielak-Orlicz spaces, there are known some necessary and sufficient conditions in order that a set $\mathcal{A} \subset X$ be conditionally compact in X , where $X = L_\rho^0(\Omega)$ or $X = E_\rho^0(\Omega)$, (see e.g. [8], [7], [12]).

3. In case of a general modular ρ on $L^0(\Omega)$ there are not known any necessary and sufficient conditions in order that a set $\mathcal{A} \subset X$ be conditionally compact in X , where $X = L_\rho^0(\Omega)$ or $X = E_\rho^0(\Omega)$.

References

- [1] C. Bardaro, J. Musielak, G. Vinti, *On absolute continuity of a modular connected with strong summability*, Commentationes Math. 34, (1994), 21–33.
- [2] C. Bardaro, J. Musielak, G. Vinti, *On the definition and properties of a general modulus of continuity in some functional spaces*, Math. Japonica 43, (1996), 445–450.
- [3] C. Bardaro, J. Musielak, G. Vinti, *On nonlinear integro-differential operators in generalized Orlicz-Sobolev spaces*, J. Approximation Theory, 105 N. 2, (2000), 238–251.
- [4] C. Bardaro, G. Vinti, *On the order of modular approximation for nets of integral operators in modular Lipschitz classes*, Functiones & Approximatio, special volume dedicated to Prof. J. Musielak, 26, (1998), 139–154.
- [5] N. Dunford, J. T. Schwartz, *Linear Operators, Part I, General Theory*, Wiley & Sons, New York, 1958.
- [6] D. Guo, V. Lakshmikantham, X. Liu, *Nonlinear Integral Equations in Abstract Spaces*, Kluwer Acad. Publ., 1996.
- [7] A. Kaminska, *On some compactness criterion for Orlicz subspaces $E_\Phi(\Omega)$* , Commentationes Math. 22, (1981), 126–136.
- [8] A. Kaminska, R. Pluciennik, *Some theorems on compactness in generalized Orlicz spaces with application of the Δ_∞ -condition*, Functiones et Approximatio 10, (1980), 135–146.
- [9] M. A. Krasnosel'skii, *Topological Methods in the Theory of Nonlinear Integral Equations*, Pergamon Press, Oxford, 1964.
- [10] M. A. Krasnosel'skii, Y. B. Rutickii, *Convex Functions and Orlicz Spaces*, P. Noordhoff Ltd, Groningen, 1961.
- [11] A. Musielak, J. Musielak, *On nonlinear integral operators in function spaces*, Math. Japonica 48, (1998), 257–266.
- [12] J. Musielak, *Orlicz spaces and modular spaces*, Lecture Notes in Math. 1034, Springer-Verlag, 1983.
- [13] J. Musielak, *On nonlinear integral operators*, Atti Sem. Mat. Fis. Univ. Modena 47, (1999), 183–190.
- [14] M. Väth, *Approximation, complete continuity and uniform measurability of Urysohn operators on general measure spaces*, Nonlinear Analysis, 33 (1998), 715–728.
- [15] M. Väth, *Volterra and Integral Equations of Vector Function*, Marcel Dekker, New York, Basel, 2000.

Carlo Bardaro

DIPARTIMENTO DI MATEMATICA E INFORMATICA

UNIVERSITÀ DEGLI STUDI

Via Vanvitelli, 1

06123 PERUGIA, ITALY

Phone: (075) 5855034

Fax: (075) 5855024-5853822

E-mail: bardaro@unipg.it

Julian Musielak

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
ADAM MICKIEWICZ UNIVERSITY

Matejki 48/49
60-769 POZNAŃ, POLAND
Phone: (61) 8666615
Fax: (61) 8662992

Gianluca Vinti
DIPARTIMENTO DI MATEMATICA E INFORMATICA
UNIVERSITÁ DEGLI STUDI
Via Vanvitelli, 1
06123 PERUGIA, ITALY
Phone: (075) 5855032
Fax: (075) 5855024-5853822
E-mail: mategian@unipg.it

Received December 10, 2001.