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COMPARISON THEOREMS FOR THE OSCILLATION 
OF HIGHER ORDER NEUTRAL DELAY 

DIFFERENCE EQUATIONS 

A b s t r a c t . We obtain a necessary and sufficient condition for the oscillation of the 
higher order neutral delay difference equation 

Am(xn - ΡηΧη-τ) + f(n,Xgi(n),Xg2(n)> ' ' ' > ^(n)) = °> 

where τη > 1 is an odd integer. As some application of this result, we estabilish three 
comparison theorems for the oscillation of the above equation. 

1. Introduction 
Throughout, we shall use the following notations: Ν = {0,1, · · •}, N(a) = 

{α, a+1, · · ·}, where α € Ν, and N(a, b) = {α, a +1, · · · , ò}, where b € N(a). 
Further, for t 6 R we define the usual the factorial expression (i)(m) = 
nss -̂o w i t h (f)(°) = i . 

In this paper, we consider the higher order neutral delay difference equa-
tion 
(1) Am(xn - ρ η Χ η - τ ) + f(n,xgi{n),xg2(n), · · · ,xSl(n)) = 0, 

where m is an odd integer, τ is a positive integer, Δ denotes the forward 
difference operator i.e., Δχη = xn+i — xn and Alxn = Δ (Δ ι - 1 χ η ) , i = 
1,2, · · · ,m, Δ°χη = xn. With respect to (1), throughout we shall assume 
the following 

(i) ρ : N(K) ^ R+ - [0,oo),3¿ : N{K) N,i = 1 ,2 , · · · , / , for 
some Κ e Ν, and / : Ν χ Rl —• R is continuous with respect to the last I 
arguments, 
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(ii) f(n,-ui,-U2,---,-u¡) = -f{n,ui,u2,··· ,ui), uim > 0,i = 
2 , · · · ,* , 

(iii) Uif(n,ui,u2,---,ui) > o for u\m > 0,t = 2, • · · 
(iv) \f(n,ui,u2,· • • ,ui)\ > \f(n,vi,v2,· •· ,i>i)|, whenever < |«¿| and 

u m > 0,i — 1,2, · · • ,1. 
By a solution of (1), we mean a nontrivial sequence {xn} satisfying (1) 

for η G N(ño), where ño is some nonnegative integer. A solution {xn} of 
Eq. (1) is said to be oscillatory if for every K\ > ño there exists an η > K\ 
such that x n x n + i < 0, otherwise it is said to be nonoscillatory. 

The neutral delay difference equations arise in a number of important 
applications including problems in population dynamics when maturation 
and gestation are included, in "cobweb" models in economics, where demand 
depends on current price but supply depends on the price at an earlier time, 
and in electrical transmission in lossless transmission lines between circuits 
in high speed computers. The literature on the oscillations theory of neutral 
difference equations is growing rapidly (see, for example [2, 8-12]). Zhou and 
Zhang [10-12] investigated the oscillation and nonoscillation of first order 
and second order neutral difference equations. The study is a relatively new 
field and is very interesting in applications. 

The motivation for the present work steems from the many comparison 
theorems in the theory of functional differential equations. We are particu-
larly interested in the work of Erbe, Kong and Zhang [3], Gopalsamy, Lalli 
and Zhang [4], Yan [6], Zhang, Yu and Wang [7] on linear neutral delay 
differential equations, and our results are generalizations and extensions of 
theirs to nonlinear neutral delay difference equations. The plan of the paper 
is as follows. In Section 2, we shall present some preliminary results, some of 
which are interesting in their own right. In Section 3, we obtain a necessary 
and sufficient condition for the oscillation of all solution of (1) which im-
prove and extend the main results in [9]. As some application of this result 
and the main result in [8], we establish three comparison theorems for the 
oscillation of (1). 

In the sequel, when we write a sequential inequality without specifying its 
domain of validity, we assume that it holds for all sufficiently large positive 
integer n. 

2. Preliminaries 

LEMMA 1. [1] Let {yn} be a sequence of real numbers in N. Let {yn} and 
Amyn be of constant sign with Amyn not being identically zero on any subset 
N(ñι) of Ν. If 

yn&myn < 0, 
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then there exists a number m* in {0,1 · · ·, τη — 1} with (—i)"1-™*-1 = \ an¿ 
such that 

ynà?yn > 0 , for j = 0,1,2, · · ·, m*, η > ñ2 > ñi, 
(-l)j~m*ynAjyn > 0 , for j = m* + 1, · · ·, m - 1, η > ñ2 > ΰχ. 

LEMMA 2. Assume that either there is : n^ —• oo, k —» oo 5uc/i ί/ιαί 
pnfc = 0 or there exists a positive integer n* such that pn> 0 for n> n* and 

oo j 
(2) Σ ( Π ρ » * + < τ ) =°° · 

3=1 i=l 
Let 

(3) yn = xn Pnxn—T! 
where { x n } is an eventually positive solution of the difference inequality 

(4) Am(xn - pnxn-r) + f(n,xgi{n),xg2{n), • • • ,xgi(n)) < 0. 

Then, we have eventually 

(5) yn > 0. 
Proof. Let ñ\ be a positive integer such that x n - r > 0 and xgi(n) > 0,i = 
1 ,2 , · · · , / , for all η > ηχ. Then, by (3) cind (4), we have 

Amyn < -f(n, X9l(n),Xg2(n), •··, Xg,(n)) ^ for a11 n > 
which yields that the differences of yn up to order m — 1 are monotone and 
either eventually 

(6) Am~1yn < 0 

or 

(7) Am~1yn > 0. 
We claim that (7) holds. Otherwise, (6) holds, which implies that there exist 
α > 0 and ñ2 > ñ\ such that 

yn < —a, for all η > ñι· 
Therefore, we have 

(8) xn <—α + ρηΧη-τ, for all η > «2. 

If Pnk = 0 for π*; > then we have xnk < —a. This is a contradiction. 
Thus, Pn > 0 for π > For the sake of convenience, we set 

s(i) = n* + ir, i = 1 ,2,··· . 
Now choose a positive integer j such that s(j) = n* + jr > ñi. Then for 
any positive integer i, by (8) we have 
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xs(j+i) ^ Ps(j+i)Xs(j+i-1) - α 

< Ps(j+i) · ' -Ps(j)Xs(j-1) 

- a[l + Ps(j+i) + Ps(j+i)Ps(j+i-i) + ••• + Ps(j+i) • · -PsO+i)] 

v=0 I. 

1 1 1 + + · · · + 
Ps{j) Ps(j)Ps(j+l) Ps(j) • • • Ps(j+i). 

It follows from (2) that xs(j+i) < 0 for sufficiently large i . This is a contra-
diction and so (7) holds. 

Next, we consider the following three possible cases: 
Case 1. There is m € {2,3, · · ·, τη — 1} such that 

A m ~ m y n < 0 , Δ ™ - ™ - 1 ^ < 0 ; 

Case 2. There is m E {1,2, · · ·, m — 1} such that 
Δτη>—ϊηΛ. ^ λ a m—m—1„. ^ π. 

yn > ϋ, Δ y n > U; 

Case 3. < 0 , m = 1 , 2 , • · · , m . 

For Case 1, by using a similar method to the above, we can obtain a 
contradiction and so Case 1 is impossible. For Case 2 we see that eventually 
yn > 0. For Case 3, since m is an odd integer, it follows that yn > 0 
eventually. The proof of Lemma 3 is complete. 
L E M M A 3 . Assume that the assumptions of Lemma 2 hold and 

oo 
(9) ^ f(i, d, • · ·, d) = oo, for some d > 0. 

¿=n o 
Let { a ; n } and { z / n } be as in Lemma 2. Then we have that ( — i y A l y n > 0 , i — 

0 , 1 , · · · , m , eventually. 

Proo f . By Lemmas 1 and 2, we have yn > 0 eventually and moreover 

A Jyn > 0, for j = 0,1, • · · ,m*, n > ñ 2, 

( - i y - m * A j y n > 0 , f o r j = m* + I , · • • , m - 1, n > ñ 2 . 

we claim that m* = 0. Otherwise τη* > 2 and hence A¿yn > 0 , j = 
0,1, · • · ,m*, which implies that there exists a N\ > ñ.2 such that yn > d 
for η > Ni and hence xn > yn > d, for n> N\. Substituting this into (1) 
we have 

A m y n + f ( n , d , - - - , d ) <0. 

Summing it up from Ni to Ν for Ν sufficiently large, we have 
Ν 

Σ /(¿> d , - - - , d ) < Am~1yN1 - Δ — W < Δ ™ " 1 ^ 
i=Ni 
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w h i c h i m p l i e s 

Σ f(i,d, · · · ,d) < oo. 
i = n o 

T h i s i s a c o n t r a d i c t i o n a n d t h e p r o o f i s c o m p l e t e . 

I n f o l l o w i n g , l e t 

σ = m a x { r , π — m i n { < 7 ¿ ( T I ) } } f o r s o m e ñ > ñ o · 
n>n,l<i<l 

L E M M A 4 . Assume that there exists a ñ > ñ\ such that either pn > 0 and 

gi(n) < n, for η > π, i = 1 , 2 , · · · , I, or pn > 0 for η > π. Further, assume 

that the inequality 

1 0 0 

( 1 0 ) yn > PnVn—T + , _ - η + m - 1 )(m~1]f(i, y f l l ( ¿ ) , · · ·, y s ¡ ( ¿ ) ) 

has a positive solution {νη}^=η-σ· Then the corresponding equation 

1 0 0 

( 1 1 ) X f i = P n X n - T + . _ - η + m - Î ) { m ~ l ) f { i , ® f l l ( i ) > · · · , xgi{i)) 
* i—n 

has a positive solution {χη}^=?ί_σ. 

P r o o f . D e f i n e a s e t o f s e q u e n c e s 

W = {w = { w n } £ L ñ - < r : 0 < < ι f o r η > π - σ } , 

a n d d e f i n e t h e m a p p i n g S o n W a s f o l l o w s 

IIn 

X/(¿>y9i«™9i(i)' · • ' . ϊ » ( ί ) ω ΐ ι ( · ) ) ] » n e N ( ñ ) , 
( 1 2 ) Swn = 

1 
PnVn-TWn-T + 7 rrr Y V i - Π + m - l ) ^ " 1 ) 

(m — 1)! v ' 1 = 7 1 

n - n + σ n ( π - π + σ \ Λ Τ . _ 
•Sutñ + ( 1 : ) , η € Ν ( η - σ, η). 

σ \ σ 

I t i s e a s y t o s e e f r o m ( 1 0 ) t h a t S W C W, a n d f o r a n y w G W, w e h a v e 

Swn > 0 f o r π — σ < η < π . 

D e f i n e a s e q u e n c { - u ^ } i n V F a s f o l l o w : = 1 , a n d = S w n \ j = 

0 , 1 , 2 , · · · , η > π — σ . F r o m ( 1 0 ) , b y i n d u c t i o n , w e h a v e 

0 < i 4 j + 1 ) < w® < 1, T i e N { ñ - c ) , j = 0 , 1 , 2 , · · · . 

T h e n l i m ¿ _ o o w ^ = wn,n e N(ñ — σ ) , e x i s t s , a n d 0 < w n < 1 . F u r t h e r , i n 

v i e w o f ( 1 2 ) t h e f o l l o w i n g h o l d s 

Wn = 
1 0 0 

PnVn-rWn-T + 7 ΓΤ7 V ] ( t - U + m - l ) ^ " 1 ) 
( m — 1 ) ! v ' i = n 

x / ( * > 2 / f l i ( » ) ™ 9 l ( » ) > · · · . V s i ( i ) w 9 i ( i ) > ] · for η € N(ñ) 

Vn 
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and 
n — ñ + σ „ n — ñ + σ . ir/_ 

wn = tüñ+1 > 0, for η€Ν{η — σ,η). 
σ σ 

Set xn = wnyn. Then {x n } is a nonnegative solution of (11) and xn > 0 for 
ñ — σ < η < ñ. 

Finally it remains to show that xn > 0 for η E N(ñ — σ). 
Assume that exists η' E N(ñ — σ) such that xn > 0 for ñ — σ < η < η' 

and χηι = 0. Clearly, η' > ñ. Thus, by (11) we have 

1 00 
0 = Xn> = ρη·χη'-τ + — γ ^(i-n' + ΤΠ - l ) ( m _ 1 )/(i, Xgi(i), ···, Xg,(i)) 

L)· i=n> 
which implies that pn> = 0 and f(i, xgi(i), · · ·, xgi(i)) = 0. Hence, pnt = 0 
and xgi(n) = 0,n > n',i = 1,2,···,/. This contradicts the assumptions of 
Lemma 4. Therefore, xn > 0 for η E N(ñ — σ), and the proof is complete. 

LEMMA 5. Assume that 1 <m* <m — 1, c > 0 and that the inequality 

(13) > c + + ( m . _ 1 ) | ( ^ + i ) ' " - " 

OO 
x B i - i + m - m ' - 1 ) ( m - ^ - i ) / ( j . j y g i U ) ¡ . . . f y g i U ) ) 

j=i 
has a positive solution {yn}%Lñ-tτ Then the corresponding equation 

1 n _ 1 
(14) xn = c + pnxn-T+ m r - T i ï E ( n - i + 1)(m*_1) 

[τη* — l)!(m — m* — 1)! 
oo 

x ^ ( i _ i + m _ m » _ 1 ) (m-m-- l ) / ü j X g i U ) ì . . . f X g i U ) ) 

j=i 
also has a positive solution 

The proof of Lemma 5 is similar to the proof of Lemma 4 and hence we 
omit it here. 

3. Main results 

THEOREM 1. Assume that either there is {rife} : rife —• oo as k —y oo such that 
pnk = 0 and 5i(n) < n, for η > ñ, i = 1,2, · · ·, I, or there exists a positive 
integer n* such that pn > 0 for η > ή* and that (2) holds. Then every 
solution of Eq. (1) is oscillatory if and only if the corresponding inequality 
(4) has no eventually positive solutions. 



Comparison theorems 551 

P r o o f . The sufficiency is obvious. To prove the necessity, we assume that 
(4) has an eventually positive solution { x n } . Set yn — xn — pnxn-T. By 
Lemma 2, yn > 0 eventually. According to Lemma 1, there exists an even 
number τη* such that m* G N(0,m — 1), and that 

A i j/n> 0, for i = 0 , 1 , · · · , ™ * , 
(15) . . 

(—l) lA lyn > 0, for i = m* + 1, · · · ,τη - 1. 

If τη* = 0, summing up (4) from n t o o o m times, we have 
I oo 

y η " im — i) ; . j=n 
That is 

1 0 0 

- ( m - l ì ! Σ ϋ - η + m - l J ^ - ^ / O " , x S l ( i ) , · · ·, xgt(j)). 

1 0 0 

Xn > ΡηΧη-τ + , _ ^ { j - Π + m - l ) ( m _ 1 ) / ( j , Xgi(j), " " " , Xgi(j))· 

1 0 0 
= pnzn-r + ^ _ ^ Y^ij-n + m- 1 )(m-1}/(i, zgi(j)> " " " > *</,(;)) 

]=n 

By Lemma 4, the corresponding equation 

ι °° 
= Ρη^η—τ "t" 7 T"r: (771 — 1)! 

v ' }=n 

also has a positive solution {zn}. Clearly, {zn} is an eventually positive 
solution of (1), contradicting the assumption. 

If 2 < τη* < m — 1, then summing up (4) from η to 00 m — m* times, 
we have 

(16) Am'yn > 
1 0 0 

- ftn-m'-lV Σ ϋ - η + m - m· - 1 x9l(j), xgiU)). 

Then summing up (16) from ñ to τι — 1 τη* times we have 

K - D K m - m · - ! ) ! £ < » - Í + 1 ) < " , ' " 1 > 

OO 

x ^ i - i + m - m ' - l Y m - m ' - V f ( j , x g i { i ) , • • -,xgiU)), n>% 
3=* 

where π is sufficiently large such that Xñ > 0. Thus we have, for η > ñ, 
^ n—1 

Xn > Vñ + ΡηΧη-τ + 7 — ^ 7—pry T(n - i + l ) ^ * " 1 ) (m* — l)!(m - τη* - 1)! f-L 
00 

x ^ U - i + m - m * - --ι)/0·, Xíi(.)f..., XgiU))y n>ñ. 
3=1 
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By Lemma 5, the corresponding equation 
^ η—1 

zn = y* + PnZn-T + , , J ΓΤ7 £ ( « - * + L ) ( M * _ 1 ) 

(m* — l)!(m — m* — 1)! 
00 

x - t + m - m* - i ){m-m'- i) f { j ì . . . J Zg¡{, ) ) ( n > ÇJ 

has a positive solution {2n}· Clearly, {zn} is a positive solution of (1). This 
contradiction completes the proof. 

When r = 1 or pn = 0, Theorem 1 reduces the necessary and sufficient 
condition for the oscillation of all solutions of the even or odd order difference 
equation with deviating arguments. 

COROLLARY 1. Every solution of the equation 
(17) Δ m+1Xn-i + f(n, xgi{n), xgt{n)) = 0 
is oscillatory if and only if the corresponding inequality 
(18) A m + 1 x n _ ! + / (n , xffl(n)> · • ·, xgt{n)) < 0 
has no eventually positive solutions. 
COROLLARY 2. Every solution of the equation 

(19) &mxn + f(n,xgi(n),---,xgi(n)) = 0 
is oscillatory if and only if the corresponding inequality 
(20) AmXn + f(n,xgi{n), • · ·,χ9ι{η)) < 0 
has no eventualy positive solutions. 
THEOREM 2. Assume that the assumptions of Lemma 2 hold. Further, as-
sume that gi(n) < hi(n), ¿ = 1 ,2 , · · · , / and that (9) holds. Then every solu-
tion of the equation 

(21) Amxn + f(n, xhl{n), · · ·, x M n ) ) = 0 
is oscillatory implies the same for Eq. (1). 
Proof . Assume the contrary, and let {xn} be an eventually positive solution 
of (1). Let yn — xn— Ρη^η-τ· Then by Lemmas 2 and 3, yn > 0, Ayn < 0 
eventually. In view of (iv) and since xn>yn, we have 

0 = Amyn + f(n, xS l ( n ) , · · ·, xff | (n)) 
> Amyn + /(π, yffl(n), · · ·, ygi(n)) 
> Amyn + f(n,yhl{n), • • • ,yh,(n)). 

By Corollary 2, (21) has an eventually positive solution. This is a contra-
diction and complete the proof of Theorem 2. 
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We now compare Eq. (1) with the equation 

(22) Am(xn - Pnxn-r) + F{n, iSl(n), · · ·, xg,(n)) = 0, 

where Ρ : Ν (Κ) —> R+ = [0, oo), F : Ν χ Rl —• R is continuous with respect 
to the last I arguments satisfying 

(I) F(n, —ui, -u2, · · •, -ui) = -F(n,ui,u2, · • · ,u¡), for mu j > 0, 
i = 2 ,···,/. 

(II) uiF(n, ui, · · ·, ui) > 0, for u\ui > 0, i = 2, · · •, I. 

THEOREM 3. Assume that either there is {n^} : njt —> oo as k —> oo such 
that Pnk = 0 and g%(n) < n, for η > ñ,i = 1,2 , · · · ,1 , or there exists a 
positive integer n* such that Pn> 0 for η > η* and 

00 j 
(23) Σ ( Π Ρ η · + ί τ ) " =00 . 

j=1 ¿=1 
Further, assume that Pn > pn and that 

(24) |F(n ,u i ,u 2 , · · · , « ί ) | > \ f{n,uuu2, • · • ,«i)|, 
for u\ui > 0, i = 2, · · ·, I. 

Then every solution of Eq. (1) is oscillatory implies the same for Eq. (22). 

P roo f . Assume the contrary, and let {xn} be an eventually positive solution 
of (22). Let yn = xn — Pnxn-T. As in the proof of Theorem 1 we see that 
yn> 0 for large η and (15) holds. If m* = 0. Summing (22) from η to oo m 
times we have 

1 00 

Vn > Voo + (m_1), - n + m - 1 )(m_1)*U «juey)' ' * · ' X9ltí)) 

and so 1 00 

Xn > 3/00 + PnXn-r + , _ ^ ( j - η + m - 1 ) ( m _ 1 ) F 0 · , xgití), xgtU)) 
>' j=n 

1 00 

> pnxn-r + (m _ -n + m- l)(m-Vf{j,xgiU), xgiU)), 

where i/oo = linin-^oo 3/n > 0. Using a similar method as in the proof of 
Theorem 1, one can see that Eq. (1) has also an eventually positive solution 
which contradicts the assumption. 

If m* > 0, as shown in the proof of Theorem 1, we obtain that for η > ñ 

Vn>Vñ+ t . 1 J—TÏÏ Σ > - * + 1) ( m*"1 ) 
(m* — l)!(m - m* - 1)! 
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χ Σ θ ' - i + m-m* - 1 Xgiij), · · ·, xgiU)). 
j=í 

Hence for π > π 
-, η—1 

Xn>yñ+ PnXn-r + , . ^ τ τ Σ ( η ~ * + (m* — l)!(m — m* — 1)! 
oo 

x J 2 ( j - i + m-m*- 1 )(m-m'-i)F{jì Λ>... f ^ , ) } 
j=i 

1 η— 1 
> Vñ + PnXn-T + . . 1W ; ΓΤ7 Σ (n - * + 1)(m'~1) 

(rn* — l)!(m — πι* — 1)! 
00 

χ Σ ϋ - i + m - m* - 1)(—--i)/aXgiij)r .. f XgiU)y 
j=i 

The rest of the proof is the same as that of Theorem 1. One can see that 
Eq. (1) has also an eventually positive solution which contradicts the as-
sumption and competes with the proof of Theorem 3. 

Now we consider the case where pn = 1 and gi(n) = η — a¿,a¿ € R+, 
¿ = 1 ,2 , · · · , I. 

Lemma 6. Every solution of the neutral difference equation 

(25) A m ( x n — Χη—τ) + f{n> Χη-σ11 ' ' ' ι Χη-σι ) = 0 

is oscillatory if and only if every solution of the even order non-neutral 
diffrence equation 

(26) A m + 1 x n _ i + —/(η, xn , · · ·, xn) = 0 τ 
is oscillatory. 

Lemma 6 with I = 1 has been proved by Zhang and Yang in [8]. For 
the case where I > 1, the results of Lemma 6 can be proved, using a slight 
modification of that in Theorem 2.1 of [8], and thus, the proof is omitted. 
By Theorem 3 and Lemma 6, we can obtain the following result. 

THEOREM 4. Assume that pn > 1 and that there exists a n* such that (2) 
holds. Then every solution of Eq. (26) is oscillatory implies the same for 
Eq. (1). 

C o r o l l a r y 3. Let Oi(i = 1,2···,/) be any nonnegative integers. Then the 
oscillation of the following two equations 

Δ Xn— 1 "I" f(n}Xn—ai> ' ' ' >Χη—σι ) = 0 
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and 
A m + 1 x n _ i + f(n, xn, • • •, xn) = 0 

is equivalent. 
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