

Jukang K. Chung, Prasanna K. Sahoo

GENERAL SOLUTION OF SOME FUNCTIONAL
 EQUATIONS RELATED TO THE DETERMINANT
 OF SOME SYMMETRIC MATRICES

Abstract. In this paper, we determine the general solution of the functional equation $f(ux+vy, uy+vx) = g(x, y) h(u, v)$ where $f, g, h : \mathbb{R}^2 \rightarrow \mathbb{R}$ are unknown functions. We also treat the equation $f(ux + vy, uy + vx, zw) = g(x, y, z) h(u, v, w)$ where $f, g, h : \mathbb{R}^3 \rightarrow \mathbb{R}$ are unknown functions. Our method is elementary and we do not use any regularity conditions.

1. Introduction

Let us define $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ by

$$f(x, y) = \det \begin{pmatrix} x & y \\ y & x \end{pmatrix}$$

for all $x, y \in \mathbb{R}$. Then, since

$$\det \begin{pmatrix} ux + vy & uy + vx \\ uy + vx & ux + vy \end{pmatrix} = \det \begin{pmatrix} x & y \\ y & x \end{pmatrix} \cdot \det \begin{pmatrix} u & v \\ v & u \end{pmatrix},$$

we have the functional equation

$$(1) \quad f(ux + vy, uy + vx) = f(x, y) f(u, v)$$

for all $x, y, u, v \in \mathbb{R}$. Obviously, $f(x, y) = x^2 - y^2$ is a solution of the functional equation (1). In this note we determine all general solutions of the above functional equation (1) and its pexiderized version

$$f(ux + vy, uy + vx) = g(x, y) h(u, v)$$

without any regularity assumptions. We also treat the functional equation

$$(2) \quad f(ux + vy, uy + vx, zw) = f(x, y, z) f(u, v, w)$$

1991 *Mathematics Subject Classification*: Primary 39B22.

Key words and phrases: determinant of a matrix, functional equation, multiplicative function.

and its pexiderized version

$$(3) \quad f(ux + vy, uy + vx, wz) = g(x, y, z) h(u, v, w)$$

for all $x, y, z, u, v, w \in \mathbb{R}$. The functional equation (2) arises in a similar manner by defining a function $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ by

$$f(x, y, z) = \det \begin{pmatrix} x & 0 & y \\ 0 & z & 0 \\ y & 0 & x \end{pmatrix}$$

for all $x, y, z \in \mathbb{R}$. The interested reader should refer to books [1] and [2] for an account on functional equations.

2. The solution of equation (1)

A map $M : \mathbb{R} \rightarrow \mathbb{R}$ is said to be multiplicative if and only if $M(xy) = M(x)M(y)$ for all $x, y \in \mathbb{R}$.

THEOREM 1. *The function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfies the functional equation (1) for all $x, y, u, v \in \mathbb{R}$ if and only if*

$$(4) \quad f(x, y) = M_1(x + y) M_2(x - y)$$

where $M_1, M_2 : \mathbb{R} \rightarrow \mathbb{R}$ are multiplicative maps.

P r o o f. Suppose f is identically a constant, say $f \equiv c$. Then from (1), we have $c^2 - c = 0$ which implies $c = 0$ or $c = 1$. Hence the identically constant solutions of (1) are $f(x, y) = 0$ and $f(x, y) = 1$ for all $x, y \in \mathbb{R}$. Since multiplicative maps can be identically zero or one, these solutions are included in (4).

From now on we assume that f is not identically constant, that is $f \not\equiv c$, where c is a constant. We define a function $F : \mathbb{R}^2 \rightarrow \mathbb{R}$ by

$$(5) \quad F(x, y) = f\left(\frac{x+y}{2}, \frac{x-y}{2}\right)$$

for all $x, y \in \mathbb{R}$. Next, using (5) in (1), we see that

$$(6) \quad \begin{aligned} F((x+y)(u+v), (x-y)(u-v)) \\ = F(x+y, x-y) F(u+v, u-v) \end{aligned}$$

for all $x, y, u, v \in \mathbb{R}$. Substituting $x_1 = x+y$, $y_1 = x-y$, $x_2 = u+v$ and $y_2 = u-v$ in (6), we have

$$(7) \quad F(x_1 x_2, y_1 y_2) = F(x_1, y_1) F(x_2, y_2)$$

for all $x_1, y_1, x_2, y_2 \in \mathbb{R}$.

Setting $y_1 = y_2 = 1$ in (7), we see that

$$(8) \quad F(x_1 x_2, 1) = F(x_1, 1) F(x_2, 1)$$

for all $x_1, x_2 \in \mathbb{R}$. Defining $M_2 : \mathbb{R} \rightarrow \mathbb{R}$ by

$$(9) \quad M_1(x) = F(x, 1)$$

for all $x \in \mathbb{R}$, we see that (8) reduces to

$$(10) \quad M_1(x_1 x_2) = M_1(x_1) M_1(x_2)$$

for all $x_1, x_2 \in \mathbb{R}$. Hence $M_1 : \mathbb{R} \rightarrow \mathbb{R}$ is a multiplicative map.

Similarly, setting $x_1 = x_2 = 1$ in (7), we have

$$(11) \quad F(1, y_1 y_2) = F(1, y_1) F(1, y_2)$$

for all $y_1, y_2 \in \mathbb{R}$. Defining $M_2 : \mathbb{R} \rightarrow \mathbb{R}$ by

$$(12) \quad M_2(y) = F(1, y)$$

for all $x \in \mathbb{R}$, we see that (11) reduces to

$$(13) \quad M_2(y_1 y_2) = M_2(y_1) M_2(y_2)$$

for all $y_1, y_2 \in \mathbb{R}$. Hence $M_2 : \mathbb{R} \rightarrow \mathbb{R}$ is also a multiplicative map.

Now letting $x_2 = 1 = y_1$ in (7), we obtain

$$(14) \quad F(x_1, y_2) = F(x_1, 1) F(1, y_2)$$

for all $x_1, y_2 \in \mathbb{R}$ which yields

$$(15) \quad F(x_1, y_2) = M_1(x_1) M_2(y_2)$$

for all $x_1, y_2 \in \mathbb{R}$.

Now using (15) in (5), we have

$$(16) \quad f(x, y) = F(x + y, x - y) = M_1(x + y) M_2(x - y)$$

for all $x, y \in \mathbb{R}$, that is the asserted solution (4).

Since the asserted solution given in (4) satisfies the functional equation (1) the proof of the theorem is now complete. ■

The following corollary follows from Theorem 1.

COROLLARY 1. *The continuous or measurable function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfies the functional equation (1) for all $x, y, u, v \in \mathbb{R}$ if and only if*

$$(17) \quad f(x, y) = 0, \quad f(x, y) = 1, \quad \text{and} \quad f(x, y) = (x + y)^a (x - y)^b$$

for all $x, y \in \mathbb{R}$, where a and b are arbitrary real constants such that the domain of f is \mathbb{R}^2 .

Now we give the general solution of the Pexiderized version of the functional equation (1).

THEOREM 2. *The functions $f, g, h : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfy the functional equation*

$$(18) \quad f(ux + vy, uy + vx) = g(x, y)h(u, v)$$

for all $x, y, u, v \in \mathbb{R}$ if and only if

$$(19) \quad f \equiv 0, \quad g \equiv 0 \quad \text{and } h \text{ is arbitrary}$$

or

$$(20) \quad f \equiv 0, \quad h \equiv 0 \quad \text{and } g \text{ is arbitrary}$$

or

$$(21) \quad \begin{aligned} f(x, y) &= \alpha \beta M_1(x + y) M_2(x - y), \\ g(x, y) &= \beta M_1(x + y) M_2(x - y), \\ h(x, y) &= \alpha M_1(x + y) M_2(x - y), \end{aligned}$$

where $M_1, M_2 : \mathbb{R} \rightarrow \mathbb{R}$ are multiplicative maps and α, β are nonzero real arbitrary constants.

Proof. Letting $u = v = 1$ in (18), we have for some constant α

$$(22) \quad f(x, y) = \alpha g(x, y)$$

for all $x, y \in \mathbb{R}$. Similarly, letting $x = y = 1$ in (18), we get for some constant β

$$(23) \quad f(u, v) = \beta h(u, v)$$

for all $u, v \in \mathbb{R}$. If either $\alpha = 0$ or $\beta = 0$, we get

$$f \equiv 0, \quad g \equiv 0 \quad \text{and } h \text{ is arbitrary}$$

or

$$f \equiv 0, \quad h \equiv 0 \quad \text{and } g \text{ is arbitrary.}$$

Next, we suppose $\alpha \neq 0 \neq \beta$. Then using (22) and (23) in (18), we have

$$(24) \quad \frac{f(ux + vy, uy + vx)}{\alpha \beta} = \frac{f(x, y)}{\alpha \beta} \frac{f(u, v)}{\alpha \beta}$$

where $x, y, u, v \in \mathbb{R}$. From Theorem 1, we have

$$(25) \quad f(x, y) = \alpha \beta M_1(x + y) M_2(x - y)$$

for all $x, y \in \mathbb{R}$. From (22), (23) and (25),

$$g(x, y) = \beta M_1(x + y) M_2(x - y)$$

and

$$h(x, y) = \alpha M_1(x + y) M_2(x - y)$$

and the proof is now complete. ■

3. The solution of equation (2)

THEOREM 3. *The function $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ satisfies the functional equation (2) for all $x, y, z, u, v, w \in \mathbb{R}$ if and only if*

$$(26) \quad f(x, y, z) = M_1(x + y) M_2(x - y) M_3(z),$$

where $M_1, M_2, M_3 : \mathbb{R} \rightarrow \mathbb{R}$ are multiplicative maps.

P r o o f. If f is identically a constant function, then similar to the proof of Theorem 1, we have $f(x, y, z) = 0$ or $f(x, y, z) = 1$ for all $x, y, z \in \mathbb{R}$. These solutions are included in (26).

Next we assume f is not identically a constant function. Define a function $F : \mathbb{R}^3 \rightarrow \mathbb{R}$ by

$$(27) \quad F(x, y, z) = f\left(\frac{x+y}{2}, \frac{x-y}{2}, z\right).$$

As in the proof of Theorem 1, using (27) in (2) and then substituting $x_1 = x + y$, $y_1 = x - y$, $x_2 = u + v$ and $y_2 = u - v$, we have

$$(28) \quad F(x_1 x_2, y_1 y_2, zw) = F(x_1, y_1, z) F(x_2, y_2, w).$$

Using $z = w = 1$ in (28) and then using a similar argument as in Theorem 1, we get

$$(29) \quad F(x, y, 1) = M_1(x) M_2(y),$$

where $M_1, M_2 : \mathbb{R} \rightarrow \mathbb{R}$ are multiplicative functions. Letting $x_1 = x_2 = y_1 = y_2 = 1$ in (28), we get

$$(30) \quad F(1, 1, zw) = F(1, 1, z) F(1, 1, w)$$

for all $z, w \in \mathbb{R}$. Hence

$$(31) \quad F(1, 1, z) = M_3(z)$$

where $M_3 : \mathbb{R} \rightarrow \mathbb{R}$ is a multiplicative function. Next, letting $x_2 = y_2 = z = 1$ in (28), we get

$$(32) \quad F(x_1, y_1, w) = F(x_1, y_1, 1) F(1, 1, w).$$

Hence by (29), (31) and (32), we have

$$(33) \quad F(x_1, y_1, w) = M_1(x_1) M_2(y_1) M_3(w).$$

Using (33) together with (27), we have the asserted solution (26) and the proof of the theorem is now complete. ■

By using Theorem 3, one can easily prove the following theorem similar to the proof of Theorem 2.

THEOREM 4. *The functions $f, g, h : \mathbb{R}^3 \rightarrow \mathbb{R}$ satisfy the functional equation*

$$(34) \quad f(ux + vy, uy + vx, zw) = g(x, y, z) h(u, v, w)$$

for all $x, y, z, u, v, w \in \mathbb{R}$ if and only if

$$(35) \quad f \equiv 0, \quad g \equiv 0 \quad \text{and } h \text{ is arbitrary}$$

or

$$(36) \quad f \equiv 0, \quad h \equiv 0 \quad \text{and } g \text{ is arbitrary}$$

or

$$(37) \quad \begin{aligned} f(x, y, z) &= \alpha \beta M_1(x + y) M_2(x - y), M_3(z), \\ g(x, y, z) &= \beta M_1(x + y) M_2(x - y) M_3(z), \\ h(x, y, z) &= \alpha M_1(x + y) M_2(x - y) M_3(z) \end{aligned}$$

where $M_1, M_2, M_3 : \mathbb{R} \rightarrow \mathbb{R}$ are multiplicative maps and α, β are nonzero real arbitrary constants.

References

- [1] J. Aczél, J. Dhombres, *Functional Equations in Several Variables*, Cambridge University Press, Cambridge, 1989.
- [2] P. K. Sahoo, T. Riedel, *Mean Value Theorems and Functional Equations*, World Scientific, Singapore, 1998.

Jukang K. Chung

DEPARTMENT OF APPLIED MATHEMATICS
SOUTH CHINA UNIVERSITY OF TECHNOLOGY
GUANGZHOU, PEOPLE'S REPUBLIC OF CHINA

Prasanna K. Sahoo

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LOUISVILLE
LOUISVILLE, KENTUCKY 40292, U.S.A.
E-mail: sahoo@louisville.edu

Received June 4, 2001.