DEMONSTRATIO MATHEMATICA
Vol. XXXV No 3 2002

Dumitru Vialcan

ABELIAN GROUPS WITH
THE DIRECT SUMMAND SUM PROPERTY

Abstract. If R is an associative ring, with unity, the R-module (the abelian group)
M is said to have the direct summand sum property (in short D.S.S.P.) if the sum (that is
the submodule (the subgroup) of M generated by the union) of any two direct summands
of M is again a direct summand in M. The present work gives descriptions of some classes
of abelian groups with this property.

1. Preliminaries

Let R be an associative ring, with unity. We say that an R-module M
has the (strong) direct summand intersection property, in short (S.D.S.I.P.)
D.S.I.P., if the intersection of (any family of) two direct summands of M is
again a direct summand in M. The history of the modules with the direct
summand intersection property begins with Kaplansky, which in {7] presents
the following exercise (ex. 51, p. 49) for solving:

a) Let M be a free module over a principal ideal ring, S a submodule of
M, and T a direct summand of M. Prove that SN T is a direct summand
of S.

b) Let M be a free module over a principal ideal ring. Show that the
intersection of any finite number of direct summands of M is again a direct
summand of M.

c) Let M be a free module of countable rank over a principal ideal ring.
Show that the intersection of any number of direct summands is a direct
summand.

This fact suggested to Fuchs in [4] to ask, in his turn, for the solution
of the same exercise for free abelian groups (ex.14.4, p.76), countable free
abelian groups or free abelian groups of the power of the continuum (ex.19.5,
p.95). Moreover, Fuchs proposes the following open problem (problem 9):
”Characterize the groups in which the intersection of two direct summands
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is again a direct summand.” Solutions to this Kaplansky-Fuchs’s problem
were obtained in [1]-{3], [5], [6], [10]~{19] and [21].

In [14] we presented the concept of "R-module (abelian group) with the
direct summand sum property” (in short D.S.S.P.) as being an R-module
(abelian group) M, which has the property that the sum (that is the sub-
module (the subgroup) of M generated by the union) of any two direct
summands of M is a direct summand too, and we presented the first char-
acterizations of R-modules with this property. We also presented there the
concept of "R-module (abelian group) which has the strong direct summand
sum property”, in short S.D.S.S.P., as being an R-module (abelian group)
M which has the property that the sum (that is the submodule (the sub-
group) of M generated by the union) of any family of direct summands of
M is again a direct summand of M, and we have proposed the following
open problem for solving ”Characterize the R-modules (the abelian groups)
in which the sum of two direct summands is again a direct summand”. This
problem is the dual of Kaplansky-Fuchs’s problem, which we have presented
above.

In [17] we presented other characterizations of these R-modules, results
concerning certain classes of R-modules (injective or projective) over an
associative ring R, with unity, as well as results concerning certain rings
with this property.

In this work we will present the structure theorems for three classes of
abelian groups with D.S.S.P. that is: the torsion groups, the torsion-free
groups and the splitting mixed groups. In this context, throughout this
paper by group we mean abelian group in additive notation.

The paper is structured in four sections: in this first section we will
present the results obtained in [17] which we need here, as well as a few cases
in which D.S.1.P. involves D.S.S.P., and in the sections 2, 3, respectively 4,
we will describe the torsion groups, the torsion-free groups, respectively the
splitting mixed groups, with D.S.S.P.

(1.1): If an R-module has S.D.S.S.P., it also has D.S.S.P.; the converse
is generally false.

(1.2): If the R-module M has D.S.S.P. (respectively S.D.S.S.P.), then
every direct summand of M also has D.S.S.P. (respectively S.D.S.S.P.).

(1.3.): Let M = @M, be an R-module, where for every i € I, M; is

i€l
fully invariant in M. %hen M has D.S.S.P. (respectively S.D.S.S.P.) if and
only if for everyi € I, M; has D.S5.S.P. (respectively S.D.S.S.P.).

(1.4): Let R be a principal ideal domain and let P be the set of all unasso-
ciated prime elements from R. If M = @ M, is a torsion R-module, decom-

peP
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posed according to [9, 6.11.3], then M has D.S.S.P. (respectively S.D.S.S.P.)
if and only if for every p € P, My, has D.S.S.P. (respectively S.D.S.5.P.).

(1.5): If the R-module M has D.S.S.P., then the following statements
hold:

1) For every decomposition M = A @ B and every homomorphism f :
A — B, Imf is a direct summand in B;

2) If A and B are indecomposable R-modules and A @ B is a direct
summand in M, then:

either i) Hom(A, B) =0 or

ii) if 0 # f € Hom(A, B), then f is epimorphism.

(1.6): The following statements are equivalent for a ring R:

a) All injective R-modules have D.S.S.P.

b) R is left hereditary.

Next we are going to show that certain classes of abelian groups which
have D.S.I.P. also have D.S.S.P.

PROPOSITION 1.7. If G is an abelian group with D.S.I1.P., then in any of
the following cases, G (also) has D.S.S.P.:

1) G is a p-group which is either reduced or divisible;

2) G is a torsion group, whose p-components satisfy the conditions from
point 1);

3) G is a divisible group;

4) G is a torsion-free group of the form
(1) G= @ G‘ia

i€l

where, for every i € I, G; is reduced group of rank one and for every t1,12 €
I, i1 # 49, t(Gy,) and t(G;,) are incomparable types.

5) G is a splitting mized group of the form
(2) G=DaT,
where D is divisible and torsion-free and T is reduced and torsion.

Proof. 1) Let G be an abelian p-group with D.S.I.P., which satisfies the
statement conditions. Then, according to [6, Theorem 2], we have two cases:
CASE 1: There is a n € N* such that either G = Z(p™) or G = Z(p™).
In this case G has in a trivial way D.S.S.P., since it is indecomposable.
CASE 2: There is a cardinal m;, such that G = ®m,Z(p). Then G is an
elementary p-group; so it has D.S.S.P. (In this case any subgroup of G is a
direct summand in G.)

2) The statement follows from what has been proved at point 1) and
from (1.4).



480 D. Vilcan

3) According to [10,4.4], a divisible group G has D.S.L.P. if and only if

either G = @ Z(p™) or G = P Q, where P, is a subset of the set P of
peEP To

all prime numbers, and rg = 79(G) is the torsion-free rank of G. In the first

case G satisfies the conditions from point 2), and in the second case G is a

vector space over (). In both cases G has D.S.S.P.

Otherwise: We can apply (2.1)2).

4) If G is a group as in the statement, then for every ¢ € I, G; is an
indecomposable and fully invariant direct summand in G. So, in this case,
according to (1.3), G has D.S.S.P.

5) Let G be a group of the form (2). Then, according to what we proved
in points 2), respectively 3), D and T have D.S.S.P. Since D and T are fully
invariant in G, also in this case (1.3) completes the proof.

From (1.7) it follows that in certain cases D.S.I.P. involves D.S.S.P. This
is not always true, that is there are abelian groups with D.S.I.P. and which
do not have D.S.S.P. In this context, we have (also) the following result:

REMARK 1.8. If G is a completely decomposable torsion-free group which
satisfies [6, Lemma 10], as well, then G does not have D.S.S.P.

Proof. Let G be a completely decomposable torsion-free group with D.S.I.P.
and which satisfies [6, Lemma 10|, as well. Then G = H® (@ Xi), where: H
iel

is a finite rank completely decomposable torsion-free hom%geneous group,
for every i € I, X; has rank one, for every i,j € I, i # j, t(X;) and ¢t(X;) are
incomparable types and for every ¢ € I, t¢(H) < t(X;). In these conditions
each direct summand of rank one of H is isomorphic to a proper subgroup
of X;, for every i € I, according to [4, §85, p. 112]. Therefore, if Y is a direct
summand in H, for every ¢ € I, according to (1.5)1), Y & X; does not have
D.S.S.P. and according to (1.2), G doesn’t have this property anymore.

2. Torsion groups
Before passing to determine the structure of the abelian groups with
D.S.S.P. some remarks should be made:

REMARKS 2.1. 1) If A is a subgroup of B, which is not a direct summand in
B, then the group G = A ® B does not have D.S.S.P. In particular, if B is
indecomposable, then for any proper subgroup A of B, the group G = A& B
does not have D.S.S.P.

2) Any (abelian) divisible group has D.S.S.P.

Proof. 1) Let A, B and G be as in the statement and let ¢ : A — B be
the inclusion map. According to (1.5)1), A = i(A) is a direct summand in
B-contradiction to the hypothesis.
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2) Since Z is a hereditary ring, the statement follows from (1.6).

REMARKS 2.2. 1) For every m,n € N*, with the property that m +n > 3,
Z(p™) ® Z(p™) does not have D.S.S.P.
2) For everyn € N*, Z(p") & Z(p™) does not have D.S.S.P.

Proof. 1) For every m,n € N*, with the property that m + n > 3, there
are non-null homomorphisms from Z(p™) to Z(p™), or vice-versa, which are
not epimorphisms. Now we can apply (1.5)2).

Otherwise: We can apply (2.1)1).

2) For every n € N*, there are non-null homomorphisms f : Z(p") —
Z(p™) which are not epimorphisms. Again we apply (1.5)2).

Otherwise: We can apply (2.1)1).

For p-groups with D.S.S.P. we have:

THEOREM 2.3. The following statements are equivalent for a p-group G:

1) G has D.S.S.P.;
2) either a) G is indecomposable, or b) either pG = 0 or G is divisible.

Proof. 1) implies 2)a) If G is indecomposable, then this gives the required
result.

b) First we are going to show that for every a € G[p), either hy(a) =0
or hy(a) = oo. We suppose that there is a € G[p] such that hy(a) = k,
where k € N and 0 < k < oo. It follows that a € p*G; so thereis a b € G
such that a = p*b and pa = 0. Therefore p**1b = 0 and o(b) = p*+i.
According to [4, 27.5], (b) is a direct summand in G; so G = (b) ® G; and
(a) € (b). Now, we suppose that for any g € G;[p], (g) is a direct summand
in G1. Then Gi[p] is a direct summand in Gi; therefore G1 = G1[p] ® Fi.
But F]_Lp] = F]_ ﬂGl[p] = 0. It follows that F1 = 0, G1 = Gl[p] and,
up to isomorphism, G = Z(p**1) @ (®m,Z(p)), where m,, is any cardinal.
We consider S = Z(p**!) ® Z(p) a direct summand in G. Since k > 1,
according to (2.2)1), S does not have D.S.S.P. and then G doesn’t have this
property anymore—contradiction to the hypothesis. It follows that there is
a g € G1[p] such that (g) is not a direct summand in G;. We choose such
a g € Gi[p). Then o(b + g) = p**! and (b + g) is a direct summand in G;
so G = (b+ g) ® H. It can be easily proved that (b) N (b+ g) = (pb). In
this case, according to the choice of g, (b) + (b+ g) = (b) ® (g) is not a
direct summand in G; hence G does not have D.S.S.P. - again we obtain a
contradiction to the hypothesis. So the initial supposition is false and for
every a € G[p), either hy(a) = 0 or hp(a) = oo.

Let U be the set of p-bounded direct summands of G and let {41, Ao, ...,

An,...} C U be a totally ordered subset of U. Then A = (| J 4;) is a
i>1
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subgroup of G and, according to (8, p. 151], A is a direct summand in G. By
Zorn’s Lemma we obtain that G = B@® C, where B is a maximal element of
U. Let g € C[p] be any element from C[p]. If hy(g) = 0, then C = (g) & F
and B® (g) € U, contradicting the maximality of B. So, from above proved
facts it follows that, for every g € C[p] we have that hy(g) = co. But, in this
case, C is, up to isomorphism, a direct sum of copies of Z(p®). Therefore
the direct summands of G are either p-bounded or isomorphic to &, Z(p™),
where n, is any cardinal. From (2.2)2) it follows that G is either reduced,
in which case pG = 0, or divisible.

2) implies 1) We suppose that the p-group G satisfies one of the con-
ditions a) or b). If G is indecomposable it has in a trivial way D.S.S.P. If
pG = 0 then & is an elementary p-group and it has D.S.S.P. If G is divisible
then (2.1)2) completes the proof.

From (2.3) we obtain the structure of a p-group with D.S.S.P.

COROLLARY 2.4. Let G be an abelian p-group. Then G has D.5.S.P. if and
only if either:

@) @O G=2z0"),

or

(4 i) G=(®m,Z(p)),

or

(5) iii) G=(®n,Z(p™))

where: n € N*, n > 2, and mp and np are any cardinals.

From (1.4) and (2.4) we obtain the structure of a torsion group with
D.S.S.P.

COROLLARY 2.5. Let G be an abelian torsion group. Then G has D.S.S.P.
if and only if:
(6) G=(D 4)0 (D B)e (D c),
pER pEP, pEP;

where:

—Py, P> and P3 are subsets of the set P of all prime numbers, with the
property that PPN P, = PPNPy=P,NP; =0,

—for every p € P, Ay is a divisible p-group,

—for every p € P2, By, is an elementary p-group,

—for every p € P3, Cp is a reduced indecomposable (non-elementary)
p-group.

3. Torsion-free groups
Now we shall pass to torsion-free groups with D.S.S.P. We begin with:
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LEMMA 3.1. If H and K are reduced, indecomposable torsion-free groups,
then the following statements are equivalent:

1) The group G = H & K has D.S.S.P.

2) Hom(H,K) = Hom(K,H) = 0.
Proof. 1) implies 2) Suppose that G has D.S.S.P. and that there is a ho-
momorphism 0 # f : H — K. Since K is reduced there is a prime number
p such that pK # K. If p is such a number and g is the multiplication by
pin K, then g- f : H — K is not epimorphism. Now (1.5)2) shows that
Hom(H, K) = 0. Analogously we obtain that Hom(K, H) = 0.

2) implies 1) If Hom(H, K) = Hom(K, H) = 0, then G is a direct sum of
two fully invariant direct summands, each having D.S.S.P.; (1.3) completes
the proof.

COROLLARY 3.2. If H is a reduced torsion-free group, then the groups H® H
and Z ® H do not have D.5.5.P.

The main result of this section is the following:

THEOREM 3.3. The following statements are equivalent for any torsion-free
group G:
a) G has D.S.S.P.
b) either
(1) i) G is divisible,
or
(8) i) G is reduced indecomposable,

or
9) i) G=@PG;

i€l
where:

— for every i € I, G; is a reduced indecomposable group,
— for every i1,12 € I, i1 # i2, Hom(Gi,,Gi,) = Hom(Gi,,Giy) = 0.

Proof. a) implies b) Let G be a torsion-free group with D.S.S.P. From
(2.1)1) and (4.1) it follows that if H is a reduced group, then @ & H is not
a direct summand in G. So G is either divisible or reduced. If G is either
divisible or reduced indecomposable, then this gives the required result. If
G= @Gi, where, for every i € I, G; is a reduced indecomposable group,
iel

then (3.1) completes the proof.

b) implies a) Let G be a group which satisfies one of the conditions from
point b). If G is divisible, then (2.1)2) shows that it has D.S.S.P. If G is
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a reduced, indecomposable group, then it has, in a trivial way, D.S.S.P. If
G is of the form (9), then, for every i € I, G; has D.S.S.P., and it is fully
invariant in G and from (1.3) it follows that G has D.S.S.P.

COROLLARY 3.4. The following statements are equivalent for any completely
decomposable torsion-free group G:

a) G has D.S.S.P.
b) either

(7) 1) G is divisible,
or

(10) i) @G is reduced (indecomposable), of rank one,

or

(1) i) G=@G;,
i€l

where:

— for every i € I, G; is a reduced (indecomposable) of rank one group,

— for every iy,ig € I, i1 # i2, t(Gi,) and t(Gi,) are incomparable types.
Proof. For any H and K reduced, torsion-free, of rank one groups,
Hom(H,K) = Hom(K,H) = 0 if and only if ¢(H) and t(K) are incom-
parable types. So, we can apply (3.3).

4. Splitting mixed groups
In this section we will study the (abelian) splitting mixed groups with
D.S.S.P. We begin with:

LEMMA 4.1. Let A be an abelian group and let G = D & A, with D-divisible
and torsion-free. The following statements are equivalent:

a) G has D.S.S.P.

b) A is of the form (6).
Proof. a) implies b) We suppose that G has D.S.S.P. Then Q & A has this
property. We consider a maximal independent system {z;};cr of elements
of infinite order and denote by B = @(zz) Then any homomorphism of

icl

groups f : A — @ induces a homomcfrphism g : B — @ and vice-versa.
But, for every ¢ € I, (z;) & Z; let f; : (z;) — Z be an isomorphism. Then,
for every 1 € I, there is a homomorphism h; : Z — @ such that h;f; = g;,
where g; : (z;) — @ is a homomorphism of groups and Img; = Imh;. Since
Img = ZI mg;, it follows that there is a homomorphism ¢* : B — @ such

iel
that I'mg* C Q. Then the homomorphism f* : A — @, induced by g*, is
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not epimorphism either, contradiction to (1.5)1). It follows that A does not
have elements of infinite order; so A is a torsion group. Since A has D.S.S.P.,
it follows that it is of the form (6).

b) implies a) If A is a group of the form (6), then it has D.S.S.P. In this
case, since the group G is a direct sum of two fully invariant subgroups (in
G) and which have (each) D.S.S.P., (1.3) completes the proof.

PROPOSITION 4.2. Let H be a reduced, indecomposable, torsion-free group
and let G = H & Z(p™), where p is a prime number and n € N*. Then the
following two statements hold:

a) If H is not p-divisible, then G has D.S.S.P. if and only if n = 1.
b) If H is p-divisible, then G has D.S.S.P. for every n > 1. Moreover, if
n > 2, G has D.S.8.P. exactly if H is p-divisible.

Proof. a) We suppose that H is not p-divisible. Of course if n = 1, then
G =A® Z(p) has D.S.S.P.

Conversely, we suppose that n > 2 and G = H @ Z(p") has D.S.S.P.
We consider f : H — Z(p") any homomorphism of groups and let 7 : H —
H/p"H be the canonical projection of H along the quotient group H/p"H.
Since p"H = kerm C kerf there is a homomorphism h : H/p"H — Z(p"™)
such that f = hm. On the other side, p"(H/p"H) = 0, so H/p"H is a
bounded p-group, that is it is isomorphic to a direct sum of cyclic p-groups,
of order p* < p™; let H/p"H = EBZ(p”"), where for every i € I, n; < n.

iel
Then there is a homomorphism & : @Z (p™) — Z(p"™) such that k = hg,
il
where g : @ Z(p™) — H/p"H is an isomorphism, see the figure (12)
i€l

H—L > z(p7)

P T
(12) H/anH

@D Z(p™)

i€l

k

According to the hypothesis and to (1.5)2)ii), f is epimorphism. It follows
that h is an epimorphism too. Then Z(p") = Imf = Im(hn) = Imh =
Im(hg) = Imk = Elmki, where, for every i € I, k; : Z(p™) — Z(p") is a

i€l
homomorphism of groups. Let m € N, with the property that 1 <m <n-1
and denote by B = (p™) C Z(p™). If for every i € I, k;(1) = p™, then, for
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every ¢ € I, Imk; C B. In this case Z(p") = Imf = Zlmki CBCZ(@"),
what is impossible. It follows that n = 1. e
b) If H is p-divisible, then G is a direct sum of two fully invariant direct
summands, each having D.S.S.P. By (1.3) it follows that G has D.S.S.P.
Now, we suppose that n > 2 and G has D.S.S.P. According to what has
been proved at point a), if H is not p-divisible then n = 1 - what is in
contradiction to the hypothesis. Therefore, in this case, H is p-divisible.

COROLLARY 4.3. Let H be a reduced, torsion-free indecomposable group, B
a (reduced) p-group p™-bounded and let G = H & B, where p is a prime
number and n € N*. Then the following two statements hold:

a) If H is not p-divisible, then G has D.S.S.P. if and only if B is ele-
mentary.

b) If H is p-divisible, then G has D.S.S.P. for any group B which is
either indecomposable or elementary (so, B is of the form either (3) or (4)).
Moreover, if n > 2, G has D.S5.5.P. exactly if H is p-divisible and B is
indecomposable.

Proof. a) We suppose that H is not p-divisible and G has D.S.S.P. Then,
according to (1.2), B has D.S.S.P. From (2.4) it follows that either B =
Z(p") or B = (®m,Z(p)), where n € N*, n > 2, and m, is any cardinal.
Now from (4.2)a) it follows that B is elementary.

Conversely, we suppose that B is an elementary p-group and we consider
T and S two direct summands of G. Since B is fully invariant in G, it follows
that either T = K U or T = U, and either S=L @&V or S =V, where
U and V are direct summands in B and K and L are isomorphic to H. It
follows that T' + .S is a direct summand in G and, thus, G has D.S.S.P.

b) If H is p-divisible, then G has D.S.S.P. if and only if B has this
property. Now (2.4) completes the proof.

We suppose that n > 2. Then, according to the hypothesis, to (2.4) and
to (4.2)b), G has D.S.S.P. if and only if B = Z(p") and A is p-divisible.

The result from (4.3) can be generalized:

COROLLARY 4.4. Let H = @Hi be a reduced, torsion-free group, with the
el
property that for every i € I, H; is indecomposable and let B = @ B, be
peEP’
a reduced, torsion group, decomposed according to [4,8.4], where P’ is a set
of prime numbers. Then the following statements are equivalent:

1) The group G=H & B has D.S.S.P.
2) The following two statements hold:
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a) For everyp € P, either
i) By is of the form (3) and for every i € I, H; is p-divisible, or
ii) Bp is of the form (4).
b) For every iy, iz € I, 11 # i9, Hom(H;,, H;,) = Hom(H;,, H;,) = 0.

Proof. 1) implies 2) Let G be a group as in statement, with D.S.S.P. Then
H, B and, for every p € P’ and for every ¢ € I, H; ® B, have (each) D.S.S.P.
From (3.3) and (4.3) it follows that one of the conditions a) or b) holds.

2) implies 1) Suppose that, one of the conditions a) or b) holds. Then

(13) G=Heo (P B,) e (D ),

pEP pEPs
where:

—P, and P; are disjoint subsets of the set P’, with the property that
P,uPy =P,

—for every p € P, B, is an elementary p-group,

—for every p € P3, Cp is a reduced indecomposable (non-elementary)
p-group.

Denote by K = H® (@ Bp) and by L = @ Bp. Any direct decom-

pEP pEP3

position of K is of the form K = H' & ( @ Bp), where H' is isomorphic to

pEP>
H and any direct summand T of K is of the form T'= E @ F, where E is

isomorphic to a direct summand of H and F is a subgroup in @ By. Since
pEP:
for any homomorphism f : H — 69 B, Im f is a direct summand, it follows

pEP
that the sum of any two direct summands of K is again a direct summand in

K. On the other side, the summands K and L are fully invariant in G and
L has D.S.S.P. (according to (2.5)). Now again (1.3) completes the proof.

LEMMA 4.5. Let H be a reduced, indecomposable torsion-free group and let
G = H® Z(p™), where p is a prime number. Then the following statements
are equivalent:

1) G has D.S.S.P.
2) H is p-divisible.

Proof. 1) implies 2) We suppose that G has D.S.S.P., H is not p-divisible
and Z(p*®) = (c1,¢2,...,Cn,...), where pc; = 0, pc2 = c¢1,..., pcn =
Cn—1,.... Let n € N* and let f : H — Z(p™) be any homomorphism of
groups. If g : Z(p™) — Z(p*™°) is a homomorphism with g(1) = ¢,, then
g-f: H — Z(p™) is a homomorphism, which is not epimorphism. So,
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according to (1.5),2), G does not have D.S.S.P.—contradiction to the hy-
pothesis. Therefore if G has D.S.S.P., then H is p-divisible.

2) implies 1) It can be easily proved that any proper direct summand of
G is either Z(p*) or isomorphic to H. So let G = H® Z(p™®) = K & Z(p™)
be two direct decompositions of G. Then H+ K = H®[Z(p®)N(H+ K)] =
K&[Z(p™)N(H+K)] and H/(HNK) is isomorphic to Z(p®)N(H+ K), see
[20]. Since H/(H N K) is p-divisible, it follows that either Z(p*®)N (H + K)
is Z(p*°) or 0. We conclude that G has D.S.S.P.

We consider the group
(14) G=(D D, 20™)) e (P H)

pEP ? iel

where:

—P, is a subset of prime numbers and n, is any cardinal,

—1 is any index set and for every i € I, H; is a reduced, indecomposable,
torsion-free group.

Since the direct summand D = @ (@ Z(p®™)) is fully invariant in this
pEPL Tp
group G, using (3.1) and (4.5) it is straightforward to prove:

COROLLARY 4.6. The following statements are equivalent for any group G
of the form (14):

a) G has D.S.S.P.

b) The following two statements hold:

i) for every i € I and every p € Py, H; is p-divisible;

ii) for every i1,i2 € I, i3 # i, Hom(H,;,, H;,) = Hom(H;,, H;;) = 0.

Now we can present the structure of the splitting mixed groups with
D.SS.P.

THEOREM 4.7. The following statements are equivalent for any splitting
mized group:

1) G has D.S.S.P.
2) G is of the form either

(15) i) G=DaA,
or

(16) i) G=H®A,
where:

—D is torsion-free and divisible;
—A is a group of the form (6);
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—H is a reduced torsion-free group of the form either (8) or (9), for every
non-elementary p-component of A any summand of H is p-divisible and for
any two distinct indecomposable summands T and S of H, Hom(T, S) = 0.

Proof. 1) implies 2) Let G = E®F be a splitting group with D.S.S.P., where

E is divisible and F is reduced. We suppose that E = (@,,, Q) © ( 69 Ap),

pEPR
where P is a subset of prime numbers and for every p € P1, A4, is a divisible

p-group. If mg # 0, then from (4.1) it follows that A is of the form (6) and
G is of the form (15). If mp = 0 then (4.4) and (4.6) complete the proof.

2) implies 1) Suppose that G is a group which satisfies one of the con-
ditions i) or ii) from the point 2). Then, according to (4.1), (4.4) and (4.6)
it suffices to prove only that the group G = H @& A has D.S.S.P. if the sets
Py, P, and P; are non-empty. So we consider such a group

(17) G=(PH)o (P A)e (P By) & (P Cp),

iel pEPL peP2 pEP
where:

—P;, P» and P; are non-empty subsets of prime numbers, with the prop-
erty that PPN Py, =P NP3 =P,NP; =4,

—for every p € P, A, is a divisible p-group,

—for every p € P,, B, is an elementary p-group,

—for every p € P3, Cp is a reduced indecomposable (non-elementary)
p-group,

—for every ¢ € I, H; is reduced indecomposable, torsion-free and p-
divisible for every p € P, U Ps,

—for every 41,12 € I, 41 # 12, Hom(H;,, H;,) = Hom(H;,, H;;) = 0.

Denote by K = (D H;) & (€D 4,) and by L= (P By) o (P Cp). It

iel peEP pEP2 pPEP3
follows that K and L have (each) D.S.S.P., according to (4.6), respectively
to (2.5). Since they are fully invariant in G and G = K @ L, again (1.3)
completes the proof.
At the end of this work as a conclusion we must remark the following:

REMARKS 4.8. 1) a) There are abelian groups which have both D.S.L.P. and
D.S.S.P.

b) There are abelian groups which do not have D.S.I.P., but which have
D.S.S.P.

c) There are abelian groups which have D.S.1.P., but which do not have
D.S.S.P.
d) There are abelian groups which have neither D.S.I.P. nor D.S.S.P.
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2) For any torsion group T with D.S.S.P., there are two mized groups
G1 and Gy with the properties: Gy and Gy have (each) D.S.8.P., Gy is not
isomorphic to Ga, but T(G1) =T(G2) =T.

Proof. 1) a) See (1.7).

b) According to {10,3.2] and (2.1)2), the group G = Z(p*™) & Z(p*™)
satisfies the statement conditions.

c) See (1.8). (Otherwise, according to [10,3.2] and (2.2)2), the group
G = Z(p) @ Z(p™) satisfies the statement conditions.

d) According to [10,3.2] and (2.2)2), the group G = Z(p)®Z (p*™)D Z(p*)
satisfies the statement conditions.

2) See (4.7).
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