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LATTICES RESPECTING CONVEX
DECOMPOSITIONS, II

Abstract. Let (L1,L2) be a convex decomposition of a lattice L. We prove that
L is a lattice satisfying the atomic covering property provided L; and L2 possess the
same property. Moreover we show that L satjsfies the general disjointness property (GD)
whenever L satisfies GD and L3 is a modular lattice or whenever L is a modular lattice
with 0 and Lo satisfies GD.

1. Introduction
The general scheme of our investigation in this paper is very similar to

that of [2]. Here L = Ei(Ll, L,) denotes the fact that (L1, Lg) is a convex
decomposition of a lattice L.

We now fix some notations and conventions we use throughout the rest
of the paper. We refer the reader to our paper (2] and to [1] for the basic
theory of convex decompositions and for the background material.

Let (L1, Vi, A1) and (L2, V2, A2) be sublattices of a lattice (L, V,A). The
couple (L1, Lq) is said to be a convez decomposition of L if L; and Lg are
proper sublattices of L, Ly N L # 0, L1 U Ly = L, the order ideal (L N Ly]
generated by L; N Ly is equal to L; and the order filter [L; N Ly) generated
by Ly N Ly is equal to Lo.

In Figure 1, a convex decomposition of L3 is represented.

CONVENTION 1.1. Let us write for simplicity b € e (or 3 b) if b €
€ LN L.

It is not difficult to show that L1 N Ly is a conver subset in L =
Y

= cd(L1,Ls), i.e., whenever e 3 a < b<c€ e, thenbce.
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Figure 1

The following results valid for any convex decomposition (L;, Ly) of L
are a useful tool:

(1*) Foreverya,be L; (i€ {l,2}) aAb=aA;bandaVb=aV;b.
(2*) Givena € Ly and b € Ly, aVb = (aViby)Voband a Ab =
= aA; (a* A2 b) where by and a* are any elements of L such that a < a* € o
and e > b.+. <b.

(3*) Ifa€Ljandbece,thenaVbe o;ifce Lyandd e, thencAd € o.

2. AC-lattices

LEMMA 2.1. Let L = cd(Ly,Ls) and a,b € L; where i € {1,2}. Then b
covers a in L; if and only if b covers a in L, i.e.,

a=<;b o a<b.

Proof. Let a,b € L, be such that a <1 b. Now suppose that b fails to cover
a in L. Then there exists ¢ € Ly \ L; such that a < ¢ < b. By the definition
of a convex decomposition, there exist by and cg such that b < by € e and
e3¢y <c. Since Ly N Ly is convex in L, ¢ € o, which contradicts the choice
of c.

The remainder of the proof is straightforward, and will be omitted. =

A lattice L with 0 is said to satisfy the atomic covering property [4] if it
satisfies the implication

(AC) (0<p&pAha=0) = a<aVp

for any elements a and p of L. We will call such a lattice an AC-lattice. See
also [5], [6] and [3].

THEOREM 2.2. Let L = cd(L1, L2) where L1 and Ly are AC-lattices. Then
L is an AC-lattice.

Proof. Assume that a,p € L, 0 < p, pAa =0 and that w denotes the zero
element in Ls.
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We distinguish four cases.

Case 1. p € L, and a € L. Since L, is an AC-lattice, a <1 a V1 p and,
by Lemma 2.1 and (1*),a <aV p.

Case II: p € Ly and a € Ly. Then Ly 3 p A a =0, a contradiction.

Case III: p € Ly and a € Ly. Here 0 < w < p and 0 < p. Hence
p =w € L1 and we have the case I.

CaselV:pe Ly anda € Ls. Then pAw <pAa=0andsopA;w=0.
Since L; is an AC-lattice and 0 <; p, we have w <; p V; w. There-
fore, by Lemma 2.1, w <2 pV w. At the same time w < a A2 (p Vw) <
<pVuw.

Suppose pVw = a Az (p Vw). Then p < pVw < a and, consequently,
p < pAa =0, a contradiction.

Hence w = a A2 (p V w). Since L is an AC-lattice, ¢ 3 w < a and (2*%)
imply that a <2 (p Vw) Va2a = pV a. Then in view of Lemma 2.1 we have
a<aVp. s

3. GD-lattices
A lattice L with 0 satisfying the implication
(GD) (anb=0&(aVb)Ac=0)=>aA(bVc)=0
for every a,b,c € L is said to satisfy the general disjointness property [4].
We call such a lattice briefly a GD-lattice. See also [6].

The following result appears in [4] as Proposition 4.2 and we include it
here for completeness.

PROPOSITION 3.1. Any modular lattice with 0 is a GD-lattice.

We can now provide the following useful lemma:

LEMMA 3.2. Let L = cd(Ly, Ly), let Ly be a GD-lattice and let
a€ly&beli&cel,
be such that aAb=0 and (aVb)Ac=0. Thena A (bVc)=0.
Proof. By (1*) and (2%),
aA(bVe)=(bVie)AL{(bVic)* Az a]
where bVic < (bVic)* €e. Let A:=aA2(bVic)*, B:=band C:=cso
that a A (bV¢) = AA; (B V; C). Now, by (2*) and by assumption,
ANMB=bA[(bVic)*A2a]l=bAa=0.
Moreover, by (1*), (3*) and by assumption,
(A Vi B) N C = {[(b V1 C)* No a] Vi b} ANc=

={[(bvic)*Aa]Vb}Ac<(aVb)Ac=0.

Since L; is a GD-lattice, 0 = AA; (BV1C)=aA(bVc).
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Let z,y and z be elements of a lattice L with 0. The triplet (z,y, z) is
said to be a GD-triplet, if one of the following conditions

(i) zAy=0&(zVy)Az=0;
(i) zAz=0&(zVz)Ay=0;
(i) yAz=0&(yVz)Az=0
is satisfied.

REMARK 3.3. If (z,y, z) is a GD-triplet in a GD-lattice, then it is immediate
that the three conditions (i), (ii) and (iii) are fulfilled.

Let us now look again at Figure 1. It is worth pointing out that the

thirteen—element lattice L3 = EJ(LI,LZ) illustrated in the figure is not a
GD-lattice. A close inspection shows that the two sublattices Lq, Ly of L13
are GD-lattices. This counter-example implies that we shall need stronger
assumptions on L or on Ly as in (2, Thm 3.1 and Thm 3.2].

Our next two results deal with those convex decompositions (Li, L) of
L for which one of the lattices L; and L is modular and the other is a
GD-lattice.

THEOREM 3.4. Let L = az(Ll,Lz) where L, 1s a GD-lattice and Ly is a
modular lattice. Then L is a GD-lattice.

Proof. Let a,b,c € L be such that

(3.1) anNb=0

and

(3.2) (avb)Ac=0.
Then

(3.3) aNc=0&bAc=0.

If a,b and ¢ are elements of L;, then the assertion is true by (1*). Since
0 & Lo, it follows from (3.1) and (3.3) that no two elements from {a,b,c}
belong to Ls. Hence there are only three cases to consider.

Case I: a € Ly, b € Ly and ¢ € L;. Then the assertion follows from
Lemma 3.2.

Casell: a € L1, b € Ly and ¢ € Ly. Let T be any element of Ly N Ly such
that 7 < c. Let s := a V1 bV, 7. Note that a < s € o. By (1*), a A1 b= 0.
Moreover, in view of (3.2) and (2*) we have

(aVib)A1(sA2c)=(aVb)Ac=0.
Since L; is a GD-lattice,
(3.4) aN[bVi(sA2c)]=0.
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Let e:=a A (bVc). By (2%),
e=an[sAh2(bVe)]=aAn; {sA{(bViT)Vac]}.
From s > b Vj 7, recalling that Lo is modular, we have
e=aA;[(bViT)Va(sA2c).

By (3*), s Az c € o. Now s > 7 and ¢ > 7. Hence s Ay ¢ > 7 and taking (1%*)
into account,

e=a/\ [(bVlT)\/l (S/\zc)]=a/\1 [bVl (S/\zc)].

From (3.4) it follows that a A (bV ¢) =0.

CaseIll: a € Ly, be Ly andc € Ly. Let a’ :== b,V :=a and ¢ := c. By
Lemma 3.2, 0 = o’ A (V' V) = (a V¢) A b. By assumption, a A ¢ = 0. We
therefore have from Case Il that a A (cVb) =0. =

THEOREM 3.5. Let L = ;:?i)(Ll, Ly) where Ly is a modular lattice with 0 and
where Ly is a GD-lattice. Then L is a GD-lattice.

Proof. Let w denote the zero element of Lo and let a,b,c € L be such that
(3.1) and (3.2) are true. However, by Proposition 3.1, L; is a GD-lattice.
Consequently it follows by Lemma 3.2 that the assertion is true whenever
a€ Ly, b€ Ly and c € L.

Similarly as in the proof of Theorem 3.4 it suffices to consider the case
wherea € L1, b € Ly and c € Ls.

Let e :=a A (bV c). Then, by (2*) and (3*),

e=a/\1 {s Ao [(b Vi w) Va C]}
where s :=aV1bViw €e. Let a:=aViwand let §:=bViwsothat o, € o
and a Vi B = s. Let d := s A2 [(b V1 w) Va c]. Therefore, d = s A (8Vc) and
e=aA1d Now,aA1b=0by (3.1),and (aV1ib) A w<(aVb)Ac=0by
(3.2). Hence (a, b,w) is a GD-triplet in the GD-lattice Ly. Then by Remark
3.3 we see that 0 = b A1 (@ V1 w) = b A1 a. By modularity,
alN B= (aVl w) Ay (bVlw) = [(aV1 w) A1 b] Viw =
=(a/\1b)V1w=w.

Thus, from (1*), we get
(3.5) aMB=aNf=w.

Note that

0fw<sAc<s=aVi1=aV1bVyiw.

From (1%*) it follows that

(aVibd) A1 (sh2c)<(aVb)Ac=0.
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Let A:=w, B:=aViband C:=sA2c. Then A<C,BViA=BVv,;C=
=aV1bViwand 0 = BA;C = BA; A. By the modularity of L;, A = C and
we have w = sAc = (aVz ) Azc. But then, by (3.5), (, 8, ¢) is a GD-triplet
in the GD-lattice Ly. This yields a A2 (BV2¢c) =w. NowaAd<d<fBVc
and a Ad < o. Consequently, e = aAd < aA(BVc) =w < c Thus
e<aANc=0.m
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