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COMMUTATIVE LOOPS OF EXPONENT 3 
WITH χ · (x · y)2 = y2 

Abstract. It is well known that the class of Hall triple systems [5], Steiner triple 
systems in which each triangle generates an affine plane over GF(3), corresponds to the 
class of commutative Moufang loops of exponent 3 [6]. In this paper, we extend the 
class of algebras to the class of all commutative loops of exponent 3 satisfying the identity 
x-(x-y)2 = y2, corresponding to the class of all Steiner triple systems. Such a commutative 
loop of exponent 3 with χ • (x • y)2 = y 2 is polynomially equivalent to a squag. 

1. Introduction 
A Steiner triple system is a pair of two non-empty sets (Ρ ; Β) in which 

the set Β is a class of all 3-element subsets of Ρ such tha t for any two distinct 
elements x,y e Ρ there is only one block ò G Β containing {x, y} ([2], [7]). 

A loop is a quasigroup with a neutral element, and a commutat ive loop is 
called a commutat ive Moufang loop of exponent 3 if it satisfies the Moufang 
identity x-(x-(y-z)) = (x-y)-(x-z) and x 3 = 1 [1], We can easily see tha t any 
commutat ive Moufang loop of exponent 3 satisfies the identity x-(x-y)2 = y2 

by taking y — ζ in the Moufang identity. A commutat ive loop of exponent 3 
satisfying χ · (x · y)2 = y2 will here be called a commutative quasi-Moufang 
loop of exponent 3 and more briefly a CQM-loop of exponent 3. 

Bruck [1] has given a method for turning Steiner triple systems into the 
algebras of squags and sloops. Quackenbush [7] proved the 1-1-correspon-
dence between Steiner triple systems and both squags and sloops. Klossek 
[6] has shown tha t the class of Steiner triple systems in which each tri-
angle generates an affine plane over GF(3) corresponds to the class of all 
commutat ive Moufang loops of exponent 3. In section 2, we will prove the 
1-1-correspondence between the class of all CQM-loops of exponent 3 and 
the class of all Steiner triple systems. 

Klossek [6] has also proved t h a t the commutat ive Moufang loops of ex-
ponent 3 are functionally equivalent to the distributive squags. To extend 
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this relation, we have shown in section 3 that a CQM-loop of exponent 
3 is functionally equivalent to a squag. And in section 4, we show that 
the CQM-loops of exponent 3 have the algebraic properties of congruence 
permutability, congruence uniformity, and that any congruence is uniquely 
determined by its congruence class containing the neutral element, which 
are the same as those of the commutative Moufang loops of exponent 3. 

2. CQM-loops with x3 = 1 and Steiner triple systems 
In this section we will prove that there is a 1-1-correspondence between 

CQM-loops of exponent 3 and Steiner triple systems. 
At first, we turn a Steiner triple system (Ρ; Β ) into an CQM-loop (P; ·, e) 

of exponent 3. By choosing a fixed element e G P, consider the operation 
"·" defined on Ρ as follows for all x, y G Ρ: 

It is clear that the operation " •" is a binary operation on the set Ρ having 
e as a neutral element. And from the definition of the operation " ·", we have 
directly χ • e = χ and χ • y = y • χ for all χ, y G P. Moreover, one can also 
see: 

This means that x3 = e for all χ G P . 
To prove that the equation a -x = b has a unique solution in P ; we should 

consider the following four cases: 

1. e · χ = b =>• there is the unique solution χ = b, 
2. a • χ = α there is the unique solution χ — e, 
3. o · χ = e Ο· there is only one element χ with {e, χ, a} G Β =>· there is 

the unique solution χ = a 2 , 
4. a · χ = b with there are only two blocks &i L· 62 G Β 

in the form 61 = {e,6, = {a, d, c} there is a unique solution, that 
is χ = c. 

To complete the proof, we have to verify the identity χ • (x · y)2 = y2. 
For all xhy G Ρ; 

Then x-z = w 3χ6ι = {χ, ζ , y } h b 2 = {e,y, w} G B. Hence w = y2 implies 
χ · ζ = y2. Therefore, x · (x • y)2 — y2. This proves the first part. 

e ^ 36 = {e,x,y} G Β 

ζ χ — y e&{e, χ, ζ} G Β, 
w Ο 3î>i — {χ, y, ζ}&ί>2 - {e, ζ, u>} G Β. 

χ2 = ζ {e, χ, ζ} € Β χ · χ2 = χ • ζ = e. 

2 {χ, y, ζ} G Β ζ = (χ · y) . 
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Secondly, we consider a commutative loop (L;-,l) of exponent 3 and 
satisfying χ • (χ • y)2 = y2, and we turn it into a Steiner triple system (L; Β) 
by taking the set of triples Β as the following: 

Β = {{χ, y, (χ • y)2} : for all {χ , y} Ç L}. 

To prove that \{x,y, (x-j/)2}| = 3, suppose (x-y)2 = χ => χ· (x-y)2 = x2 => 
χ2 — y2 1 = y • χ2 y = χ, contradicting the fact that y φ x. Also, if we 
suppose (x • y)2 = y χ • (χ • y)2 = x- y=>y2 = x- y ^ y — χ, contradicting 
the assumption that χ φ y. 

To show the triple {x,y,(x • y)2} is the unique triple in Β containing 
{x,y}; for all {x, y} Ç P, we consider the triple {x, (x · y)2, (x · (x · y)2)2}· 
Prom χ · (x · y)2 = y2, we have (x · (x · y)2)2 = y4 = y. Therefore, the triples 
{x, y, (χ · y)2} and {χ, (χ · y)2, (χ · (χ · y)2)2} are equal. Similarly, the triples 
{x, y, (x · y)2} and { y , (x · y)2, (y • (x • y)2)2} are equal. 

Hence the system (L; Β) is a Steiner triple system, and then the proof 
of the second direction of the correspondence is complete. 

It will be convenient to note at this point that this correspondence is one 
to one. If we denote the CQM-loop with x3 = 1 extracted from the Steiner 
triple system (Ρ; B) by (P;-B,e) and the Steiner triple system extracted 
from the CQM-loop (Ρ; ·, e) with χ 3 = 1 by (Ρ; Β), then one can prove that 
B n = Β as follows: 

For any {x,y, (x.sy)2} E B, if e € { x , y } , then (x.Be)2 = x.b^ = ζ 
{e,x,z} 6 B. And if e £ {x, y}, then x,By = w w = e or 3z such that 
{x,y,z}¿c{e,w,z} Ε Β w,Bw = e o r W.-QW = ζ {x,y, e } € Β o r 
{x, y, ζ } G Β =» {x, y, (χ · y)2} € Β. 

In the other direction, if { x , y , z } 6 Β, then e € {x, y, ζ}; say ζ = e or 
e ^ {x, y, ζ}. For the first case, if ζ = e, then 

x . B y = e (x.bZ/)2 = ζ => {x , y, z} € B.B. 

For the second case, if e ^ {x, y, z}, then 
x . B y = u ) 0 { e , z , w } e B ^ · w.-qw = ζ & ( χ . b y)2 — ζ { χ , y , ζ } E Β.&. 

Clearly one can also prove that the binary operation ".b" is the same as 
the binary operation " ·". This completes our discussion of the one to one 
correspondence. 

The Steiner triple system (Ρ; B) exists iff |p| ξ 1 or 3 (mod 6) ([6], [7]). 
Then a CQM-loop (L; ·, 1) of exponent 3 exists iff \L\ ξ 1 or 3 (mod 6). 

In the general case, the correspondence between the CQM-loops (L; ·, e) 
of exponent 3 and the Steiner triple systems depends on the choice of the 
element e. Then for two different elements e\ φ β2, the class of subalgebras of 
each corresponding commutative quasi-Moufang loop of exponent 3 depends 
on the choice of the neutral element e. This means that the two commutative 
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loops (L; -i ,ei) and (L; -2,62) corresponding to a Steiner triple system may 
not be isomorphic. On the other hand, the commutative loops (L; .1, ei) and 
(L; .2,62) are isomorphic, if they satisfy the Moufang identity [6]. 

A subspace of a Steiner triple system (P; B) is a set S Ç Ρ that is closed 
under forming blocks. Accordingly, there is a 1-1 correspondence between 
the class of subalgebras and the class of subspaces containing the neutral 
element. 

3. Relation between squags and CQM-loops of exponent 3 
Klossek [6] proved that a commutative Moufang loop of exponent 3 is 

polynomially equivalent to a distributive squag. By using the same relations 
between the fundamental operations used by Klossek [6], one can prove that 
a CQM-loop (L;-,e) of exponent 3 is polynomially equivalent to a squag 
(L; ®), as in the following theorem. 

THEOREM. (I) If ( L ; ®) is a squag, and χ • y := e <g> (χ ® y) for e 6 L, then 
(L; ·, e) is a CQM-loop of exponent 3. 

(II) If (L; ·, e) is a CQM-loop of exponent 3 and, χ * y := χ2 • y2, then 
(L; *) is a squag. 

Ρ r o o f. It is clear in the first part (I) that the operation "·" is a commutative 
binary operation having e as a neutral element and x3 = e® (x® (e®x) = e. 
Also, x-(x-y)2 = x-((x-y)-(x-y)) = e®(x®(e®((e®(x®y))®(e®(x®>y))))) = 
e ® y = e® (y®y) = y2. 

In the second part (II) , the operation "*" is a commutative binary 
operation and χ * χ = χ4 = χ. Also, χ * (χ * y) = χ2 · (χ2 • y2)2. 

In fact, the two identities χ • {χ • y)2 = y2 and χ2 • (χ 2 · y2)2 = y are equiv-
alent in the commutative loop of exponent 3. This completes the proof. • 

According to this theorem, it will be convenient to note the following 
two remarks: 

Let (L; ®) be a squag. By the first part (I), we have that (L; - ,e) is a 
commutative loop, and by the second part (II), we again get that (L; *) is a 
squag. In fact, (L; ®) may be different from (L; *), because χ * y = χ2 • y2 = 
e® {{e® χ) ® {e® y)) and the right-hand side of the equation is equal to 
a; (gi y if and only if the squag (L; is distributive. 

On the other hand, if we begin with a CQM-loop (L; ·, e) of exponent 3, 
then from the second part (II), we obtain that (L; *) is a squag, and from 
the first part (I), (L;*,e) becomes again a CQM-loop of exponent 3. Then 
we have the same result that (L;-,e) and (L; · , e) are equal if and only if 
the commutative loop (L; ·, e) is Moufang. 

The second remark is that the Steiner identity x®(x®y) = y in squags 
is translated, by using the above relation between the operations "-,e" and 
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"(gì" stated in the above theorem, into the identity χ2 · (χ2 · y2)2 = y. But if 
we use the identity χ2 • (χ2 • y2)2 = y to define our main class of CQM-loops 
of exponent 3 instead of the identity χ · (χ • y)2 = y2, then the correspondence 
between this class of algebras and Steiner triple systems will not be one to 
one. 

To show this difference, we consider the correspondence between the 
Steiner triple system (Ρ; B) and the commutative loop (P; ·, e) of exponent 
3 with χ2 • (x2 • y2)2 = y. 

Take the binary operation ".b" defined by the same definition as given 
in (L). Accordingly, the definition of B, will be equal to {{x,y,x2 • y2} : 
xSzy 6 P} to guarantee the system (Ρ; B,) becomes a Steiner triple system. 
Consequently, we can deduce that Β.β φ Β and the binary operation ",b·" 
is not the same binary operation as "·". This means that the correspondence 
will not be one to one. 

To illustrate this observation, we take the Steiner triple system STS(7) = 
(Ρ; B), and by choosing the neutral element e as in the figure, then x-y = ζ 
and χ2 · y2 = z. This means that the block {x,y,w} 6 Β and the block 
{ x , y , z } € Β.β, therefore, Β φ Β.β· 

χ 

On the other hand, (χ · y)2 = χ2 • y2 holds in the commutative Mo-
ufang loops of exponent 3. This means that Β — Β.β and {χ, y, χ2 - y2} = 
{χ, y, (χ • y)2} is valid only in the correspondence between the subvariety 
of commutative Moufang loops of exponent 3 and the subclass of the Hall 
triple systems [5]. 

4. Some properties of CQM-loops of exponent 3 
The cyclic group Cz of order 3 is a commutative Moufang loop of expo-

nent 3, and the variety HSP(C3) generated by Cz is the smallest nontrivial 
subvariety of the class of all commutative quasi-Moufang loops of exponent 
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3, where H, S and Ρ are the operators of the direct product, the subalgebra 
and the homomorphic image respectively [3]. The identity of the subvariety 
HSP (C3) is χ · (y · (z • w) = (x • z) • (y · w). This latter identity is equivalent 
to the associative law. In fact, the finite algebras of the subvariety HSP(C3) 
correspond to the groups (GF(3)n; Θ, e), where the operation 0 is defined 
by χ Θ y — e + 2x + 2y, for a fixed element e 6 GF(3) and for any positive 
integer η ([4], [6]). 

The concepts of a subloop and a normal subloop in CQM-loops of ex-
ponent 3 have the same meaning and relations as in commutative Moufang 
loops ([1], [6]). 

(5; ·, 1) is a subloop of a loop (L; ·, 1) if 0 φ S Ç L and (S; ·, 1) is a loop 
with the same operations "• and 1". A subloop (5; ·, 1) is a normal subloop 
of (L; ·, 1) if S · (χ • y) = (S · χ) • y for all χ, y in L. There is a one to one 
correspondence between the class of normal subloops and the class of all 
congruences on a CQM-loop of exponent 3. 

In fact, if Ν is a normal subloop of L = (L; -,e), then ΘΝ {(χ, y) G 
L2 : χ2 -y G N} is a congruence on L and = Ν. And if θ is a congruence 
on L, then [e]9 — Ng is a normal subloop of L and ΘΝθ = θ. 

The congruences on a CQM-loop of exponent 3 have the same properties 
as in the commutative Moufang loop, as will be shown in the following 
theorem : 
THEOREM. The congruences of a CQM-loop L = (L; ·, e) of exponent 3 have 
the following properties: 

(i) θ ο φ = φ ο θ] for any two congruences θ and φ of h. 
(ii) The congruence classes have the same cardinal number·, for any con-

gruence of any finite CQM-loop of exponent 3. 
P r o o f . It is well known that an equational class [3] has permutable con-
gruences iff it has a Mal'cev term p(x, y, z) satisfying p(x, y, y) — χ and 
p(x,x,z) = z. By taking p(x,y, ζ) := (y · (χ.ζ)2)2 one can directly prove (i). 

(ii) By taking the map /α,& : [α]θ —> [ò]0 defined by fa,b{x) = {x-(a-b)2)2, 
one can proof that fa,b is a bijective mapping. This completes the proof of 
the theorem . • 
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