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J u k a n g K . C h u n g , P r a s a n n a K . S a h o o 

G E N E R A L S O L U T I O N O F S O M E F U N C T I O N A L 
E Q U A T I O N S R E L A T E D T O T H E D E T E R M I N A N T 

O F S O M E S Y M M E T R I C M A T R I C E S 

Abstract. In this paper, we determine the general solution of the functional equation 
f(ux+vy, uy+vx) = g(x, y) h(u, v) where f,g,h: M2 —» R are unknown functions. We also 
treat the equation f(ux + vy, uy + vx, zw) = g(x,y,z) h(u,v,w) where / , g,h : R3 —» R 
are unknown functions. Our method is elementary and we do not use any regularity 
conditions. 

1. I n t r o d u c t i o n 
Let us define / : R2 —• R by 

f{x,y) = det I X y ) 
\ y Χ J 

for all x, y € R. Then, since 

det(UX + Vy Uy + V X ) = d e t ( X y ) . d e t ( U V ) , 
\ uy + vx ux + vy J \ y χ J \ ν u J 

we have the functional equation 

(1) f(ux + vy, uy + vx) = f(x,y)f(u,v) 

for ail x,y,u,v € R. Obviously, f{x,y) = x2 — y2 is a solution of the func-
tional equation (1). In this note we determine all general solutions of the 
above functional equation (1) and its pexiderized version 

f(ux + vy, uy + vx) = g(x, y) h(u, v) 

without any regularity assumptions. We also treat the functional equation 

(2) f(ux + vy, uy + vx, zw) = f ( x , y, z) f(u, v, w) 
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and its pexiderized version 
(3) f(ux + vy, uy + vx, wz) = g(x, y, ζ) h(u, v, w) 
for all x,y,z,u,v,w G R. The functional equation (2) arises in a similar 
manner by defining a function / : R3 —• R by 

for all x,y,z G Κ. The interested reader should refer to books [1] and [2] for 
an account on functional equations. 

2. The solution of equation (1) 
A map M : R —• M is said to be multiplicative if and only if M(xy) = 

M(x) M(y) for all x, y G R. 
THEOREM 1. The function f : R2 —• R satisfies the functional equation (1) 
for all x, y, u, ν G R if and only if 

where Μχ, M2 : R —• R are multiplicative maps. 
Proof . Suppose / is identically a constant, say / = c. Then from (1), 
we have c2 — c = 0 which implies c = 0 or c = 1. Hence the identically 
constant solutions of (1) are f(x,y) = 0 and f(x,y) — 1 for all x,y G R. 
Since multiplicative maps can be identically zero or one, these solutions are 
included in (4). 

Prom now on we assume that / is not identically constant, that is / φ c, 
where c is a constant. We define a function F : R2 —» R by 

for all x, y G R. Next, using (5) in (1), we see that 

(6) + + V^ ^ ~ ~ V ^ 
= F(x + y, χ — y) F(u + v, u — ν) 

for all χ, y,u,v G R. Substituting χχ = χ + y, yi = x — y, £2 = u + v and 
2/2 = u — ν in (6), we have 
(7) F(x 1X2, ym) = F(xi,Vi) F(x2,2/2) 

for ail xi,yi,x2,y2 ε R. 
Setting yi = 2/2 = 1 in (7), we see that 

( χ 0 y ^ 
/(x, y, z) = det 0 ζ 0 

K y 0 χ J 

(4) f(x,y) = Mi(x + y) M2{x - y) 

(8) F ( X I X 2 , 1 ) = F ( X 1 , 1 ) F ( X 2 , 1 ) 
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for all XI,X2 G R. Defining M2 : Κ Μ by 

(9) Μι (χ) = F(x, 1) 

for all χ G R, we see that (8) reduces to 

(10) M1{X1X2) = Miixi) M1(X2) 

for all x i , i 2 € R. Hence M\ : R —> R is a multiplicative map. 

Similarly, setting X\ = x2 = 1 in (7), we have 

(11) F(l,y1y2) = F(l,y1)F(l,y2) 
for all 2/1,7/2 € R. Defining M2 : R —• R by 

(12) M2(y) = F(l,y) 

for all χ G R, we see that (11) reduces to 

(13) M2{ym) = M2(yi) M2(y2) 

for all τ/1, y2 G R. Hence M2 : R —> R is also a multiplicative map. 
Now letting X2 = 1 = yi in (7), we obtain 

(14) F{x\,y2) = F(xi, 1) F(l,y2) 

for all χi,i/2 G R which yields 

(15) F(xi,y2) = Mi(x\) M2{y2) 

for all xi , y2 G R. 

Now using (15) in (5), we have 

(16) f(x,y) = F(x + y,x-y) = M\{x + y) M2{x - y) 

for all χ, y G R, that is the asserted solution (4). 
Since the asserted solution given in (4) satisfies the functional equation 

(1) the proof of the theorem is now complete. • 
The following corollary follows from Theorem 1. 

COROLLARY 1. The continuous or measurable function f : R2 —» R satisfies 
the functional equation (1) for all x,y,u, ν G R if and only if 

(17) f(x,y) = 0, f(x,y) = 1, and f(x,y) = (x + y)a(x - y)b 

for all x,y G R, where a and b are arbitrary real constants such that the 
domain of f is R2 . 

Now we give the general solution of the Pexiderized version of the func-
tional equation (1). 
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THEOREM 2. The functions f , g,h : R2 —> R satisfy the functional equation 

(18) f(ux + vy,uy + vx) = g(x,y)h(u,v) 

for all χ, y, u, υ Ε Κ if and only if 

(19) / = 0, g = 0 and h is arbitrary 

or 

(20) f = 0, h = 0 and g is arbitrary 

or 

f(x,y) = aßM1(x + y)M2(x-y), 
(21) g(x,y) = ßM1{x + y)M2{x-y), 

h(x,y) = aMi(x + y)M2{x-y), 
where M\,M2 : Κ —• Κ are multiplicative maps and α,β are nonzero real 
arbitrary constants. 

P r o o f . Letting u = ν = 1 in (18), we have for some constant a 

(22) f(x,y) = ag(x,y) 

for all x,y 6 R. Similarly, letting χ = y = 1 in (18), we get for some 
constant β 
(23) f(u,v) = ßh(u,v) 

for all u, ν 6 R. If either a = 0 or β — 0, we get 

/ = 0, g = 0 and h is arbitrary 

or 

/ = 0, h = 0 and g is arbitrary. 

Next, we suppose α φ 0 β. Then using (22) and (23) in (18), we have 
f{ux + vy, uy + vx) _ f{x,y) f(u,v) 

^ ' aß aß aß 
where x,y,u,v € R. Prom Theorem 1, we have 
(25) f(x,y) = aßMl(x + y)M2(x-y) 
for all ι , y G R. Prom (22), (23) and (25), 

g(x,y) = βMi(x + y) M2(x - y) 

and 
h(x,y) = a Mi(x + y) M2(x - y) 

and the proof is now complete. • 
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3. The solution of equation (2) 

THEOREM 3. The function f : R 3 —• Κ satisfies the functional equation (2) 
for all χ, y, z, u, v, w € Κ if and only if 

(26) f { x , y , z ) = Mi(x + y)M2(x-y)M3(z), 

where Μι, M2, M$ : R —»· R are multiplicative maps. 

Proo f . If / is identically a constant function, then similar to the proof of 
Theorem 1, we have f(x, y, χ) = 0 or / (x , y, ζ) = 1 for all x,y,z € R. These 
solutions axe included in (26). 

Next we assume / is not identically a constant function. Define a function 
F : R3 R by 

(27) F ( W ) = / ( £ ± Ü , £ Z J ! , , ) . 

As in the proof of Theorem 1, using (27) in (2) and then substituting xi = 
® + 3/> 2/1 = Χ — 2/, X2 — u + v and y2 = u — v, we have 
(28) F(x 1X2, 1/12/2, zw) = F {χ ι, J/1, ζ) F(x2, 2/2, ™)· 

Using ζ = w = 1 in (28) and then using a similar argument as in Theorem 1, 
we get 
(29) F(x,y,l) = Mi(x)M2(y), 

where Mi, M2 : R —> R are multiplicative functions. Letting χ ι = x2 = 2/1 = 
1/2 = 1 in (28), we get 

(30) F ( l , 1, zw) = F ( l , 1, z) F(l, Ι,ιο) 

for all z, w € R. Hence 
(31) F ( l , l , z ) = M3(z) 

where M3 : R —• R is a multiplicative function. Next, letting x2 = 2/2 = ζ = 1 
in (28), we get 
(32) F{xi, 2/1, w) = F(xi,yi, 1) F( 1 , 1 , w). 

Hence by (29), (31) and (32), we have 
(33) F(xi,yi,w) = Mi(xx) M2(yi)M3(w). 

Using (33) together with (27), we have the asserted solution (26) and the 
proof of the theorem is now complete. • 

By using Theorem 3, one can easily prove the following theorem similar 
to the proof of Theorem 2. 

THEOREM 4. The functions f,g,h: R 3 —> R satisfy the functional equation 

(34) f(ux + vy, uy + vx, zw) = g(x, y, z) h(u, ν, w) 
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for all χ, y, z,u,v,w € R if and only if 

(35) / = 0, <7 = 0 and h is arbitrary 

or 

(36) / = 0, h = 0 and g is arbitrary 

or 

(37) 
f{x,y,z) = ctßMl{x + y)M2(x-y), M3(z), 

g(x, y, ζ) = β Mi(x + y) M2{x - y) M3{z), 

h(x,y, Z) = AMI(X + y) M2(X - y) M3(Z) 

where M\,M2,M3 : M —> E are multiplicative maps and α,β are nonzero 
real arbitrary constants. 
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