

Ladislav Beran, Mikko Saarimäki

LATTICES RESPECTING CONVEX DECOMPOSITIONS, II

Abstract. Let (L_1, L_2) be a convex decomposition of a lattice L . We prove that L is a lattice satisfying the atomic covering property provided L_1 and L_2 possess the same property. Moreover we show that L satisfies the general disjointness property (GD) whenever L_1 satisfies GD and L_2 is a modular lattice or whenever L_1 is a modular lattice with 0 and L_2 satisfies GD.

1. Introduction

The general scheme of our investigation in this paper is very similar to that of [2]. Here $L = \overrightarrow{cd}(L_1, L_2)$ denotes the fact that (L_1, L_2) is a convex decomposition of a lattice L .

We now fix some notations and conventions we use throughout the rest of the paper. We refer the reader to our paper [2] and to [1] for the basic theory of convex decompositions and for the background material.

Let (L_1, \vee_1, \wedge_1) and (L_2, \vee_2, \wedge_2) be sublattices of a lattice (L, \vee, \wedge) . The couple (L_1, L_2) is said to be a *convex decomposition* of L if L_1 and L_2 are proper sublattices of L , $L_1 \cap L_2 \neq \emptyset$, $L_1 \cup L_2 = L$, the order ideal $(L_1 \cap L_2]$ generated by $L_1 \cap L_2$ is equal to L_1 and the order filter $[L_1 \cap L_2)$ generated by $L_1 \cap L_2$ is equal to L_2 .

In Figure 1, a convex decomposition of L_{13} is represented.

CONVENTION 1.1. Let us write for simplicity $b \in \bullet$ (or $\bullet \ni b$) if $b \in L_1 \cap L_2$.

It is not difficult to show that $L_1 \cap L_2$ is a convex subset in $L = \overrightarrow{cd}(L_1, L_2)$, i.e., whenever $\bullet \ni a \leq b \leq c \in \bullet$, then $b \in \bullet$.

1991 *Mathematics Subject Classification*: 06C05, 06C99.

Key words and phrases: convex decomposition, atomic covering condition, general disjointness property, modular lattice.

The first author was supported by the institutional grant MSM 113200007.

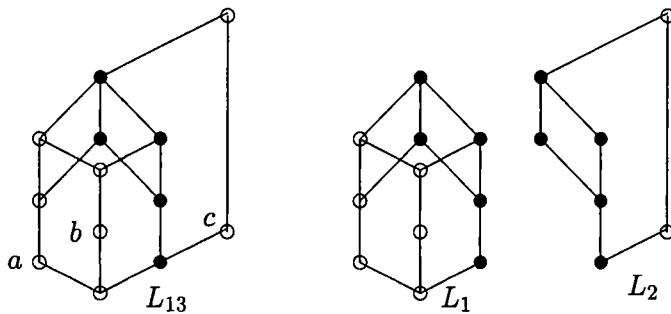


Figure 1

The following results valid for any convex decomposition (L_1, L_2) of L are a useful tool:

- (1*) For every $a, b \in L_i$ ($i \in \{1, 2\}$) $a \wedge b = a \wedge_i b$ and $a \vee b = a \vee_i b$.
- (2*) Given $a \in L_1$ and $b \in L_2$, $a \vee b = (a \vee_1 b_+) \vee_2 b$ and $a \wedge b = a \wedge_1 (a^* \wedge_2 b)$ where b_+ and a^* are any elements of L such that $a \leq a^* \in \bullet$ and $\bullet \ni b_+ \leq b$.
- (3*) If $a \in L_1$ and $b \in \bullet$, then $a \vee b \in \bullet$; if $c \in L_2$ and $d \in \bullet$, then $c \wedge d \in \bullet$.

2. AC-lattices

LEMMA 2.1. Let $L = \overrightarrow{cd}(L_1, L_2)$ and $a, b \in L_i$ where $i \in \{1, 2\}$. Then b covers a in L_i if and only if b covers a in L , i.e.,

$$a \prec_i b \Leftrightarrow a \prec b.$$

Proof. Let $a, b \in L_1$ be such that $a \prec_1 b$. Now suppose that b fails to cover a in L . Then there exists $c \in L_2 \setminus L_1$ such that $a < c < b$. By the definition of a convex decomposition, there exist b_0 and c_0 such that $b \leq b_0 \in \bullet$ and $\bullet \ni c_0 \leq c$. Since $L_1 \cap L_2$ is convex in L , $c \in \bullet$, which contradicts the choice of c .

The remainder of the proof is straightforward, and will be omitted. ■

A lattice L with 0 is said to satisfy the *atomic covering property* [4] if it satisfies the implication

$$(AC) \quad (0 \prec p \ \& \ p \wedge a = 0) \Rightarrow a \prec a \vee p$$

for any elements a and p of L . We will call such a lattice an *AC-lattice*. See also [5], [6] and [3].

THEOREM 2.2. Let $L = \overrightarrow{cd}(L_1, L_2)$ where L_1 and L_2 are AC-lattices. Then L is an AC-lattice.

Proof. Assume that $a, p \in L$, $0 \prec p$, $p \wedge a = 0$ and that ω denotes the zero element in L_2 .

We distinguish four cases.

Case I: $p \in L_1$ and $a \in L_1$. Since L_1 is an AC-lattice, $a \prec_1 a \vee_1 p$ and, by Lemma 2.1 and (1*), $a \prec a \vee p$.

Case II: $p \in L_2$ and $a \in L_2$. Then $L_2 \ni p \wedge a = 0$, a contradiction.

Case III: $p \in L_2$ and $a \in L_1$. Here $0 < \omega \leq p$ and $0 \prec p$. Hence $p = \omega \in L_1$ and we have the case I.

Case IV: $p \in L_1$ and $a \in L_2$. Then $p \wedge \omega \leq p \wedge a = 0$ and so $p \wedge_1 \omega = 0$. Since L_1 is an AC-lattice and $0 \prec_1 p$, we have $\omega \prec_1 p \vee_1 \omega$. Therefore, by Lemma 2.1, $\omega \prec_2 p \vee \omega$. At the same time $\omega \leq a \wedge_2 (p \vee \omega) \leq p \vee \omega$.

Suppose $p \vee \omega = a \wedge_2 (p \vee \omega)$. Then $p \leq p \vee \omega \leq a$ and, consequently, $p \leq p \wedge a = 0$, a contradiction.

Hence $\omega = a \wedge_2 (p \vee \omega)$. Since L_2 is an AC-lattice, $\bullet \ni \omega \leq a$ and (2*) imply that $a \prec_2 (p \vee \omega) \vee_2 a = p \vee a$. Then in view of Lemma 2.1 we have $a \prec a \vee p$. ■

3. GD-lattices

A lattice L with 0 satisfying the implication

$$(GD) \quad (a \wedge b = 0 \& (a \vee b) \wedge c = 0) \Rightarrow a \wedge (b \vee c) = 0$$

for every $a, b, c \in L$ is said to satisfy the *general disjointness property* [4]. We call such a lattice briefly a *GD-lattice*. See also [6].

The following result appears in [4] as Proposition 4.2 and we include it here for completeness.

PROPOSITION 3.1. *Any modular lattice with 0 is a GD-lattice.*

We can now provide the following useful lemma:

LEMMA 3.2. *Let $L = \overrightarrow{cd}(L_1, L_2)$, let L_1 be a GD-lattice and let*

$$a \in L_2 \& b \in L_1 \& c \in L_1$$

be such that $a \wedge b = 0$ and $(a \vee b) \wedge c = 0$. Then $a \wedge (b \vee c) = 0$.

Proof. By (1*) and (2*),

$$a \wedge (b \vee c) = (b \vee_1 c) \wedge_1 [(b \vee_1 c)^* \wedge_2 a]$$

where $b \vee_1 c \leq (b \vee_1 c)^* \in \bullet$. Let $A := a \wedge_2 (b \vee_1 c)^*$, $B := b$ and $C := c$ so that $a \wedge (b \vee c) = A \wedge_1 (B \vee_1 C)$. Now, by (2*) and by assumption,

$$A \wedge_1 B = b \wedge_1 [(b \vee_1 c)^* \wedge_2 a] = b \wedge a = 0.$$

Moreover, by (1*), (3*) and by assumption,

$$\begin{aligned} (A \vee_1 B) \wedge_1 C &= \{[(b \vee_1 c)^* \wedge_2 a] \vee_1 b\} \wedge_1 c = \\ &= \{[(b \vee_1 c)^* \wedge a] \vee b\} \wedge c \leq (a \vee b) \wedge c = 0. \end{aligned}$$

Since L_1 is a GD-lattice, $0 = A \wedge_1 (B \vee_1 C) = a \wedge (b \vee c)$. ■

Let x, y and z be elements of a lattice L with 0. The triplet (x, y, z) is said to be a *GD-triplet*, if one of the following conditions

- (i) $x \wedge y = 0 \& (x \vee y) \wedge z = 0$;
- (ii) $x \wedge z = 0 \& (x \vee z) \wedge y = 0$;
- (iii) $y \wedge z = 0 \& (y \vee z) \wedge x = 0$

is satisfied.

REMARK 3.3. If (x, y, z) is a GD-triplet in a GD-lattice, then it is immediate that the three conditions (i), (ii) and (iii) are fulfilled.

Let us now look again at Figure 1. It is worth pointing out that the thirteen-element lattice $L_{13} = \overrightarrow{cd}(L_1, L_2)$ illustrated in the figure is not a GD-lattice. A close inspection shows that the two sublattices L_1, L_2 of L_{13} are GD-lattices. This counter-example implies that we shall need stronger assumptions on L_1 or on L_2 as in [2, Thm 3.1 and Thm 3.2].

Our next two results deal with those convex decompositions (L_1, L_2) of L for which one of the lattices L_1 and L_2 is modular and the other is a GD-lattice.

THEOREM 3.4. *Let $L = \overrightarrow{cd}(L_1, L_2)$ where L_1 is a GD-lattice and L_2 is a modular lattice. Then L is a GD-lattice.*

P r o o f. Let $a, b, c \in L$ be such that

$$(3.1) \quad a \wedge b = 0$$

and

$$(3.2) \quad (a \vee b) \wedge c = 0.$$

Then

$$(3.3) \quad a \wedge c = 0 \& b \wedge c = 0.$$

If a, b and c are elements of L_1 , then the assertion is true by (1*). Since $0 \notin L_2$, it follows from (3.1) and (3.3) that no two elements from $\{a, b, c\}$ belong to L_2 . Hence there are only three cases to consider.

Case I: $a \in L_2, b \in L_1$ and $c \in L_1$. Then the assertion follows from Lemma 3.2.

Case II: $a \in L_1, b \in L_1$ and $c \in L_2$. Let τ be any element of $L_1 \cap L_2$ such that $\tau \leq c$. Let $s := a \vee_1 b \vee_1 \tau$. Note that $a \leq s \in \bullet$. By (1*), $a \wedge_1 b = 0$. Moreover, in view of (3.2) and (2*) we have

$$(a \vee_1 b) \wedge_1 (s \wedge_2 c) = (a \vee b) \wedge c = 0.$$

Since L_1 is a GD-lattice,

$$(3.4) \quad a \wedge_1 [b \vee_1 (s \wedge_2 c)] = 0.$$

Let $e := a \wedge (b \vee c)$. By (2*),

$$e = a \wedge_1 [s \wedge_2 (b \vee c)] = a \wedge_1 \{s \wedge_2 [(b \vee_1 \tau) \vee_2 c]\}.$$

From $s \geq b \vee_1 \tau$, recalling that L_2 is modular, we have

$$e = a \wedge_1 [(b \vee_1 \tau) \vee_2 (s \wedge_2 c)].$$

By (3*), $s \wedge_2 c \in \bullet$. Now $s \geq \tau$ and $c \geq \tau$. Hence $s \wedge_2 c \geq \tau$ and taking (1*) into account,

$$e = a \wedge_1 [(b \vee_1 \tau) \vee_1 (s \wedge_2 c)] = a \wedge_1 [b \vee_1 (s \wedge_2 c)].$$

From (3.4) it follows that $a \wedge (b \vee c) = 0$.

Case III: $a \in L_1$, $b \in L_2$ and $c \in L_1$. Let $a' := b$, $b' := a$ and $c' := c$. By Lemma 3.2, $0 = a' \wedge (b' \vee c') = (a \vee c) \wedge b$. By assumption, $a \wedge c = 0$. We therefore have from Case II that $a \wedge (c \vee b) = 0$. ■

THEOREM 3.5. *Let $L = \overrightarrow{cd}(L_1, L_2)$ where L_1 is a modular lattice with 0 and where L_2 is a GD-lattice. Then L is a GD-lattice.*

P r o o f. Let ω denote the zero element of L_2 and let $a, b, c \in L$ be such that (3.1) and (3.2) are true. However, by Proposition 3.1, L_1 is a GD-lattice. Consequently it follows by Lemma 3.2 that the assertion is true whenever $a \in L_2$, $b \in L_1$ and $c \in L_1$.

Similarly as in the proof of Theorem 3.4 it suffices to consider the case where $a \in L_1$, $b \in L_1$ and $c \in L_2$.

Let $e := a \wedge (b \vee c)$. Then, by (2*) and (3*),

$$e = a \wedge_1 \{s \wedge_2 [(b \vee_1 \omega) \vee_2 c]\}$$

where $s := a \vee_1 b \vee_1 \omega \in \bullet$. Let $\alpha := a \vee_1 \omega$ and let $\beta := b \vee_1 \omega$ so that $\alpha, \beta \in \bullet$ and $\alpha \vee_1 \beta = s$. Let $d := s \wedge_2 [(b \vee_1 \omega) \vee_2 c]$. Therefore, $d = s \wedge (\beta \vee c)$ and $e = a \wedge_1 d$. Now, $a \wedge_1 b = 0$ by (3.1), and $(a \vee_1 b) \wedge_1 \omega \leq (a \vee b) \wedge c = 0$ by (3.2). Hence (a, b, ω) is a GD-triplet in the GD-lattice L_1 . Then by Remark 3.3 we see that $0 = b \wedge_1 (a \vee_1 \omega) = b \wedge_1 \alpha$. By modularity,

$$\begin{aligned} \alpha \wedge_1 \beta &= (a \vee_1 \omega) \wedge_1 (b \vee_1 \omega) = [(a \vee_1 \omega) \wedge_1 b] \vee_1 \omega = \\ &= (\alpha \wedge_1 b) \vee_1 \omega = \omega. \end{aligned}$$

Thus, from (1*), we get

$$(3.5) \quad \alpha \wedge_1 \beta = \alpha \wedge_2 \beta = \omega.$$

Note that

$$0 \leq \omega \leq s \wedge c \leq s = \alpha \vee_1 \beta = a \vee_1 b \vee_1 \omega.$$

From (1*) it follows that

$$(a \vee_1 b) \wedge_1 (s \wedge_2 c) \leq (a \vee b) \wedge c = 0.$$

Let $A := \omega$, $B := a \vee_1 b$ and $C := s \wedge_2 c$. Then $A \leq C$, $B \vee_1 A = B \vee_1 C = a \vee_1 b \vee_1 \omega$ and $0 = B \wedge_1 C = B \wedge_1 A$. By the modularity of L_1 , $A = C$ and we have $\omega = s \wedge c = (\alpha \vee_2 \beta) \wedge_2 c$. But then, by (3.5), (α, β, c) is a GD-triplet in the GD-lattice L_2 . This yields $\alpha \wedge_2 (\beta \vee_2 c) = \omega$. Now $a \wedge d \leq d \leq \beta \vee c$ and $a \wedge d \leq \alpha$. Consequently, $e = a \wedge d \leq \alpha \wedge (\beta \vee c) = \omega \leq c$. Thus $e \leq a \wedge c = 0$. ■

Acknowledgement. We are very grateful to the referee for useful observations and improvements of the text.

References

- [1] L. Beran, *Distributivity via Boolean Algebras*, Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 191–206.
- [2] L. Beran, M. Saarimäki, *Lattices respecting convex decompositions, I*, Demonstratio Math. 35 (2002), 217–224.
- [3] F. Maeda, S. Maeda, *Theory of Symmetric Lattices*, Springer, Berlin, 1970.
- [4] M. Saarimäki, P. Sorjonen, *On Banaschewski functions in lattices*, Algebra Universalis 28 (1991), 103–118.
- [5] M. Saarimäki, *Disjointness of lattice elements*, Math. Nachr. 159 (1992), 169–174.
- [6] M. Saarimäki, *Disjointness and complementedness in upper continuous lattices*, University of Jyväskylä, Report 78 (1998).

L. Beran
 DEPARTMENT OF ALGEBRA
 CHARLES UNIVERSITY
 Sokolovská 83
 186 00 PRAGUE 8, CZECH REPUBLIC
 E-mail: lberan@@karlin.mff.cuni.cz

M. Saarimäki
 DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF JYVÄSKYLÄ
 P. O. Box 35
 FIN – 40351 JYVÄSKYLÄ, FINLAND
 E-mail: saarimak@@pop.math.jyu.fi

Received June 25, 2001.