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STABILITY OF DIFFERENCE EQUATIONS GENERATED
BY QUASILINEAR DIFFERENTIAL
FUNCTIONAL PROBLEMS

Abstract. The paper deals with the initial boundary value problem for quasilinear
first order partial differential functional equations. A general class of difference methods
for the problem is constructed. Theorems on the error estimate of approximate solutions
for difference functional equations are presented. The convergence results are proved by
means of consistency and stability arguments. Numerical example is given.

1. Introduction

For any metric spaces U and V we denote by C(U,V) the class of all
continuous functions defined on U and taking values in V. We will use
vectorial inequalities with the understanding that the same inequalities hold
between their corresponding components. For z = (z3,...,z,) € R" we put
llz|| = |z1|+...+|za|. Let @ > 0, 79 € R4, Ry = [0,4+0), T = (71,...,Tn) €
R} and b = (by,...,b,) € R™ be given, where b; > 0 for 1 < ¢ < n. Let
c=(c1,...,¢q) = b+ 7. Define the sets

E =[0,a] x (=b,b), D = [~7,0] X [-7,7],
and
Ep = [-70,0]x[—¢, ], OE = ([0,a]x[~¢c,c))\E, E*= EqUEUHE.

Given a function z: E* — R and a point (t,z) € E, we consider the function
Z(t,z): D — R defined by

Z(t,z)(s’y) = 2(t +8,T+ y)’ (S, y) €D.

The function z(; ;) is the restriction of z to the set [t — 79,%] x [z — 7,2 4 7]
and this restriction is shifted to the set D. For a function w € C(D, R) we
put

lw||p = max { |w(t,z)|: (t,z)e D}.
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Assume that
0:ExC(D,R)— R", 0=(01,-.-,0n), ftExC(D,R)— R

are given function of the variables (¢, z,w). Given a function ¢: EyUgoE —
R, we consider the quasilinear differential functional equation

n
(1) B z(t,z) = 0j(t, T, 2(1,0)) Oz; 2(t, T) + f(t, T, Z(1.0))
i=1

with the initial boundary condition
(2) z(t,z) = p(t,z)  for (t,z) € EgUGHE.

We consider classical solution of the above problem
In recent years a number of papers concerned with difference methods for
first order partial differential equations ([3], [6], (8], [10]) and for functional
differential equations ({1}, {4], [5], [12]) were published.

A method on difference inequalities and theorems on reccurent inequal-
ities are used in the investigation of stability.

The results presented in (1}, [4], [5], [12] are not applicable to problem
(1), (2). In the paper we construct a general class of difference methods
for this problem. We establish some estimates for the difference between
the exact and approximate solutions of the difference functional equations
of the Volterra type with initial boundary conditions. These estimates are
basic tools in the investigations of the stability of difference methods. We
use in the paper these general ideas for finite difference equations which
were introduced in (2], [9], [11].

Differential equations with a deviated argument and integral differential
problems can be obtained from (1), (2) by a specification of given operators.

2. Difference functional equations

Let N and Z be the sets of positive integers and integers respectively.
For z,Z € R", z = (z1,...,2pn), T = (Z1,...,Zpn), we write x * T =
(z1Z1,...,ZpZy). We define a mesh on the set E* in the following way.
Suppose that h = (hg, k') where b’ = (hy,...,h,) stand for steps of the
mesh. Denote by A the set of all b = (hg, k') such that there exist Ny € Z
and N = (MNy,...,N,) € Z" with the properties: Nohg = 79 and N xh/ = 1.
We assume that A # 0 and that there exist a sequence {R¥)}, A € A
such that Jlir{.lo hU) = 0. For h € A we put |h| = hg +hy + -+ + hy. We

define nodal points as follows:

t(l) — ih(), x(m) =M % h,, m(m) = (:Eg.ml), ey :Z:Slm"))
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where (i,m) € Z!*™. There exists Ny € N such that Nohg < a < (Np+1)ho.
Let

Ry = {(@9,2™):  (i,m) e 20+ }
and

Dp=Dn R’l{*'n, Ern=EnNn R}{Fn,

0En=ENRI™,  Eu=ENR*™,  Ej=E,UE,U8Eh.
For a function z: E} — R we write z&™) = z(t®,z(™). For the above 2
and for a point (t(’S’, z{™) € Ej, we define the function 2 m): D — R by
the formula
z[i,m](s’ y) = z(t(i) + s,z(m) + y)a (S, y) € Dp.

The function zj; ) is the restriction of z to the set ([t@ = 75,t®] x [z(™) -
7,2(™ + 7]) N R}*™ and this restriction is shifted to the set Dj,.
For a function w: Dj, — R we put

lwllp = max{ jw®™|: (¢®,z(™) € Dy }.

Let e; = (0,...,0,1,0,...,0) € R™ with 1 standing on j-th place and
let 2: E; — R. We shall consider difference operators &y, 6 = (61,...,6n)
defined in the following way

60z(i,m) — %O[Z(H‘l,m) _ Az(i,m) ]’

where
n
Az(i,m) — _1__ z(z(i,m+ej) + z(i,m—ej))
2n st
and
6jz(i7m) — %[z(i,n'&ej) — z(irm—ej)], 1 <J s n.
J
Let

and now denote by as F(Dp, R) denote the set of all functions w: Dy, — R.
Suppose that

Or = (Qh‘l’ ey Qh'n):E;; X 3(Dh,R) - R’
fh: E,'; x §(Dp,R) — R, on:EgpbUMER, — R

are given functions. Let the operator F}, be defined by

n
(3) Fule]®™ =3 oni(¢®, 2™, 2, 1) 6;26™ + fi,(¢9, 2™, 25 ).
Jj=1
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We will approximate solutions of problem (1), (2) by means of solutions of
the difference equation

(4) b0 2™ = Fy[2]™)
with the initial boundary condition
(5) Zm) = gogi’m) on Eyp UOGyEy,.

There exists exactly one solution up: E* — R of problem (4), (5). We need to
know what is the relation between the solution u, of (4), (5) and a function
v Ep — R satisfying the condition

(6) 1600i"™ — Fyfon) ™| < a(h)  on B
and

(7) |v,(li’m) - <p§:’m)| < ap(h) on Ey.p UGE,
where

a,ap: A — Ry and ’llin%) ap(h) =0, }llin%) a(h) =0.

The function vy, satisfying the above relation is considered as an approximate
solution of problem (4), (5).
ASSUMPTION Hpp, fr]. Suppose that the function gp: E}, x §(Dh, R) — R™
and fp: E} x §(Dhn, R) — R satisfy the following Lipshitz condition

” Qh(t(i)) x(m),w) - Qh(t(i)’ w(m), ’II))“ < L”w - ’lIJ“h,

I fh(t(z))m(m)’w) - fh.(t(i)’ x(m)’w)l < L”w - w”h)
where L € R,

THEOREM 1. Suppose that Assummption Hlgp, fr] is satisfied and
1)heA and
(8) %_%lgh](t’wvw)'>o on E;-,,x%(Dh,R)) lgjg'ﬂ,
j
2) up:E; — R is the solution of problem (4), (5) and the function
vp: Ef — R satisfies relations (6), (7) and there is co € Ry such that

|6jv,(:’m) | < co on Ep, for 1<j<n.
Under these assumptions we have

ele — 1

® 1™ =™ <ao(We’ +alh)— on By
ifL>0 and
(10) quf’m) - v,(li’m) | < ag(h) + aa(h) on Ep

if L =0, where L = L(1 + ¢p).
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Proof. Let I: B}, — R and Tg.p: Eg., U0 Er — R be functions defined by
the relations

(11) o vg’m) = Filop)®™ 4+ T Sj’m) on E},
and

(12) v,(:’m) = cp}f’m) + ngi’,:n) on Ey.p UG E}.
Then

|I‘(i’m)| < a(h) on Ej,
IT™ | < ao(h)  on Eop U GoEy,

and the function wy, = up — vy, satisfies the difference functional equation

(13)

n .
19 Sowl™ =3 ons(£0, 20 (up)my ) G+
=1

n .
+ Z [ gh'j( t(Z)’ z(m)’ (uh)[i,m] ) - Qh-j( t(z), m(m)’ (vh)[i,m] ) ]6jv£”m)+
j=1

(0, 2, (wn)im) = (19,2, () ) = TR
Write

(15) PE™[] = (19,2, 2, )

and put

(16)  AF™ =3[ ong (PO™[ua]) — ans( PO™(un]) | 500+
j=1

+ 1 (PE™(uy]) = fr( PO ™[ug]) — TE™.

From (14) it follows that the function wy, satisfies the recursive equation

1 1 t,m-te h i
an wfttm 2Ly e )2 + gy ons (PO [+

21.=1
+%j:1 w,(:"m—e")[% - @Qh (PE™) )] )] + hoA("™.
Denote by
18) o =max{|wl™|: (), 2™ e B ([—r0,t®] x RM) },

0 <1< Np.

The term Ap, can be estimated as follows

(19) |A$:’m)| < w,(:)L (1 + cp) + a(h) on Ej.
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From (7), (17) and (19) we conclude that the function wy, satisfies the rec-
cursive inequality

(20) Wi < w1+ Lho) + hoah),  0<ig< No—1,
and

(21) w,(lo) < ag(h).

Consider the difference equation

(22) 0@ = (1 + Lho) + hoa(h),  0<ig< No—1,
with the initial condition

(23) 7 = a(h)

and its solution
) = ag(h),

24 . o i-1 o
24 0 = ag(R)(1 + Lho)' + hoa(h) 3 (1 + Lho),  1<i< No.
j=0

From (20), (21) it follows that
w <nY,  0<i< No.

This gives (9), (10) and Theorem 1 is proved. =

We shall consider now a difference functional problem (4), (5) where
F, = (Fp1,-.-,Fry) is given by (3) and the difference operator 8y, 6§ =
(61,...,6,) are calculated in the following way:

(25) 5020 = hi[z(m,m) _ i),
0

(26) 5jz(i,m) = hij[z(ivmﬂj) — Z6m)] if gh.j(t(i),m(m), Zim) 2 0,
27) & Lm) — _’.ll.;[z(i,m) — Zlbm—e;)] if Qh-j(t(i), (™), Zim)) < 0.
It can be easily seen that the problem (4), (5) with difference operators
defined by (2)-(2) has exactly one solution uy: Ej; — R.

Now we give an estimate between the exact and approximate solution of
the above problem.

THEOREM 2. Suppose that Assumption H|op, f1] is satisfied and
1) he A and
n
1
(28) l_hozh_jlgh‘j(t’x’w)l>0 on E) xF(Dn,R), 1<j<n,
Jj=1
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2) up: Ef — R 1is the solution of the problem (4), (5) with 6o and 6 given
by (2)-(2) and the function v,: E; — R satisfies relations (6), (7) and there
s cp € R4 such that

|6jv,(:’m) | < e onEp, 1<j<n

Under these assumptions we have

, . - La __
(29) |u§:’m) — v}f’m) | < ag(h)el® + a(h)e 7 ! on Ej
if L >0 and
(30) Iug’m) - vﬁf’m) | < ag(h) + aa(h) on Ey,

if L =0, where L = L(1+ cp).

Proof. Let T'y: Ej — R and T'g.4: Egy U0 E, — R be the functions defined
by (11) and (12), respectively. Then the estimate (13) holds and the function
wy, = up — vy, satisfies the difference functional equation

. ; n ] :
wf ™ = 0™ 1 by oy (PE™fun]) 6™

Jj=1
n -
+ho > [ 0n5( PE™[un]) — on5( PE™[u] )] 6500™
j=1
+ hol fa( P™[up]) — fa( PS™[un])] — hoTE™,  (¢9,2™) € B},

where P(»™)[2] is given by (15). Write
™ ={j:1<i<n, eni(PE™[u]) >0}
%™ = {1,...,n}\ I&™

and suppose that A is defined by (16). Then we have

wl(li+1,m) = ho A;:',m)

) 1 . 1 i
+up™[1-ho 3 —eni(POunl) +ho 3 —eng(PE™fun]) ]

jerm 7 jertm I
1 : i .
+ho ) FQh.j(P("’")[uh] )w,(:’mﬂ’)
jerfm
1 . P M .
—ho 3 eni(PO™uy] yug ™) (D, 2™) ¢ B},

J.eI(i,m) J
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From (13), (19), (28), it follows that the function wy, defined by (18) satisfies
the recursive inequality (20) and the initial estimate (21) holds. Then we
get the estimate

w® <P for 0<i< Ny,

where 17( " is the solution of (22), (23). Now we get (29), (30) from (24) and
Theorem 2 is proved. =

3. Difference methods for mixed problem
We will need the following operator Tj:§(Dp, R) — C(D, R). Let

Sy={¢=(&,...,&): & =1{0,1}, for 0<j<n}
Suppose that w € §(Ds, R). For every (t,z) € D there is @, z(™) e D,
such that (¢t0+D),z(m+1)) € D, where m+1=(m; +1,...,my + 1) and
t@ <t ¢+ | 2M) < 7 < z(M+D)  Then we put

t—t . — g(m) ¢ — M 1-¢
(Thw)(t,z) = ™ ¥ w(z+1,m+£)(%_) (1_?h_ﬂl=)
§eSy
t —t@ i z —z™\¢ z —z(™y1-¢
+(1-5) Dt (=) ()
§€Sy
where
z_m(m) 13 Lt (EJ—z;mJ) £J‘
S (Crral
j=1 J

m;)

_z_z(m) 1- g_ LG :c§ )1—51‘
(-2) =02

and we put 0% = 1 in the above formulas.

LEMMA 3. Suppose that the function w: D — R is of class C? and denote
by wy, the restriction of w to the set Dy. Let C € Ry be such a constant that

| Onw(t, )], | Opz; w(t, )|, | On;z,w(t, )| < C onD
where j,k=1,...,n. Then
| Thwn —wllp < C +2h0§:h + Z hihy|.
Jik=1
The proof of lemma (3) is given in [5], Chapter 5.

AssuMPTION Hg, f]. Suppose that the function g: E' x C(D,R) — R" and
f:E x C(D,R) — R are continous and there is L € Ry such that

“ Q(t:sz) - Q(tamaw)” < L”w - 'lD”D,
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| f(t,z,w) — f(t,2,@)| < Ll|lw — @|p
on E x C(D,R).
Now we consider functional differential problem (1), (2) and the differ-

ence equation

n
(31) 50Z(i m) Z t(z (m), Thz[i,m] )6jz(i'm) + f(t(i), .'E(m), Thz[i,m] )

with the initial boundary condition (5).

THEOREM 4. Suppose that Assumption HJo, f] is satisfied and

1)he A and
1 ho _

-5 etz w) >0 on ExC(D,R) for 1<j<n
j

and there is M = (M, ..., My,) € R% such that h' < Mhy,

2) the function up: E} — R is a solution of the problem (31), (5),

3) v:E* — R is a solution of (1), (2) and vy is the restriction of v
to Ey,

4) vl is of class C? and ¢y € R+ is such a constant that

0,0t) <o onE, 1<j<n
5) there is ap: A — R, such that

I (p("' m) (P(i’m) I < ao(h,) on Epp U 60Eha

32
( ) ’1111’16 ao(h) =0.

Then there are A, B € R, such that

. . - La __
(33) lu)(;’m) - v,(:’m) | < ap(h) ek + (Aho + Bhg) c on Ej,
if L >0 and
(34) |uft™ — ui"™ | < ao(h) + a (Aho + BhY) on Ej

if L =0 where L = L(1+ cp).
Proof. We shall apply Theorem 1 to prove the above assertion. Write

(35) v = o™ Z 03 (1, 2, Th(on)jgm ) 8505

- f( t('), z(™), Th(vh)jim) )-
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We see at once that

+Z[g](t() 2, v gomy ) = 549, 20, Th(0n)yg )] S50+

n
+ 3 05 (tD, 2™, v gmy) ) B, 0™ — 0™ 1+
j=1
+ f( t(i), :l:(m), Y(t(0) z(m)) )= f( t(i), :L‘(m), Th(vh)[i,m] ).
There are C, d € Ry such that
|Bev(t, )], 18is,0(t,2)], | 0e,2,0(62) < on D,
where j,k=1,...,n and
loj(t,z,veq))| <4 on E for 1<j<n

An easy calculation shows that
|8 0™ — § v(”m)[ < (1 + = Z M2)

and
Oy v(1 m) _ 6 (' ) —C’M for 1<j7<n.
l 7 J

According to the above estimates, we have
W™ < Ahg + BhZ  on E},

where

A= 50[1+;ZM,- +dZMj],

B= (1+co)C[1+22M + Z M; M.
Then all assumptions of Theorem 1 are satisfied and assertions (33), (34)
follow from (9), (10). =

Now we consider the functional differential problem (1), (2) and the
difference functional problem consisting of (31) where §y and § = (61,...,6n)
are defined by (25)—(27) and initial boundary condition (5). We start with
a lemma on the interpolating operator Tj,.

LEMMA 5. Suppose that the function w: D — R is of class C! and wy, is the
restriction of w to the set Dy,. Let Cy be such a constant that

(36) |Gw(t,z)|,< Co, |O0z;w(t,z)|<Co forl<ign, (tz)€D.
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Then

(37) | Tawn — w|p < Col|Rf,

where ||hi| = ho + h1 + -+ + hn.

Proof. Let (t,z) € D. Then there is (t®,z(™) € Dp such that
D, zm+D) € D and t® < ¢t < tEHD | 2 < g < 2™+, One can
find such 8, 8 € D such that

w(t, z) — Thwp(t, z) = w(t, z)

_tmt [w(t, )+ O (O) (D =)+ 3 8y, w(6) ™) — )]
i=1

ho £€S,

(z_;(m))s(l—z_}:ﬁ(m))l_f

~(1-550) 5 [wlem) - 0O -4 3 00,00)a )

£€S+ j=1
(:c _;;(m) )6(1 T _’3(’") )1—5'

For (™ < z < z(™*1) we have
— g(m) —zlm1-
T— 3 T—Zz 1-¢
> 1- =1.
> (E-
Then from (36) we get (37). m

THEOREM 6. Suppose that Assummption Hp, f] is satisfied and
1)he A and

1-h Y |gi(t,z,w)| 20  on ExC(D,R)
=1t
and there is M = (M,,..., My) € R} such that b’ < Mhy,
2) the function up: Ej, — R is a solution of the problem (31), (5) with &y
and § given by (25)—(27),
3) v: E* — R is a solution of (1), (2),
4) the function vl is of class C! and cg € R, is such a constant that

|6w(t,z)|, |05v(t,z)|<co onE, 1<j<n,

5) there is ap: A — Ry such that condition (32) is satisfied.
Then there is a: A — R, such that

ele — 1

(38) |u§:’m) - v,(:'m) | < ap(h) ebe 4 a(h) 7 on Ey
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if L >0 and

(39) lug’m) - v,(j’m) | < ag(h) + aa(h) on Ey,

if L =0, where L = L(1+ ¢p) and }1;15.% a(h) =0.

Proof. We apply Theorem 2 to prove the above assertion. Let ¢: E}, — R

be a function given by (35). It follows from Assumption H{g, f] and from
Lemma (5) that there is a function a: A — R, such that

&™) <a(h) on E, and lim a(h) = 0.

Then the assumptions of Theorem 2 are satisfied and assertion (38), (39)
follow from (29), (30). =

4. Numerical example
For n = 2 we put

E=[0,1] x [-2,2] x [-2,2],
D = {0} x [-1,1] x [-1,1], Dy =[-1,1) x [-1,1).
Denote by z the unknown function of the variables (¢, z,y) and consider the
differential integral equation
(40)  Oez(t,z,y)
1

[ 1+ (14 2(t,3,9) = [p, (4,5 + 7,y + 5) dr ds)

2] 0z2(t, x,y)

+ [1— =
1+ (1= 42(62,) + fp, (3,2 + 1,y + ) dr ds)

2] 8yz(t,a:,y)

—z(t,z+Ly- 1) +z(t,z -1, y+ 1)+ 2t(z+y— zy) + th(w -v)
with the initial boundary condition
(41) z(t,z,y) =t*(x +y —zy) for (t,z,y) € EoUHE,
where

Ep = {0} x [-3,3] x [-3,3],
dE = [0,1] x [([-3,3] x [-3,3]) \ ([-3,3] x [-3,3])]-

The difference method for the problem is of the form
1

. 2] 512(1:’].’,0)
1+ 2634 — [(9)

(42) 6,20 = [—1 +
1+ (
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1
+|1- — 2
[ L+ (1- 42698 4 f,f"""))z}
— Thz (0,1, —1) + Thazj; 5,(0, -1, 1)
+ 260 (20) 4 y®) _ gO)y)) 4 g(t(i))z(x(j) ON

L)

and

(43) 23R = 24 () 4 y(8) _ z)y(R)) for (¢®, 20 4*)) € Bg U HE,

where
. R .
Gak) — L1 (i+15k) _ (igk)
8oz " [z FASEUR
5126k = Lk _ d-1e)
h1 ’
. 1. s .
(Ggik) — 1 (hdk+1) _ (65k))
¥ » [ z ]
and

il "k T! ’l .!k
Il(z 3rk) = /;O ThZ[_;_,j,k](Ta S) dr ds, If(:] ) = ~/Do Thz[irj»k](r’ S) dr ds.

The operator Ty, h = (ho, b1, h2) is defined in Section 3.

The function v(¢,z,y) = t?(z + y — zy) is the solution of (40), (41).
Let up:E; — R be the solution of (42), (43) and € = up — v. The val-
ues £(0.2,z09),y®), €(0.4,20),y(*)), 6(0.6,1(?),y(k)), £(0.8,z1),y*)) and
’u.h(0.2,$(‘7), y(k))’ Uh(0-4, Z(J)) y(k))a uh(0'6:z(1),y(k))’ uh(0'81$(1)1y(k)) are
listed in the tables for ko = 0.005, h; = 0.05 and hy = 0.05,

TABLE t=0.2
20) = —0.5 y*) = —0.5 u, = —0.0488 £ =1.23610"3
z0) = —0.5 y® = 0.0 w,=-00195 ¢=4.68510"*
20) = —0.5 y®) = 0.5 up= 0.0097 £=2.99510"4
20 = 0.0 y® =-05 u, =-0.0195 £=5.17810"*
2z = 00 y® = 0.0 wu,=-0.0000 e=307510"
2 = 00 y® = 05 wu,= 00195 &=5.24610"*
z0) = 05 ) =_05 uy = 0.0098 &=2.03510"4
= 05 y® = 00 u,= 00195 =4.77010"*
0 = 05 y® = 05 wuy= 00292 &=750810"*
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%) = 0.0
) = 0.0
29 = 0.0
) = 05
W) = 0.5
) = 0.5
) = —0.5
) = —0.5
) = -0.5
@) = 0.0
@) = 0.0
@) = 0.0
)= 05
@) = 0.5
2@ = 0.5
) = -0.5
¥ =05
zW) = —0.5
@ = 0.0
29 = 0.0
z@ = 05
z¥) = 0.5
z0) = 05

R. Ciarski

TABLE t=04
@) = —0.5 y*) = —0.5
@) = —-0.5 y® = 0.0

up, = —0.1978

up, = —0.0792

up = 0.0393
y®) = —0.5 up = —0.0790
y*® = 0.0 wuy = —0.0000
y® = 05 u,= 0.0789
y®) = —0.5 up = 0.0397
y® = 00 w,= 0.0791
y®) = 05 wu,= 01185

TABLE t =0.6
yB) = —0.5 up = —0.4477
y® = 0.0 up=-0.1792
y® = 0.5 uy= 0.0891
y*®) = —0.5 up = —0.1788
y® = 0.0 wu,=-0.0001
y® = 05 u,= 0.1786
y*®) = —0.5 up = 0.0897
y*) = 0.0 wup= 0.1788
y®) = 0.5 wup= 0.2680
TABLE ¢=0.8

y*®) = —0.5 up = —0.7996
y®) = 0.0 wup=—0.3200
y®) = 0.5 up = 0.1594
y*) = 0.5 up = —0.3193
y® = 0.0 wuy = -0.0001
y® = 0.5 uy= 03189
y®) = —0.5 u, = 0.1598
y® = 0.0 wup= 03189
y® = 05 wu,= 04780

€=1224210"2
€="T7.97110"*
€=6.67210"4

=9.99410~4
€ =2.45810~°
e =1.06210"3
€ =3.12710"4
e =8.91110"4
e =147610"3

€=2.32010"3
€=17.54510"4
e =19.07510"*
e=1.19810"3
€="7.42910"°
e =141010"3
€ =3.09810~*
e=1.15110"3
€ =202110"3

€=426810"*
€ =3.38710"5
€ =6.05010"¢
€=17.10010"*
€=1.35610"4
e=1.13510"3
e=153510"*
e =1.05610"3
€ =2.008103
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The computation was performed by the IBM PC computer.
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