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THE CONSTRUCTION OF A CERTAIN QUASI-CONFORMAL
EXTENSION OF THE FUNCTIONS DEFINED
IN THE UNIT DISC, ON THE CLOSED PLANE

Abstract. In this paper a certain method of the construction of a quasi-conformal
extension of the functions defined in the unit disc, on the closed plane C is given. The
earlier known results are received in particular cases, ([1], [2], [3], [9]).

1. Introduction
Let us denote C—a complex plane, D = {z € C: |z| < 1}-—open unit

disc,
HONIRYZEON
Si=\Ty) 3\ T
f'(2) 2\ f'(2)
a Schwarzian derivative of a holomorphic function f.

L. V. Ahlfors and G. Weill, (2], proved that if the holomorphic function
f satisfies inequality

1S#(2)] < k(1= |21*)7%, z€D

for a certain constant k € (0;2), then this function has a quasi-conformal
extension on the closed plane C = C U {oo}.

J. Becker, [3], proved that if in D the inequality

— 122 zf"(2)
(- 1ef) |27 < &

holds,where h €< 0;1), then f has a quasi-conformal extension on C.
In the paper [4] there was proved the following:

— b

THEOREM 1. Let f,g be the holomorphic functions in D. If f and g are
locally uniform in D and if there exists the holomorphic function h such
that Reh(z) > 1 for z € D and the inequality
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holds for an arbitrary o« € C and z € D, then the function f is univalent
in D.

The assumptions given in the above theorem in view of the univalence
of the function f appear to be valid too for the quasi-conformal extension
of this function on C.

A certain modification of Theorem 1 allows to obtain the results given
in Theorems 2 and 4.

<1

2. The main result

THEOREM 2. Let f and g be the holomorphic functions in D. If this functions
are locally univalent in D and if there exzists the function h holomorphic in
D such that for a certain fized k €< 0;1) and arbitrary o € C inequality

@ [Fst e -0k [ 5 -2 20T

e ) oNre
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holds, where '71—5 — ll < k, z € D, then there ezists the function F such

— k=
that FI_ f and F maps in the quasi-conformal manner of the order 1+ i C
on C.
This function has the form
f(2) for 2] <1,
—L)a(l)f
@) F()={17Ff (%) + (z f)h(?) for |z| > 1.

z g’ ; £
1+a(z 1‘
?‘

Proof. The function f is univalent in D because it satisfies a “strengthened”
sufficient condition of the univalence (1) from Theorem 1.

We may assume, as in Theorem 1, that both functions f and g have
a classic normalization in the neighbourhood of the origin, and have the
second coefficients equal. Thus

Nl

f(z) = g(2) + O(2%), % =14 0(z%), for z—0.
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Let

g'(2)\* 2 3

'u(z)=< - ) =1+82+0(2°) for z—0, a€C,
f'(2)

(we assume here this branch of the power (-)*, which for z = 0 has the
f(2)v(2). For |z| > 1 we form the function

u(®)+(=-3)n(2)v ()

A= T o)) ()

z

value 1) and u(z) =

nll—=

NI N
wli—

The simple calculations give
a1 g pr _ ot g
V= <f) %
v=r(§) ver(§) HEE

where the derivatives are calculated in the point z
After some transformations using the above formulas we obtain

H(Z)=f(%)+ (Z——) ( )g{,£)) IZ6) for |z] > 1.
1+a(z—%)h(%)(g, —f—,@‘)-)
It is easy to note that on H(z) = f(z) for |z| = 1.
Let
F(z) = {f(z) for || <1,
T\ H(z)  for |z >1.

Nlidy

(4)

We will show that the function (4) realize the quasi-conformal mapping

of the order 3£ TonT.
For |z] > 1 and z # oo, after calculations we obtain

Fé l{h_l—(z——) [h/ (1—2a)];l:+2a—]—

h Z) Lh
"

) 2D (-5 -]

—a(z—:
Z

™ 32
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where h, ', ¢, g", S§, Sy are calculated in the point 1/Z
The modulus of the right side of the F_/F! is equal to the value of the

left side of the relation (2), when we replace z by 1/z
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Hence on the base (2) we have
/

== ,/‘F(Z)I <k =z EC\ﬁ,

!
z

where p.(z) is a complex dilatation of the function F.

We will show now, that F! # 0 for z € C\ 8D. Of course, it holds for
z € D, because then, F is univalent in D.

For z € C\ D we obtain after some calculations

o R(3) ()

oo T

The numerator of the last expression is different from zero. The denominator
would be equal to oo only for z = co. It is impossible since

-yl s
) ) 0
is bounded in view of the assumed normalization, from which it follows that
r@) 1),
N N = Ol = for z — o0.
9() r@E) OV
First consider such subset C\ D, in which F, F!, F " are finite. Denote
for Aset: A={z:2€C\D and M(z) =0}, where

g// 1 f/l 1
o =1va(s-)n(2) (S8 - L) aec
() £(3)
Thus, for z € C\ A the derivative F! # 0 and is finite and
lpp(2)| <k < 1.

Let now z € A. We assume in this case G(z) = 'FII':ZS
It is easy to note that |u,(2)] = |pe(2)].

{10 T

We will prove that the derivative G’ = z% (F%E}) # 0 and is finite for

z€ A Forze A )
G =- 5 X
z 1 1 1
(=8 r() s ()
Because z — % # 0 (since z € A) f’ (%) # 0 (since f is locally univalent
and h (%) # 0), therefore |G| < oo.
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Similarly we can show, that for z € A, G”? is finite too, and in this case

&= b (DI 6 -5)-

G~z
(- Ypfaad () 350

where h, b/, ¢, 9", f', f", Sf, Sy are calculated in the point 1/Z.
For z € A the modulus of the right side of the expression G’ / G’ is equal

to the value of the left side of the relation (2), when we replace z by 1 /Z,

therefore on the base (2) we have

we have:

G|

<k< 1l

lup(2)] = lpe(2)] = ik

We will prove now that for each point which is on the unit circle, F is
the local homeomorphism (see [5]), which holds the orientation.
Then, let 29 = ¢ € 8D, 6 €< 0;27 > also
O(Z(),To) = {Z eC: |Z - Z()I < T, To > 0}

and
H()=f (%) + — (z(-z;_)—h)(;g ()gf € )— o ) 2 € O(z0,70),
z F g %

where 79 is chosen in such a manner, that in the neighbourhood O(z, o)

Nli=fgi—
]
>

we have:
f(z0+q) = f(z0) + f'(20)q + o(g?),

H(zo + 1) = F(20) + H;(z0)q1 + Hz(20)3 + o(a})

= f(z0) + £'(20) [(z0)a1 + €** (h(z0) — 1)@y + o(a}),

where |q| < 19, |g1| < 7o and h is the holomorphic function.
If J and J; are respectively Jacobians of the functions f and H, then

2]
From the assumptions it follows that J(zp) > 0 and J1(zp) > 0
We may assume (see [6], p. 380-381) that O(zg,7¢) is a neighbourhood

chosen so that in the closure of which the function f is univalent, and H is

the homeomorphism which holds the orientation.

J(20) = | f'(20)I?,
J1(z0) = [Hy(20)[* — |Hy(20)* = |’ (20) B (20)? [1 - ‘— -1
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Let us remind that

F(z) = f(z) for z€D,
| H(z) for ze D°={z€CT:|z|>1},

and that H(e®¥) = f(e®¥), ¢ €< 0;27 > . We will show that there exist
such neighbourhood of the point zp in which F' is the single valued mapping.

From the definition of F' and the earlier considerations it follows that
this function is univalent in O(2g,79) N D and in O(zg,79) N D° for each
neighbourhood O(zp,71), r1 < 79.

Since F is the homeomorphism in O(zg, 7g) nD° holding the orientation
and F = f on O(2p,79)N8D, then such small neighbourhood O(z9,72), T2 <
ro can be chosen, that in this neighbourhood F' is the single valued mapping.

In the opposite case, a certain point
2o+ q¢€ 6(20,7‘2) M DO, |q| = rg

would be mapped by F' into the point of the set F(D N 80(zp,72)), (where
F(A) denotes the image of the set A by the transformation F'). The above
is impossible because a certain interior point of the set F(O(zg,70) N EO)
would belong to the curve F(O(zp,79) N 8D). It would be contradictory to
homeomorphity of F in O(zp,70) N D°.
It has to be shown that F' is the local homeomorphism holding the ori-
entation in a certain neighbourhood of the point z = oo.
Let us remind, that from the assumed normalization of the functions f
and g it follows, that
f'w)  g"(w) _
fllw)  g(w)
From the above and from the form of the function F' defined by the for-
mula (3) for |z| > 1 the dominator of the fraction on the right side of this
formula is bounded in a certain neighbourhood of the point z = oo. Thus
zlingo F(z) = .

Then, let us take

O(w), when w— 0.

~ 1
It is known that |u . (2)| = |up(2)|. From the calculations it follows that
~ 1
!

Bl T ROy



Quasi-conformal extension 515

and
Bl e a(C) ()
e O Z\g (1) 7(})) e
Since
i (%) — I (%) =0 (i) for z— o0
o) 7 °h
so
~'z‘ ~ f/( )(Sf( ) — (O))
From the above and from the inequality (2) for z = 0 we obtain
bp(e0) = || = lueloo)l Sk <.

Because F‘sz # 0 and is finite, then in z = oo F is the local homeomor-
phism holding the orientation.

From the above considerations it follows that the mapping F is the local
homeomorphism on C holding the orientation and such that |, (z)] < k < 1
on C. From the definition of F' it also follows that the function has the
property of the absolute continuity on straight lines, (the property ACL,
see [7)).

So F defines the quasi-conformal extension of the order
tion f on the closed plane C.

This finishes the proof of the theorem.

1+k of the func-

COROLLARY 1. For a =0 and h # 1 inequality (2) has the form:

I Rl bro cor B

where |ng5 - 1| < k < 1. The function (3) is given by the formula
f(2) for |zl <1,

O e Ao

COROLLARY 2. For a =0 and h = 1 inequality (2) has the form:

) -1

< k; (Becker, [3]).
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The function (3) is given by the formula:

f(z) for |z| <1,
o (g ni

COROLLARY 3. We assume that a =0 and h—g;%_rl =c¢,|c| < k. Then (2) has
the form:

el - (1~ (222

(9) ) < k; (Ahlfors, [1])
and the function (3) is given by the formula:

_J f(2) for |z| <1,
(10) F(Z)—{f(%)_*'l_l'—c(z_%)fl(%) for |z|>1.

COROLLARY 4. For a = % we have, respectively,

[P ep - (2 2 D)

h(z) h(z) ~ ¢'(2)
5= =P ZRG)(S 1) ~ Sofe| < k<1,
where IF(IEY - 1| <k and
f(2) for |z[ <1,
(12) F(z)= f(%) n (z—%)h(%l)lf’l(%)f” _ jor |2 >1.
-t (SH- 20

This result was obtained by Wesolowski, [9].

COROLLARY 5. For a = , h(z) =1, g(z) = z The inequality (2) and the
function (3) have the form:

2k

(13) 1Sf(2)| < A= k €<0,1>, (Ahlfors, Weill [2])
f(2) for |2l <1,
(14) Fa)={ £ (2

THEOREM 3. Let f, g be the holomorphic functions and locally univalent
in D.
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If for a certain function h holomorphic in D and for a certain fized
k € (0;1) inequalities:

1

TeRREL

M1 o @), g g ) 2@
SIS SRlEs T 2Ty )| <k

a(l — |2[2)? gh(z) [(a_ %> (%%) _ %)2 +(55(2) - (z))]

_ [h(z) — (1o 2 [z—h(/(i) + (-2 2a"‘9"(z)m <k,

h(z) h(z) f'(z) 9'(2)
z€e D,

hold, then the function f has the quasiconformal extension of the order %%
on C.
For the clarity of the proof it is comfortably to take h(z) = 1_—«1?(27 and

to give Theorem 3 in the equivalent form
THEOREM 4. Let f, g be the holomorphic functions and locally univalent
in D.

If for a certain function c(z) holomorphic in D and a the certain fized
k € (0;1) inequalities

()] < &,

15)  [e@lef- 11 [k + 12 L 202 B <
e "y 2

a9 fo- 12 2| (- 3) (- 2) s -sp0) -

[c(z J2l2= (1= 2] )( =) (1-24) f"(z)+2azg"(z))] (1—c(2)

c(2) f'(z) g'(2)
< kf1—-c(2)],
are satisfied, then the function f has the quasi-conformal extension of the

order %ﬁ on C.

Proof. Because there are no assumptions that f, g and ¢ are holomorphic
in D, first consider the following functions:

(1) fi(e) = 15(r2), 9:(2) = 2o(r2), e =c(rz), 0<r<1, zD.
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The assumptions of Theorem 2 for the above functions have the form (we
take h(z) = ﬁ@ and we divide the both sides of the inequality (2) by

(1 —12/*?):

ler (2)] < &,
2 I\ (£ g(2)\ A5 (N -
(18) O‘E l(a ) <fr( ) g;(z)) +Sfr( ) Syr( )]
1-c (2 zcrz z2fy (2 29, (2
___(1—T2|(2))2 [cr( )z = (1—|z]%) [ o ) +(1-2a) fr’((Z)) +2a gg,(( ))]”
< Hi-e(2)]
e 1P
For the function (17), after simple calculations we obtain:
2f(z) _ zrf"(r2) z2g;(z) _ zrg"(rz)
fiz)  firz) gi(2)  g(rz) ’
c. =rd(rz),
St.(2) = r284(rz), Sg.(2) = r284(r2).

Replaicing in the inequalities (15) and (16) z by rz and taking into account
the above dependences we have:

ler(2)1 < &,
QP [ 2d(z) o 2@, 29i(E)
19) '(1—r2|z|2> g e
k
= TR

(20)

aZ[(e-3) (B2 -£E) 15,05, )] - TS
* [‘;'(z)"z'zlz—(l—ﬂlzl% [12_6,::52) +(1-20) fr((i) zgg((:))”

1= e (2)
T (1-r?)?
The inequalities (18) and (20) show us that the variable w

- 1[(o-3) (53 - ) o5

z€D.
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is in the discs:
(21) lw — M(2)| < Ri(z),
(22) lw — N(z)] < Ra(2),

respectively, where

@) ME) =1 [ - (- 1B,

e NG =0 el - - e B
(25) B(z) = 1—236%()7) +(1-2a)2 foES) +2a zg"j;iz))

and

If we show, that the disc defined by the inequality (22) is included in the
disc defined by the inequality (21), then we will indicate that the function
(17) satisfies the assumptions of Theorem 2.

Consider the modulus of the difference of the centres of this discs. Af-
ter certain calculations taking under considerations (23), (24) and (25) we
obtain:

7.2
|M(Z) - N(z)l = |1 _c‘l‘(z)l (1 —1|z|2 1 —r2|z|2)

r2|z|?

NI N
B(2) ~ er(2) s — er(2)

1-|zf?
1 r2
<|1- -
<j 0r(2)|<1_lz|2 1—r2|z|2)
r?lzf? |2
X [B(Z) —G(Z)Tzlzlg + |0r(2)|1—_F|7 :
Using the inequality (19) we obtain:

1 2 k k|z|?
M((z)-N <|1- -
| M (2) (2)] < 11 —cr(2)] (1—|z|2 1—r2|z|2) (1—r2|z|2 +1—|z|2

1 r?

= k[l -cr(2)] ((1_ [2[2)2 - (l_rzlzlz)g) = Ry(2) — R(2).
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It follows from the above that the function (17) satisfies the assumptions
of Theorem 2 and so f,(z) has the quasi-conformal extension of the order
Ik Ton T

The function f as the limit f,(z) for r — 1 has also the quasi-conformal
extension C on T of the same order. (see [8], p. 135, property 1.2.6).

The function F such that F|, = f and F maps in the quasi-conformal

manner of the order % C on C, has in this case the form:

f(2) oiyr(s for |z] <1,
T 1(>+(>H7)%7’) -

Use appropriate functions f, g, ¢ and the parameter «, then the previously
known results can be obtained (see [7]).

N

|z] > 1.

Al Jeati—
[ (Y1)
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