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COMPARISON THEOREMS FOR THE OSCILLATION
OF HIGHER ORDER NEUTRAL DELAY
DIFFERENCE EQUATIONS

Abstract. We obtain a necessary and sufficient condition for the oscillation of the
higher order neutral delay difference equation

Am(zn - PnZn-r)+ f(ns ZTg1(n)rTgo(n)s" " zgl(n)) =0,

where m > 1 is an odd integer. As some application of this result, we estabilish three
comparison theorems for the oscillation of the above equation.

1. Introduction
Throughout, we shall use the following notations: N = {0,1,---}, N(a) =
{a,a+1,---}, where a € N, and N(a,b) = {a,a+1,---,b}, where b € N(a).
Further, for t € R we define the usual the factorial expression (¢)(™ =
[I75 (¢ — i) with (¢)© = 1.
In this paper, we consider the higher order neutral delay difference equa-
tion

(1 A™@n = pn-r) + f(N, Ty (n) Tgy(n)s > Ty(m)) = 0

where m is an odd integer, T is a positive integer, A denotes the forward
difference operator ie., ATp = Tpy1 — T and Alz, = A(Ai‘lzn), i =
1,2,---,m, A%, = z,. With respect to (1), throughout we shall assume
the following

(i) p: N(K)—»R+—[000) : N(K}) - N,i = 1,2,---,1, for
some K € N,and f: Nx Rt - Ris contmuous with respect to the last [
arguments,
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(i)  f(n,—u1,—ug,- -, —w) = —f(n,uy,ug, -, w), viu; > 0,4 =
2,1,

(iif) wif(m,u1,ug,---,u) >0 for wyu; >0,i=2,---,1,

(IV) lf(na UL, U2, aul)l 2 lf(n:vlav2)' v avl)I’ whenever |U'l| < qul and

uiv; > 0,6 =1,2,--- 1.

By a solution of (1), we mean a nontrivial sequence {z,} satisfying (1)
for n € N(7p), where Ty is some nonnegative integer. A solution {z,} of
Eq. (1) is said to be oscillatory if for every K, > 7g there exists an n > K
such that z,z,41 < 0, otherwise it is said to be nonoscillatory.

The neutral delay difference equations arise in a number of important
applications including problems in population dynamics when maturation
and gestation are included, in “cobweb” models in economics, where demand
depends on current price but supply depends on the price at an earlier time,
and in electrical transmission in lossless transmission lines between circuits
in high speed computers. The literature on the oscillations theory of neutral
difference equations is growing rapidly (see, for example [2, 8-12]). Zhou and
Zhang [10-12] investigated the oscillation and nonoscillation of first order
and second order neutral difference equations. The study is a relatively new
field and is very interesting in applications.

The motivation for the present work steems from the many comparison
theorems in the theory of functional differential equations. We are particu-
larly interested in the work of Erbe, Kong and Zhang [3], Gopalsamy, Lalli
and Zhang [4], Yan (6], Zhang, Yu and Wang [7] on linear neutral delay
differential equations, and our results are generalizations and extensions of
theirs to nonlinear neutral delay difference equations. The plan of the paper
is as follows. In Section 2, we shall present some preliminary results, some of
which are interesting in their own right. In Section 3, we obtain a necessary
and sufficient condition for the oscillation of all solution of (1) which im-
prove and extend the main results in [9]. As some application of this result
and the main result in [8}, we establish three comparison theorems for the
oscillation of (1).

In the sequel, when we write a sequential inequality without specifying its
domain of validity, we assume that it holds for all sufficiently large positive
integer n.

2. Preliminaries

LEMMA 1. [1] Let {yn} be a sequence of real numbers in N. Let {yn} and
A™y, be of constant sign with A™y,, not being identically zero on any subset
N(m) of N. If

YAy, <0,
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then there exists a number m* in {0,1---,m—1} with (=1)™ ™ "1 =1 and
such that

ATy >0, for §=0,1,2,---,m*, n2m2m,
(=14, Ay, >0, for j=m*+1,---,m—-1, n>m>7.

LEMMA 2. Assume that either there is {ny} : ny — 0o,k — oo such that
Pn,, = 0 or there exists a positive integer n* such that p, > 0 forn > n* and

00 J 1
(2) Z ( pn‘+i‘r) = Q.
j=1 i=1
Let
(3) Yn = Tn — PnIn-r,
where {z,} is an eventually positive solution of the difference inequality
(4) Am(zn - p'nx‘n—‘r) + f(na Lg1(n)) Lga(n)s """ azgl(n)) <O0.
Then, we have eventually
(5) yn > 0.

Proof. Let T; be a positive integer such that z,_» > 0 and z4 () > 0,72 =
1,2,---,1, for all n > 7;. Then, by (3) and (4), we have

A"y < —f(N, Zg,(n)s Tga(n)r " "1 Tgu(m)) S0, for all n>m

which yields that the differences of y, up to order m — 1 are monotone and
either eventually

(6) Amvlyn <0
or
(7) A™ 1y, > 0.

We claim that (7) holds. Otherwise, (6) holds, which implies that there exist
a > 0 and 7ip > 73 such that

Yn < —a, for all n > 7,.
Therefore, we have
(8) ZTn < —a+ PpIn-r, for all n > 7.

If pp, = 0 for np > Tz, then we have z,, < —a. This is a contradiction.
Thus, p, > 0 for n > 7i2. For the sake of convenience, we set

s(i)=n"+ir, i=1,2,---.

Now choose a positive integer j such that s(j) = n* + jr > ma. Then for
any positive integer %, by (8) we have
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Ts(j+i) S Ps(j+i)Ts(j+i-1) — @
< Ps(j+i) " " Pa(5)Ts(j-1)
— 0l + Ps(j+i) + Ps(j+i)Ps(j+i-1) + F Po(jti) * Ps(j+1)]
= ﬁps(j+v){xs(j—l)_a[ - + = ++—1—]}
v=0 Ps(j)  Ps(j)Ps(j+1) Ps(j) "+ " Ps(j+i)

It follows from (2) that z(;,4 < 0 for sufficiently large i. This is a contra-
diction and so (7) holds.

Next, we consider the following three possible cases:

Case 1. There is W € {2,3,---,m — 1} such that

A™ Ty <0, ATl <0,
Case 2. There is T € {1,2,---,m — 1} such that
Am—ﬁyn > 0, Am——ﬁ’l——lyn > O,

Case 3. (-1)"A™ Ty, <0, m=1,2,---,m.

For Case 1, by using a similar method to the above, we can obtain a
contradiction and so Case 1 is impossible. For Case 2 we see that eventually
yn > 0. For Case 3, since m is an odd integer, it follows that y, > 0
eventually. The proof of Lemma 3 is complete.

LEMMA 3. Assume that the assumptions of Lemma 2 hold and

9) Zf(i,d,---,d)=oo, for some d > 0.

i=ng
Let {z,,} and {y.} be as in Lemma 2. Then we have that (—1)!Aly, > 0,i =
0,1,---,m, eventually.

Proof. By Lemmas 1 and 2, we have y, > 0 eventually and moreover
Ajy‘n>01 for j=0711""m*1 nZﬁ%
(-1 "™ Ay, >0, for j=m*+1,---,m—1, n>mn,.

we claim that m* = 0. Otherwise m* > 2 and hence Aly, > 0,5 =
0,1,---,m*, which implies that there exists a N7 > Tz such that y, > d
for n > N; and hence z, > y, > d, for n > N;. Substituting this into (1)
we have

A"y, + f(n,d,---,d) < 0.

Summing it up from N; to N for N sufficiently large, we have

N
Z fi,d, -, d) <A™ YN, — A™ Yy < Ay,
=N,
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which implies

(o <]
> f(i,d,---,d) < 0.
i=ng
This is a contradiction and the proof is complete.
In following, let

= 7 — n>7
o = max{r,7 n);nllg <l{g,( n)}} for some @ > T

LEMMA 4. Assume that there erists a T > Ty such that either p, > 0 and
gi(n) < n, forn 27,1 =1,2,---,1, or pn > 0 for n > M. Further, assume
that the inequality

(10) yn > Pryn—r + Z("' -n+m-— )(m_l)f(i, Y1 (s)» - ’ygl(i))

has a positive solution {yn} 7o+ Then the corresponding equation

(11) z, = ppTp—r + ' Z -n+m-— 1)(m‘1)f(i,a:gl(i), C Tg(iy)
i=n

has a positive solution {a:n}n_n o
Proof. Define a set of sequences
W={w={w}27 ,:0<w, <1 for n>% -0},

and define the mapping S on W as follows

1 1 &
= W — — — 1)(m-1)
un [pnyn rWn—r + m—1)! Z;Z(Z n+m—1)

(12)  Swn = § X f(i, Y Warti)s* Yoty Wauts)] » ™ € N(7),
—n—n+0511)ﬁ+ (1— ———n_;H_G),ne N(m — o,7).

It is easy to see from (10) that SW C W, and for any w € W, we have
Swp,>0forn~0c <n<.

Define a sequenc {w(J )} in W as follow: w® = 1, and wy;
0,1,2,---, n > 7 — 0. From (10), by induction, we have

0<wiV<w® <1, neNm@-o0), j=0,1,2,- -

G+ _ gD 5 =

Then lim;_, ng) = wp,n € N(T — 0), exists, and 0 < w, < 1. Further, in
view of (12) the following holds

1 -
Wp = — | Pa¥n—rWn—r + )' Z -n+m-— 1)(m 1)

n i=n

Xf(i,ygl(i)wgl(i)r'wygm)wgl(z))], for n € N(r)
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and
Wy = IL——-Z—-l;g'wﬁﬁ-l—- n_Z—H >0, for ne N(m—o,7).
Set z, = wpyn. Then {z,} is a nonnegative solution of (11) and z, > 0 for
n—o<n<T.
Finally it remains to show that z, > 0 for n € N(7@ ~ o).

Assume that exists n' € N(7 — o) such that z, >0 forT— o < n < n'
and z, = 0. Clearly, n' > @. Thus, by (11) we have

1
0=z, =pn'$n’—r+m Z(l n' +m— 1)(m l)f(z Zgr(3)s - ’zgl(i))

i=n'
which implies that p,y = 0 and f(i,2g,(;), -, Zg(;)) = 0. Hence, ppy = 0
and zg,n) = 0,n > n',i = 1,2,---,l. This contradicts the assumptions of
Lemma 4. Therefore, z,, > 0 for n € N(7 — ¢), and the proof is complete.

LEMMA 5. Assume that 1 < m* <m —1,c¢ > 0 and that the inequality

1
(m* — 1) (m — m* —

(13) Yn 2 C+ Pn¥Yn—r + 1)' Z(n —i+ 1)(m -1)

i=n
X Z(] —i4+m—m*—1)mm- l)f(J,ygl(J), 5 Ya(i)
j=i
has a positive solution {yn}~_,. Then the corresponding equation
1
_ _ (m*-1)
(14) xn—c+p,,zn_f+( T Di(m = m*_l)'qgl i+1)
0 -
x Y (G—i+m—m* =)D fG iz gy, 3g)
j=i

also has a positive solution {zn}2n ..

The proof of Lemma 5 is similar to the proof of Lemma 4 and hence we
omit it here.

3. Main results

THEOREM 1. Assume that either there is {n;} : np — 00 as k — oo such that
Pn, = 0 and gi(n) < n, forn > 7,0 =1,2,--.,1, or there exists a positive
integer n* such that p, > 0 for n > n* and that (2) holds. Then every
solution of Eq. (1) is oscillatory if and only if the corresponding inequality
(4) has no eventually positive solutions.
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Proof. The sufficiency is obvious. To prove the necessity, we assume that
(4) has an eventually positive solution {z,}. Set y, = zn — pnZn_r. By
Lemma 2, y, > 0 eventually. According to Lemma 1, there exists an even
number m* such that m* € N(0,m — 1), and that

Aty, >0, for 1 =0,1, -, m",

(15) o _
(-1)*A'y, >0, for i=m*+1,---,m-1

If m*=0, summing up (4) from n to co m times, we have
bn 2 (m 1! Z(J —nt+m =15z, ), T )
That is
1 o0
Tn 2 Pn-r + oy o .E(j —n+m ="V, 2500, Tas)-
j=n

By Lemma 4, the corresponding equation
1 N 1) gy
S R §] Do =t m— 1)V, 20,6y, 207)
j=n

also has a positive solution {z,}. Clearly, {z,} is an eventually positive
solution of (1), contradicting the assumption.

If 2 < m* < m— 1, then summing up (4) from n to co m — m* times,
we have

(16) A™y, >
1 . * —_—m® .
2 m—m D) PG —ntm=mt = )OI S Gy, zg)-
=n

Then summing up (16) from @ to n — 1 m* times we have

1 nl _
Yn 2 Ya+ )i = =] Y (n—i+1)m-Y
1—71
xY (G-i+m-—m* =) Vf(G g g, ze), n 2T,
=i

where 7 is sufficiently large such that zz > 0. Thus we have, for n > 7,
m*—1
m —Dim—m = 1)1 Y =i+

i=n

Tn 2 Yz + PnTn-r +

00
X Z(J —i+m-—m*— 1)(m—m._1)f(j’ Tgi(s)r " )zgl(j))a n2>2mn
i=
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By Lemma 5, the corresponding equation

1
*—1)l(m—-m*

n-1
o = ym+ Potnor + 3 Z;(n -4+ 1)1

o0
X Z(] —i+m-m*— 1)(m“m'"1)f(j, Zgi()> r Zq))y M 2T

7=
has a positive solution {z,}. Clearly, {z,} is a positive solution of (1). This
contradiction completes the proof.

When 7 =1 or p, = 0, Theorem 1 reduces the necessary and sufficient

condition for the oscillation of all solutions of the even or odd order difference
equation with deviating arguments.

COROLLARY 1. Fvery solution of the equation

(17) Am-H-'I"'n,—l + f(n, Zgi(n)y """ :mg,(n)) =0
is oscillatory if and only if the corresponding inequality
(18) Am+1$n_1 + f(n, Zgy(n)r " 7mg;(n)) <0

has no eventually positive solutions.

COROLLARY 2. Every solution of the equation

(19) A"zn + £, Zgi(n)s*+ Zam)) = O
is oscillatory if and only if the corresponding inequality
(20) A"2n + f(1, 2y (), Tgi(m)) < 0

has no eventualy positive solutions.

THEOREM 2. Assume that the assumptions of Lemma 2 hold. Further, as-
sume that g;(n) < hi(n),2 =1,2,---,1 and that (9) holds. Then every solu-
tion of the equation
(21) A"z, + f(na Lhy(n)r "> whl(n)) =0
is oscillatory implies the same for Eq. (1).
Proof. Assume the contrary, and let {z,} be an eventually positive solution
of (1). Let y, = T — PpZp—r. Then by Lemmas 2 and 3, y, > 0,Ay, <0
eventually. In view of (iv) and since 2, > yn, we have
0= A"y + f(n,Zgy(m)s "> Tgu(m))
> A™yn + f(n, Yg1(n)r " )ygx(n))
2 Amyn + f(na Yri(n)) " ayhx(’n.))'

By Corollary 2, (21) has an eventually positive solution. This is a contra-
diction and complete the proof of Theorem 2.
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We now compare Eq. (1) with the equation
(22) A™(zn — Ppzn-r) + F(n, Tgy(n)s """ ,:l:gl(n)) =0,

where P : N(K) = Rt =[0,00), F: N x R' — R is continuous with respect
to the last | arguments satisfying

(I F(n,—uy,—ug, --,—w) = —F(n,uy,ug, - -,u), for uju; > 0,
i=2,.. 1L

(II) vy F(n,uy, - -, u) > 0, for uyu; > 0,1 =2,---,1.
THEOREM 3. Assume that either there is {ny} : nxy — 00 as k — oo such
that P,, = 0 and gi(n) < n, forn > @,i = 1,2,.--,l, or there exists a
positive integer n* such that P, > 0 forn > n* and

00 J -1
(23) S (I Psir) =0
j=1 i=1
Further, assume that P, > p, and that
(24) IF(n) Uy, U2, - ,'U:[)I Z |f('n,u1,u2, T ,UI)I,
for wu; >0,0=2,---,L
Then every solution of Eq. (1) is oscillatory implies the same for Eq. (22).

Proof. Assume the contrary, and let {z, } be an eventually positive solution
of (22). Let y, = £p, — PyZp—r. As in the proof of Theorem 1 we see that
yn > 0 for large n and (15) holds. If m* = 0. Summing (22) from n to co m
times we have

1 &, s
Yn 2 Yoo + oY DG —n+m =D IF(G,z5), 20 ()
j=n

and so
1 o0
Zn 2 Yoo + Pagnor + gy DG =+ m = )" IFG 3y )
1<

1

o0
(m — 1)' Z(J —-n+m-— 1)(m—1)f(]’ zgl(j)a T xgl(j))’

j=n

2 PnZn-r +

where Yoo = lim, .o yn > 0. Using a similar method as in the proof of
Theorem 1, one can see that Eq. (1) has also an eventually positive solution
which contradicts the assumption.

If m* > 0, as shown in the proof of Theorem 1, we obtain that forn > 7

1 = .
n—i+1)m-1
m* — 1)l{(m — m* — 1)! 1=ZN( )

ynzyﬁ"}'(
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oo
xD (i-itm-—m - D™ DEG g,y Tas))-
j=i
Hence forn > 7
1 n—1 .
Tn Z yﬁ+ Pnil?n—‘r + (m* _ l)l(m —m* — 1)' Z(n -1 + 1)(m _1)
: “i=N

[o o]
% Z.(J' —itm-—m* =)™ DEG 5 T )

j=t

1
(m* — D)(m — m* = 1)!

n-1 .
3 (n—i+1)m D
=N

2 Ya + PnZn-r +

e o
X Z.(J' —itm—m® =)D G g 2 )

j=i

The rest of the proof is the same as that of Theorem 1. One can see that
Eq. (1) has also an eventually positive solution which contradicts the as-
sumption and competes with the proof of Theorem 3.

Now we consider the case where p, = 1 and g;(n) = n — 04,0; € RT,
i=1,2,---,1 '
LEMMA 6. Every solution of the neutral difference equation
(25) Am(xn - zn-—-r) + f(n: Tn—ays° " mn—ax) =0

is oscillatory if and only if every solution of the even order non-neutral
diffrence equation

1
(26) ATnmihlmn—l + ;f(n, Ty - )1"71) =0
1s oscillatory.

Lemma 6 with ! = 1 has been proved by Zhang and Yang in [8]. For
the case where | > 1, the results of Lemma 6 can be proved, using a slight
modification of that in Theorem 2.1 of [8], and thus, the proof is omitted.
By Theorem 3 and Lemma 6, we can obtain the following resuit.

THEOREM 4. Assume that p, > 1 and that there exists a n* such that (2)
holds. Then every solution of Eq. (26) is oscillatory implies the same for

Eq. (1).

COROLLARY 3. Let 0;(i = 1,2---,1) be any nonnegative integers. Then the
oscillation of the following two equations

Am-Ha:n—l + f(n, Tn—01y"*" ,-Tn-az) =0
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Am+1xn—1 + f(n’ Tn, - )zn) =0

is equivalent.

(1)
(2]
(3]
4]
(5]

(6]
7]
(8]
(9]
[10]
[11]

(12]
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