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LATTICES RESPECTING CONVEX 
DECOMPOSITIONS, II 

Abstract. Let (Li, L2) be a convex decomposition of a lattice L. We prove that 
L is a lattice satisfying the atomic covering property provided L\ and ¿2 possess the 
same property. Moreover we show that L satisfies the general disjointness property (GD) 
whenever Li satisfies GD and L2 is a modular lattice or whenever L\ is a modular lattice 
with 0 and L2 satisfies GD. 

1. Introduction 
The general scheme of our investigation in this paper is very similar to 

that of [2]. Here L = cd{L\,Li) denotes the fact that {L\,L<¿) is a convex 
decomposition of a lattice L. 

We now fix some notations and conventions we use throughout the rest 
of the paper. We refer the reader to our paper [2] and to [1] for the basic 
theory of convex decompositions and for the background material. 

Let (Li, Vi, Ai) and (Li, V2, Λ2) be sublattices of a lattice (L, V, A). The 
couple ( i i , ¿2) is said to be a convex decomposition of L if L\ and Li are 
proper sublattices of L, L\ Π Li φ 0, L\ U Li = L, the order ideal (L\ Π Li] 
generated by Iq Π Li is equal to L\ and the order filter Π Li) generated 
by L\ Π ¿2 is equal to L2. 

In Figure 1, a convex decomposition of L13 is represented. 

CONVENTION 1.1. Let us write for simplicity b e · (or · 3 b) if ò e 
€ Li Γ\ Li. 

It is not difficult to show that L\ Π Li is a convex subset in L = 

= cd{L\,Li), i.e., whenever · 3 a < b < c 6 · , then b e · . 

1991 Mathematics Subject Classification: 06C05, 06C99. 
Key words and phrases: convex decomposition, atomic covering condition, general 

disjointness property, modular lattice. 
The first author was supported by the institutional grant MSM 113200007. 



456 L. Beran, M. Saarimäki 

Figure 1 

The following results valid for any convex decomposition (Li,L2) of L 
are a useful tool: 

(1*) For every a, b G L¿ (i e {1,2}) a A b = a Λ» b and a V b = a V¿ b. 
(2*) Given o 6 Li and b <E L2, a V b = (a Vi ò+) V2 b and a A b = 
= α Αι (a* A2 6) where ò+ and a* are any elements of L such that α < a* G · 
and · Β ò+ < ò. 

(3*) If α € Li and 6 € · , then aVb € · ; if c € L2 and d, 6 · , then cAd 6 · . 

2. AC—lattices 
L e m m a 2.1. Le i L = cd(Li,L2) and a,b 6 L¿ ω/iere i e { 1 , 2 } . Then b 
covers a in Li if and only if b covers a in L, i.e., 

a <ib O a <b. 
P r o o f . Let o,b ε Li be such that a ~<i b. Now suppose that b fails to cover 
a in L. Then there exists c 6 L2 \ Li such that a < c < b. By the definition 
of a convex decomposition, there exist bo and co such that b < bo € · and 
• 3 Co < c. Since Li Π is convex in L, c € · , which contradicts the choice 
of c. 

The remainder of the proof is straightforward, and will be omitted. • 
A lattice L with 0 is said to satisfy the atomic covering property [4] if it 

satisfies the implication 

(AC) (0^ζ>&ρΛα = 0) =>· a<aVp 
for any elements a and ρ of L. We will call such a lattice an AC-lattice. See 
also [5], [6] and [3]. 

T h e o r e m 2.2. Let L = cd(Li,I^) where L\ and L 2 are AC-lattices. Then 
L is an AC-lattice. 
P r o o f . Assume that α,ρ E L, 0 ρ, ρ A a = 0 and that ω denotes the zero 
element in L2. 
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We distinguish four cases. 

Case I: ρ E L\ and a E L\. Since L\ is an AC-lattice, α -<ι a Vi ρ and, 
by Lemma 2.1 and (1*), a -< ο V p. 

Case II: ρ E L2 and a E ¿2· Then L2 3 ρ Α α = 0, a contradiction. 
Case III: ρ E L2 and a E L\. Here 0 < ω < ρ and 0 -< p. Hence 

ρ = ω E Li and we have the case I. 
Case I V : ρ E L\ and a E L2· T h e n ρΑω<ρΑα = 0 and so ρ Λι ω = 0. 

Since Li is an AC-lattice and 0 -<i p, we have ω -<ι ρ Vi ω. There-
fore, by Lemma 2.1, ω -<¡2 Ρ V ω. At the same time ω < α Λ2 (ρ V ω) < 
< ρ V ω. 

Suppose ρ V ω = α Λ2 {ρ V ω). Then ρ < ρ V ω < a and, consequently, 
ρ < ρ Λα = 0, a contradiction. 

Hence ω = α Λ2 (ρ V ω). Since L2 is an AC-lattice, · 3 ω < a and (2*) 
imply that a -<2 (ρ V ω) V2 α = ρ V a. Then in view of Lemma 2.1 we have 
a - < a V p . • 

3. GD—lattices 
A lattice L with 0 satisfying the implication 

(GD) (α Λ b = 0&(a V b) Λ c = 0) α Λ (b V c) = 0 
for every a, b,c E L is said to satisfy the general disjointness property [4]. 
We call such a lattice briefly a GD-lattice. See also [6]. 

The following result appears in [4] as Proposition 4.2 and we include it 
here for completeness. 

PROPOSITION 3 .1 . Any modular lattice with 0 is a GD-lattice. 

We can now provide the following useful lemma: 

LEMMA 3.2 . Let L = cd(Li,L2), let Li be a GD-lattice and let 

a E L2 & 6 E Li & c € Li 

be such that aAb — 0 and (a V b) Λ c = 0. Then a A (b V c ) = 0 . 

Proof . By (1*) and (2*), 
a A (6 V c) = (6 Vi c) Ai [(b Vi c)* Λ2 a] 

where 6 Vi c < (6 Vi c)* € · . Let A := a A2 (b Vi c)*, Β := b and C := c so 
that α Λ (b V c) = A Αχ (B Vi C). Now, by (2*) and by assumption, 

Α Αχ Β = 6 Αχ [(b Vi c)* Λ2 o] = 6 A a = 0. 
Moreover, by (1*), (3*) and by assumption, 

(A Vi B) Ai C = {[(6 Vi c)* A2 a] Vx 6} Ai c = 
= {[(6 Vi c)* A a] V 6} A c < (a V b) A c = 0. 

Since L\ is a GD-lattice, 0 = Α Λχ (Β Vi C) = o A (b V c). • 
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Let χ, y and ζ be elements of a lattice L with 0. The triplet (x ,y ,z ) is 
said to be a GD-triplet, if one of the following conditions 

(i) χ A y = 0&(£ V y) Α ζ = 0; 
(ii) χ Α ζ = 0 V ζ) A y = 0; 

(iii) y Α ζ = 0&(y V ζ) A χ = 0 

is satisfied. 

REMARK 3 .3 . If (x, y, z) is a GD-triplet in a GD-lattice, then it is immediate 
that the three conditions (i), (ii) and (iii) are fulfilled. 

Let us now look again at Figure 1. It is worth pointing out that the 

thirteen-element lattice L13 = cd(Li,!^) illustrated in the figure is not a 
GD-lattice. A close inspection shows that the two sublattices L\, L2 of L13 
are GD-lattices. This counter-example implies that we shall need stronger 
assumptions on L\ or on L2 as in [2, Thm 3.1 and Thm 3.2]. 

Our next two results deal with those convex decompositions ( L i , ! ^ ) of 
L for which one of the lattices L\ and L2 is modular and the other is a 
GD-lattice. 

THEOREM 3 .4 . Let L = cd(Li,L,2) where L\ is a GD-lattice and L2 is a 
modular lattice. Then L is a GD-lattice. 

Proof . Let a, b, c G L be such that 

(3.1) α Λ 6 = 0 

and 

(3.2) (a V b) A c = 0. 

Then 

(3.3) a A c = 0 h b A c = 0. 

If a, b and c are elements of L\, then the assertion is true by (1*). Since 
0 £ L2, it follows from (3.1) and (3.3) that no two elements from {a,b,c} 
belong to L2. Hence there are only three cases to consider. 

Case l: a E L2, b £ Li and c G L\. Then the assertion follows from 
Lemma 3.2. 

Case II: a G Ια, b € Li and c G L2· Let τ be any element of L\ nZ,2 such 
that r < c. Let s := a Vi b Vi τ. Note that a < s G · . By (1*), a Ai b - 0. 
Moreover, in view of (3.2) and (2*) we have 

(a Vi 6) ΑΧ (s Λ 2 C) = (a V 6) A c = 0. 

Since Li is a GD-lattice, 

(3.4) a Ai [b Vi (s A2 c)] = 0. 
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Let e := α Λ (ò V c). By (2*), 

e = α Αχ [s Λ2 (ò V c)] = a Ai {s A2 [(6 Vi r ) V2 c]}. 

From s > b Vi τ, recalling that L2 is modular, we have 

e = α Αι [(6 V i r ) V2 (s A2 c)]. 
By (3*), s A2 C E · . Now s > τ and c > τ. Hence s A2 c > r and taking (1*) 
into account, 

e = α Αι [(6 Vi τ) Vi (s A2 c)] = o Ai [6 Vi (s A2 c)]. 

From (3.4) it follows that a A (6 V c) = 0. 
Case III: a E Li, b E L2 and c E Li. Let a' := ò, 6' := a and c' := c. By 

Lemma 3.2, 0 = a' A (ò' V c') - (a V c) A b. By assumption, α A c = 0. We 
therefore have from Case II that a A (c V ò) = 0. • 

T H E O R E M 3 .5 . Let L = cd(Li, L 2 ) where Li is a modular lattice with 0 and 
where L2 is a GD-lattice. Then L is a GD-lattice. 

Proof . Let ω denote the zero element of L2 and let a, b, c E L be such that 
(3.1) and (3.2) are true. However, by Proposition 3.1, Li is a GD-lattice. 
Consequently it follows by Lemma 3.2 that the assertion is true whenever 
a E Lì, b E Li and c G Li. 

Similarly as in the proof of Theorem 3.4 it suffices to consider the case 
where a E Li, b E Li and c E L2. 

Let e := a A (b V c). Then, by (2*) and (3*), 
e = α Ai {s A2 [(6 VI ω) V2 c]} 

where s := aVi&Viw 6 · . Let a := aVia> and let β := 6Viu; so that α,β E · 
and α Vi β = s. Let d := s A2 [(b Vi ω) V2 c). Therefore, d = s A (β V c) and 
e = a Ai d. Now, α Ai b = 0 by (3.1), and (α Vi 6) Αι ω < (a V b) A c = 0 by 
(3.2). Hence (o, b,u) is a GD-triplet in the GD-lattice Zq. Then by Remark 
3.3 we see that 0 = b Ai (a Vi ω) = b Ai a. By modularity, 

α Αι β = (o Vi ω) Ai (ò Vi ω) = [(α V: ω) Αι b] Vi ω = 
= (α Αι b) Vi ω = ω. 

Thus, from (1*), we get 

(3.5) α Αι β = a A 2 ß = ω. 

Note that 

0 < u ; < s A c < s = aVi /3 = aVi&Viu>. 

From (1*) it follows that 

(a Vi 6) Ai (s A;} c) < (a V b) A c = 0. 
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Let A := ω, Β := a Vi b and C := s A2 c. Then A < C, Β Vi A = Β Vi C = 
= oViòViw and 0 = ¿?AiC = .ΒΛΙ-Α. By the modularity of Li, A = C and 
we have ω = s Ac = (α V2/3) A2C. But then, by (3.5), (a, /?, c) is a GD-triplet 
in the GD-lattice L2. This yields a A2 (ß V2 c) = ω. Now a A d < d < / ? V c 
and a A d < a. Consequently, e = a A d < a f\ (β M c) = ω < c . Thus 
e < α Λ c = 0. • 

Acknowledgement. We are very grateful to the referee for useful ob-
servations and improvements of the text. 
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