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O N N O N L I N E A R INTEGRAL EQUATIONS 
IN SOME F U N C T I O N SPACES 

Abstract. There axe established some conditions for existence of solutions of a non-
linear integral equation Tf = f + g, where Τ is a convolution-type integral operator. 

1. Preliminaries 
Let (Ω, Σ, μ) be a σ-finite, complete measure space and let £°(Ω) denote 

the space of all Σ-measurable, finite μ-a.e., real valued functions / on Ω, 
with equality μ-a.e. Let + : Ω χ Ω —> Ω be a commutative operation on 
Ω such that £°(Ω) is invariant with respect to +, i.e. / G L°(fl) implies 
/(· + s) G £°(Ω) for all s G Ω. 

Let ·Κ" :ΩχΚ—>Rbea Carathéodory function, i.e. K(t, u) is Σ-measur-
able with respect to t G Ω for every u G Κ and is continuous with respect 
to u for every t 6 Ω. If, moreover, K(t, 0) = 0 for all t G Ω, we call Κ a 
Carathéodory kernel function. 

We are going to investigate the existence of solution of the nonlinear 
integral equations of type 

(1) \K(t,f(t + s)W(t) = f(s) + g(s), 
Ω 

where g G Ζ»°(Ω) is given, generated by the convolution-type (nonlinear) 
integral operator Τ defined by 

(2) (Tf)(s) = \ K(t, f(t + s))dß(t), s G Ω. 
Ω 

We shall look for solutions / of this equation belonging to some subspaces 
£°(Ω) of £°(Ω), being L°p{Çl) a modular function space. By DomT we shall 
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denote the domain of the operator T, i.e. the set of all / G L°(Cl) such that 
(2) exists for μ-a.e. s G Ω and it is a Σ-measurable function of s G Ω. 

If Κ is a Carathéodory function, it is easily seen that for / G Σ°(Ω) we 
have K(·, / ( · + s)) G L°(iì) for all s € Ω. In order to be able to apply the 
Fubini-Tonelli theorem, we should know that K(t, f(t + s)) is a measurable 
function on Ω χ Ω. Let Σο be the smallest σ-algebra of subsets of Ω χ Ω con-
taining the sets of type Α χ Β for Α, Β G Σ, and let Σ π be any σ-algebra of 
subsets of Ω χ Ω such that Σο C Σ π . We denote by μο the product measure 
on Σο, i.e. μο {Α χ Β) = μ(Α)μ(Β) for A, Β e Σ, and we denote by μπ any 
extension of the measure μο from Σο to Σ π . We denote by Κπ the class of all 
Carathéodory functions Κ : Ω χ M —* M such that the function Κ : Ω χ Ω —> R 
defined by K(s,t) = K(t,f(t + s)) is Σ,,-measurable for every / G L°(fl). 
Functions Κ G Κτ will be called Σπ-regular Carathéodory functions. 

EXAMPLE 1. Let μ be a σ-finite and complete measure on the σ-algebra Σ of 
all Lebesgue measurable subsets of Ω = R and let μ2 be the product measure 
on the σ-algebra Σ2 of all Lebesgue measurable subsets of R2. Let + be a 
commutative operation on R such that R, L°(R) are invariant. We shall write 
σ(δ,ί) = s +1, and we suppose that σ is (Σ2, Σ^ηι^ιβυ^Μβ, i.e. if A G Σ 
then σ~ι{Α) G Σ2 . Moreover, we suppose that μ2 is σ-absolutely continuous 
(σ-a.c.) with respect to μ, i.e. if A G Σ and μ(Α) — 0, then μ2(σ~1(Α)) = 0 
([13], [11], [3]). Under these assumptions, every Carathéodory function Κ : 
Ω χ R —> R is E2-regular, i.e. the function K(s,t) = K(t,f(t + s)) is Σ2-
measurable for every f G L°(fl) (see [3]). 

REMARK 1. It is obvious that if Κ is a Σ,τ-regular Carathéodory function, 
then its absolute value |Ä"| defined by \K\(t,u) = \K(t,u)\ is also a Σπ-
regular Carathéodory function. Thus, the integral 

J \K{t,f{t + 8))\dVL*(8,t), 
ΩχΩ 

exists for every / G Ζ/°(Ω). By the Fubini-Tonelli theorem, the integral 

\\K(t,f(t + s))\dß(t), 
Ω 

exists for a.e. s G Ω and is a Σ-measurable function of the variable s G Ω. 

2. Notations and definitions 
We are going now to define the modular function spaces L°p(ü) which 

will play the role of field of solutions of the integral equation. For the sake 
of convenience, we recall some notions concerning such spaces (see [12]). 

A functional ρ : Σ°(Ω) —» Rq = [0,+oo] is called a modular on L°(Q) if 
it satisfies the following conditions: 
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1) p(0) = 0, 

2) p ( - f ) = P ( f ) , 

3 ) p(af + ßg) < p { f ) + p{g) f o r f , g E L°{Ci)ta,β>0,α + β = 1. 

If moreover ρ satisfies the condition 

3 ' ) p(af + ßg) < a p { f ) + ß p { g ) f o r f , g E L°{tt),a,ß > 0 , α + /3 = 1 , 

then ρ is called a convex modular on L°(fi). The linear space Lp(Q) of func-
tions / € L°(ü) such that p ( \ f ) —• 0 as λ —> 0 + is called the modular space 

generated by p. In case of a convex modular p, the map || • ||p : £ρ(Ω) —> ¡R̂ " 
= [0, +oo[ defined by 

(3) U/Up = inf{u > 0 : pU/u) < 1} 
is a norm on £°(Ω). Consequently | | /n - f\\p 0 ( f n , f E L°p(ü),n = 

1,2, . . . ) is equivalent to the condition p ( X ( f n — / ) ) —> 0 as η —> oo for every 
λ > 0. Besides the norm convergence, there is defined in L®(Cl) the modular 
convergence (p-convergence) by the condition p(A(/n — / ) ) —• 0 as η —> oo 
for some λ > 0; these kinds of convergence are not equivalent, in general. 

We will say that L°p(fí,) is measure bounded (see [14]), if | | / | |p —> 0 implies 
fn —y 0 in measure on Ω. It is obvious that every norm-closed subset of a 
measure bounded modular space L°p(ü) is also measure bounded. 

EXAMPLES 2. 

(a) A norm ρ = || · || in a normed linear space X C L°(il) is always a convex 
modular and || · || = || · ||p, = X·, in this case, norm convergence 
and modular convergence are equivalent. 

(b) Let Φ be the family of all functions φ : Ω χ RQ —> Kq such that <p(t, u) 
is a Σ-measurable function of t for every u > 0 and is a nondecreasing, 
continuous function of u for every t € Ω, such that φ(ί, 0) = 0, φ(ί, u) > 
0 for u > 0 and <p(t, u) —• +oo asu +oo for all t G Ω. Then ρ defined 
by the formula 

(4 ) p { f ) = \ < p { t , \ m ) d ß i t ) 
Ω 

for / € £°(Ω) is a modular on L°(Si). If <p(t, u) is a convex function of 
u > 0 for all t € Ω, then ρ is a convex modular on L°(Cl) and in this 
case the family of such functions φ will be denoted by $ c . The modular 
space ¿ρ(Ω) is called a generalized Orlicz space or Musielak-Orlicz space 
and is denoted by 

It is easily seen that if the function φ satisfies the further condition: 
for every ε > 0 and Α Ε Σ with μ(Α) < +oo, we have 

<5Λ(<Γ) := ess init£A<p(t,e) > 0, 
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then the Musielak-Orlicz space LP is measure bounded. 
If ψ depends only on the second variable u, then (4) becomes of the 

form 
p(f) = \<p(\m\wt), 

Ω 

and Σφ(ίϊ) is called an Orlicz space; the family of such functions will 
be denoted by Φ0 and by the convex ones. 

It is clear that every Orlicz space is measure bounded. 

3. An embedding result 
Let L : Ω —> KQ" be a Σ-measurable function such that L Φ 0 and 

L G Ll(ü). Let i/> : Ω χ RQ —> KQ be such that 4>(t,u) is a Σ-measurable 
function of t G Ω for all u > 0, and a continuous, concave and nondecreasing 
function of u > 0 for every t G Ω, such that ij){t, 0) = 0, -0(ΐ, u) > 0 for u > 0, 
ip(t, u) —• oo as t¿ —> oo for all ί G Ω. The family of all functions ψ satisfying 
the above assumptions will be denoted by Ψ. For a given function ψ G Φ, a 
Σ,Γ-regular Carathéodory kernel function Κ will be called (L, i/>)o -Lipschitz 
if IK(t, u)l < L(t)ip(t, M) for all i e Ω and η G M. 

We shall still need the following assumption on the modular ρ on L°(ii). 
We say that ρ is subbounded, with respect to the operation + on Ω, if there 
are a constant C > 1 and a nonnegative function h G Σ°°(Ω) such that for 
every / G £ρ(Ω) and s G Ω, there holds the inequality 

p(f(- + s))<p(Cf) + h(s). 
If the above inequality holds with h = 0, we call ρ strongly subbounded with 
respect to the operation + on Ω. 

The following theorem is obtained by an easy change of the proof of 
Theorem 1 in [13]. 

THEOREM 1. Let ρ be a convex modular on L°(Cl), subbounded with respect to 
the operation + on Ω. Let Κ be α Σπ-regular, (L,ip)Q-Lipschitz Carathéodory 
function with £ : Ω — > R o " , 0 ^ L g £1(Ω). Finally, let 

J L(t)ip(t, l)\f (t)\dß(t) < +00 
Ω 

for every f G £ρ(Ω). Then there holds 

L°p(ü) C DomT. 

EXAMPLE 3. Let φ G be an ΑΓ-function, i.e. limu_>0+ = 0 and 
limu-,00 u~lip(u) = +00. Then the function ψ* : Rq" —» defined by 
<p*(u) = suppôt*«; — φ(ν)] for it > 0, called coniugate to ψ in the sense 
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of Young (see [12]), also belongs to and it is an iV-function. The modu-
lare 

PU) = S <p{\f{t)\)dß{t) and p*(f) = J φ*(\/(ί)\)άμ(ί) 
Ω Ω 

define two Orlicz spaces Ζ^(Ω) = L°p(ü) and Σφ'{Ώ,) = L°p.(Q). It is obvious 
that when Ω is a locally compact group with respect to the operation +, 
p, p* are always subbounded with respect to +, since they are invariant with 
respect +. 

Now, let Κ be a Σ,τ-regular, (L, V>)o-Lipschitz Carathéodory kernel func-
tion with L : Ω —> KQ such that 0 φ L € Ζ/1 (Ω) and ψ € Ψ. Moreover, let 
L(-)ip(-, 1) € Ιιψ'(Ω,). It is easily deduced from Theorem 1 that then there 
holds Ι°(Ω) C DomT. 

4. Main results 
In [13] and [11] there was obtained a theorem on existence and uniqueness 

of a solution / € L p(ü) of the integral equation (1), applying Banach fixed 
point principle. 

Here, we are going to prove an existence theorem for solutions of (1) in 
£ρ(Ω), applying Schauder fixed point principle. This principle states in case 
of a Banach space X with norm || · || that if Τ maps a nonempty, compact, 
convex subset Co of X into itself continuously, then there exists a point 
xo G Co such that Τ χ o = xo (see e.g. [5]). 

The following proposition is an immediate consequence of the Schauder 
fixed point principle: 

PROPOSITION 1. Let X be a Banach space with norm || · || and let Co be a 
nonempty, closed, convex subset of X. Let Τ : Co —^» Co be a continuous map 
of Co into itself such that the image TCo of Co is conditionally compact in 
X. Then there exists a point xq G Co such that Τ χ o = χο· 

We shall apply Proposition 1 in case when X = Lp(Cl) or X = Ep(Çl), 
where ρ is a convex modular in £°(Ω) and is the set oí finite elements 
of ¿"(Ω), i.e. the set of functions / G Ι,0(Ω) such that ρ(λ/ ) < +oo for all 
λ > 0. We have £°(Ω) c £ρ(Ω) and we provide both spaces with the norm 
II · ||p, defined by (3). It is well-known that Βρ(Ω) is a norm-closed sub-
space of £ρ(Ω) and so if the space Lp(Q) is complete and measure bounded 
with respect to the norm || · ||p, then Βρ(Ω) is also complete and measure 
bounded with respect to || · ||p. In the sequel we shall need still some further 
assumptions on a modular ρ on Ζ/°(Ω). We call ρ to be monotone if from 
f,g € ¿°(Ω), l/l < |g| follows p ( f ) < p(g). Let us remark that in case when 
ρ is a norm in L°p(Q.), and ρ is monotone, the normed vector space ¿ρ(Ω) 
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is called a preideal space (see e.g. [14]). A monotone modular ρ satisfies the 
equality p(|/|) = p ( f ) for every / G L°(d). We say that ρ is J-convex, if 
for every ρ : Ω —• KQ such that ρ G L1(ü) and ||p||i = 1 and for every 
measurable F : Ω χ Ω —> RQ there holds the inequality 

p[\p(t)F(;t)dß(t)) < \p(t)p(F(;t))dp(t), 

Ω Ω 

both sides of this inequality being meaningful. (For connections between 
J-convexity and convexity of a modular see e.g. [4]). Finally, we say that the 
pair {ρ, ψ} with φ Ε Φ is c-properly directed, if there exists a number c > 0 
such that for every λ > 0 there exists a number C\> 0 such that \~lC\ > c 
and for each / € £° (Ω ) , / > 0, there holds the inequality 

p[C\ip(t,\f(-)\)} < ρ (λ/ ) 

for all t G Ω up to a fixed set Ωο G Σ of measure zero. If φ(ί, u) = u, for 
every t G Ω, and u > 0, then {ρ, φ} is a c-properly directed pair with c = 1 
and C\ = There holds the following embedding theorem: 

THEOREM 2. Let the modular ρ on L°(Cl) be convex, finite, monotone, J-

convex and strongly subbounded with a constant C > 1 with respect to the 

operation +. Let Κ be a Σ^-regular, (L,ip)o-Lipschitz Carathéodory kernel 

function, L : Ω -> with 0 φ L G L1(Q), φ G Φ, L(-)ip(-, 1) G £ Χ (Ω ) and 

$Ω L(t)^(t, l)|/(í)|d/i(í) < +00 for every f G L°p(ü). Moreover, let {ρ,ψ} be 

a c-properly directed pair. Denote by X any of the two spaces Ε®(Ώ,) 

and put Bp{X) = { / G X : ||/||p < 1}. Let Tf(s) = $Ω K(t, f(t + 8))άμ(ί) 

and T\f = Tf — g, where g Ε X is such that ||(?||ι < θ < 1. Finally let us 

suppose that ||L||i < cC~1( 1 — Θ). Then T\ maps Bp{X) into itself. 

P r o o f . First, let us remark that by Theorem 1, X C £ ° ( Ω ) C DomT. Apply-
ing the monotonicity of p, the (L , i/Oo-Lipschitz condition and J-convexity 
of ρ we obtain for arbitrary a > 0 

p(aTf)<p{a\\K(t,f(t+-))\dp(t)) 

Ω 

< p(\p(t)a\\L\\1W,\f(t + ·)\)άμ(ί)) 

Ω 

<\P(t)p[a\\L\\^(t,\f(t + -)\^(t). 
Ω 

Let λ > 0 be fixed. Since the pair {ρ , φ} is c-properly directed, taking a > 0 
so small that a||L||i < C\ we obtain 

p[<x\\L\\Mt, \f{t + ·)!)] < P (A|/(Í + ·)!)· 
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Hence, by the strong subboundedness of ρ with a constant C > 1, we obtain 

p(aTf) < \ p(t)p(X\f(t+ -)\)dp(t) 
Ω 

< \p(t)p(XCfW(t) = p(XCf). 
Ω 

Taking α = C\/\\L\\i, we thus obtain 

for λ > 0. But \ ~ l C \ > c for λ > 0, so from the last inequality we obtain 

for λ > 0. If we put Λ = l/u, we get 

for u > 0. Hence we obtain the inequality 

( 5 ) Ι | Γ / | | ρ < ^ | | £ | | ι | | / | | ρ . 

Since ||L||i < c C _ 1 ( l - Θ), we get 

| | 2 7 | | p < ( l - 0 ) | | / | | p , 

if f £ X. Now, supposing / G Bp, we have ||/ | |p < 1 and so 

| | 7 i / | | p < ( l - 0 ) + 0 = l . 

This shows that Γι : Bp -» Bp. 
It is easily seen that from Proposition 1 and Theorem 2 there follows the 

following 

THEOREM 3. Let all assumptions of Theorem 2 be satisfied, and let the space 
£ρ(Ω) be complete with respect to the norm || • ||p and measure bounded. Let 
X = £ρ(Ω) or X = Ε'ρ(Ω). Finally, let us suppose that the image TBP(X) 
of the unit ball BP(X) in X by means of the operator defined by (2) is 
conditionally compact in X and Τ is continuous in Bp(X). Then the integral 
equation (1) has a solution f G BP(X). 

Here we formulate some sufficient conditions which guarantees the con-
tinuity of the operator Τ : BP(X) BP(X) with conditionally compact 
range. 

Prom now on we will work with a locally compact and σ-compact abelian 
group (Ω, +) , endowed with its Haar measure μ. In order to do it we need 
to introduce some notions concerning the operator taken into consideration. 
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First of all let us remark that if ρ is a norm in LQ
p(Q) and is monotone, then 

Lp(fl) is a preideal space (see [14]). We may write 

(Tf)(s) = j K(t, f(t + s))dß(t) = \K(t- s, f{t))dß(t), s e Ω, 
Ω Ω 

and we will put 

(Tf)(s) = \\K(t-s,f(t))^(t),sen. 
Ω 

Moreover it is easy to see that Τ : Bp(X) —> BP(X). 
Now for a sequence of measurable sets En C Ω, with E\ D E2,..., 

mes(DEn) = 0, we will write briefly En j. 0, while E n ] E means that En Ç 
E and E \ E n j 0. Moreover we will denote by Pgn the projection operator on 
En, i.e. PEn(g){t, s) = XEn{s)g(t, s), for any measurable function g defined 
on Ω χ Ω. If the function g depends on s only, then simply PEn(g)(s) = 
XEn(s)g(s). 

Now, we say that the operator Τ : BP(X) —> BP(X) is uniformly regular 
(see [14]) if there holds the following conditions: 

(a) for any sequence En Ç Ω, En J. 0, 

n^+00 / e B p ( i i ) 

and 

lirn^ sup J J \K(t-;f(t))\dß(t)\\ =0 

η lim sup II PEnTf\\p = 0; 
->+00/6J3p(n),||/||ee<l 

(b) there exists sets Ω^ | Ω such that for every ε > 0 and for any sequence 
Qn 10 with Qn Ç Ω^ χ ük (for some fixed k), there holds: 

lim sup mes{s e Ω : ( \ΡςηΚ(ί - s, f(t))\dt > ε} = 0. 
n->+oo /£Βρ(Ω),||/||οο<1 Ω 

Then, from [14] we may formulate the following theorem: 

THEOREM 4. Let X be measure bounded and let the operator Τ : BP(X) —> 
BP(X) be uniformly regular. Then Τ is continuous with conditionally com-
pact range. 

REMARKS. 

1. In [9] there is a description of complete continuity of integral operators 
of Urysohn type in Z^-spaces. In particular, corresponding results can 
be obtained for convolution integral operators. 

2. For Musielak-Orlicz spaces, there are known some necessary and suf-
ficient conditions in order that a set Λ C X be conditionally compact 
in X, where X = £®(Ω) o r I = £°(Ω), (see e.g. [8], [7], [12]). 
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3. In case of a general modular ρ on Σ°(Ω) there are not known any 
necessary and sufficient conditions in order that a set A C X be con-
ditionally compact in X, where X = L°p(Q,) or X = Ερ(Ω). 
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