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GENERAL SOLUTION OF SOME FUNCTIONAL
EQUATIONS RELATED TO THE DETERMINANT
OF SOME SYMMETRIC MATRICES

Abstract. In this paper, we determine the general solution of the functional equation
f(uz+vy, uy+vz) = g(z,y) h(u,v) where f,g,h: R? — R are unknown functions. We also
treat the equation f(uz + vy, uy + v, 2w) = g(z, v, z) h(u,v,w) where f,g,h: R3 - R
are unknown functions. Qur method is elementary and we do not use any regularity
conditions.

1. Introduction
Let us define f : R — R by

f(m,y)=det( ’ y)
Yy z

for all z,y € R. Then, since

det<um+vy uy+vz)=det(z y)-det(u v>,
uy +vT uzx + vy Yy z v U

we have the functional equation

(1) fuz + vy, uy +vz) = f(z,9) f(v, )

for all z,y,u,v € R. Obviously, f(z,y) = z2 — y? is a solution of the func-
tional equation (1). In this note we determine all general solutions of the
above functional equation (1) and its pexiderized version

fluz + vy, uy + vz) = g(z,y) h(u,v)
without any regularity assumptions. We also treat the functional equation
(2) f(uz +vy, uy + vz, 2w) = f(z,y,2) f(u,v,w)
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and its pexiderized version
(3) f(uz + vy, uy + vz, wz) = g(z, y, z) h(u, v, w)
for all z,y,2,u,v,w € R. The functional equation (2) arises in a similar
manner by defining a function f : R® — R by
z 0 y
flz,y,z)=det] 0 2z 0
y 0 2

for all z,y, z € R. The interested reader should refer to books [1] and [2] for
an account on functional equations.

2. The solution of equation (1)
A map M : R — R is said to be multiplicative if and only if M(zy) =
M(z) M(y) for all z,y € R.

THEOREM 1. The function f : R? — R satisfies the functional equation (1)
for all z,y,u,v € R if and only if

(4) f(z,y) = Mi(z + y) Ma(z — y)

where My, Ms : R — R are multiplicative maps.

Proof. Suppose f is identically a constant, say f = c¢. Then from (1),
we have ¢ — ¢ = 0 which implies ¢ = 0 or ¢ = 1. Hence the identically
constant solutions of (1) are f(z,y) = 0 and f(z,y) =1 for all z,y € R.
Since multiplicative maps can be identically zero or one, these solutions are
included in (4).

From now on we assume that f is not identically constant, that is f # c,
where c is a constant. We define a function F : R> — R by

©) Faw =1 (54 552)

for all z,y € R. Next, using (5) in (1), we see that
(6) F((z +y)(u+v), (z-y)(u—-1))
=F(z+y,z-y)Flu+v, u—v)

for all z,y,u,v € R. Substituting zy =z+y, ;1 =z —y, T2 =u+v and
y2 = u — v in (6), we have

(7) F(z172,11y2) = F(z1,91) F(z2,92)
for all 21, y1,%2,y2 €R.

Setting ¥, = y2 = 1 in (7), we see that
(8) F(zlzg, 1) = F(zl, 1) F(.’Bz, 1)
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for all z1,z2 € R. Defining M3 : R — R by

(9) My (z) = F(z,1)
for all z € R, we see that (8) reduces to
(10) Mi(z122) = Mi(z1) Ma(z2)

for all z1,z2 € R. Hence M; : R — R is a multiplicative map.
Similarly, setting ; = z3 = 1 in (7), we have

(11) F(1L,y132) = F(1,1) F(L,y2)

for all y;,y2 € R. Defining M5 : R — R by

(12) Ma(y) = F(1,y)

for all z € R, we see that (11) reduces to

(13) Ma(y1y2) = Ma(y1) Ma(y2)

for all y1,y2 € R. Hence M; : R — R is also a multiplicative map.
Now letting €3 = 1 = y; in (7), we obtain

(14) F(z1,y2) = F(z1,1) F(1,32)
for all z1,y2 € R which yields
(15) F(z1,y2) = Mi(z1) Ma(y2)

for all z1,72 € R.

Now using (15) in (5), we have
(16) flz,y)=F(z+y,z—y) = Mi(z +y) Ma(z — )
for all z,y € R, that is the asserted solution (4).

Since the asserted solution given in (4) satisfies the functional equation
(1) the proof of the theorem is now complete. u
The following corollary follows from Theorem 1.

COROLLARY 1. The continuous or measurable function f : R — R satisfies
the functional equation (1) for all z,y,u,v € R if and only if

17 f(z,y)=0, f(z,y)=1, and f(z,9)=(z+y)(z-y)°

for all z,y € R, where a and b are arbitrary real constants such that the
domain of f is R2.

Now we give the general solution of the Pexiderized version of the func-
tional equation (1).
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THEOREM 2. The functions f,g,h: R? — R satisfy the functional equation

(18) f(uz + vy, uy + vz) = g(z,y) h(u,v)
for all z,y,u,v € R if and only if

(19) f=0, g=0 and h is arbitrary
or

(20) f=0, h=0 and g is arbitrary
or

f(z,y) = af Mi(z + y) Ma(z — ),
(21) 9(z,y) = B Mi(z +y) Ma(z - y),
h(z,y) = a Mi(z + y) Ma(z — y),

where My, My : R — R are multiplicative maps and «, 8 are nonzero real
arbitrary constants.

Proof. Letting u = v =1 in (18), we have for some constant «

(22) f(z,y) = ag(z,y)

for all z,y € R. Similarly, letting £ = y = 1 in (18), we get for some
constant 3

(23) f(u,v) = Bh(u,v)
for all u,v € R. If either o = 0 or 8 =0, we get
f=0, g=0 and h is arbitrary

or
=0, h=0 and g is arbitrary.

Next, we suppose  # 0 # 3. Then using (22) and (23) in (18), we have
fluz +vy, uy+ve) _ flz,y) f(w,0)

(24)

af af af
where z,y,u,v € R. From Theorem 1, we have
(25) f(z,y) = aBMi(z +y) Ma(z — )

for all z,y € R. From (22), (23) and (25),
g(z,y) = B Mi(z +y) Ma(z — y)

and
h(z,y) = aMi(z +y) Ma(z — y)

and the proof is now complete. m
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3. The solution of equation (2)

THEOREM 3. The function f : R® — R satisfies the functional equation (2)
for all z,y,z,u,v,w € R if and only if

(26) f(z,y,2) = Mi(z +y) Ma(z — y) M3(z),

where My, My, M3 : R — R are multiplicative maps.

Proof. If f is identically a constant function, then similar to the proof of

Theorem 1, we have f(z,y,z) =0 or f(z,y,z) =1 for all z,y, z € R. These
solutions are included in (26).

Next we assume f is not identically a constant function. Define a function
F:R - Rby

(21) Faw) = f (52 ).

As in the proof of Theorem 1, using (27) in (2) and then substituting z; =
z+y, n=cT—y, T3 =u+ v and y3 = u — v, we have

(28) F($1$2, ny2, Z'LU) = F(zl) Y1, Z) F(wZ) Y2, ’U))

Using z = w = 1 in (28) and then using a similar argument as in Theorem 1,
we get
(29) F(maya 1) = Ml(z) M2(y)’

where M, M, : R — R are multiplicative functions. Letting z; =z =y =
y2 = 1 in (28), we get

(30) F(1,1,zw) = F(1,1,2z) F(1,1,w)
for all z,w € R. Hence
(31) F(1,1,2) = M;3(2)

where M3 : R — R is a multiplicative function. Next, letting zo = yo =z =1
in (28), we get

(32) F(z,n,w) = F(z1,41,1) F(1,1,w).
Hence by (29), (31) and (32), we have
(33) F(z1,y1,w) = Mi(z1) Ma(y1) M3(w).

Using (33) together with (27), we have the asserted solution (26) and the
proof of the theorem is now complete. =

By using Theorem 3, one can easily prove the following theorem similar
to the proof of Theorem 2.

THEOREM 4. The functions f,g,h: R® — R satisfy the functional equation
(34) f(uz + vy, uy + vz, 2w) = g(z,y, 2) h(uy, v, w)
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for all z,y,z,u,v,w € R if and only if

(35) f=0, g=0 and h is arbitrary
or
(36) f=0, h=0 and g is arbitrary
or

f(.’L‘,y,Z) = aﬂMl(m + y) Mg(!l? - y)7 M3(Z),
(37) 9(z,y,2) = B Mi(z +y) Ma(z — y) Ms(2),
h(z,y,z) = a Mi(z +y) Ma(z — y) M3(2)

where My, M>, M3 : R — R are multiplicative maps and «,8 are nonzero
real arbitrary constants.
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