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ON SOME SETS OF IDENTITIES 
SATISFIED IN ABELIAN GROUPS 

Abstract. The equational theories were studied in many works (see [4], [5], [6], [7]). 
Let r be a type of Abelian groups. In this paper we consider the extentions of the equa-
tional theory Ex(Qn) defined by so called externally compatible identities of Abelian 
groups and the identity xn « yn. The equational base of this theory was found in [3]. We 
prove that each equational theory Cn(Ex(Qn) U {φ « Φ}), where φ « φ is an identity of 
type r , is equal to the extension of the equational theory Cn(Ex(Qn) U E), where E is a 
finite set of one variable identities of type r . 

The notation in this paper are the same as in [1]. 

1. Preliminaries 
Let r : {·, -1}—>N be a type of Abelian groups where τ(·) = 2, r ( _ 1 ) = l. 

By Qn we denote the class of all Abelian groups satisfying the identity 
xn ~ yn, n> 2. 

The identity of type τ is externally compatible (see [2]) if it is one of 
the form χ « χ or of the form φχ · </>2 w φι · Φ2, Φΐ1 ~ Φΐ1 for some terms 
ΦΐιΦί·, ΦΙ,ΦΊ of type τ. Let Ex{Qn) be a set of all externally compatible 
identities satisfied in Qn. In [2] it was proved that Ex{Qn) is the equational 
theory. Let Id(r) be a set of all identities of type r. By Cn(E), where 
Σ Ç Id(r), we denote the deductive closure of Σ. 

It is well known fact, that the lattice of all equational theories extending 
Id{Gn) is dually isomorphic to the lattice of all natural divisors of η with 
divisibility relation. It implies that Cn{Id{Gn) U {φ ta -φ}) = Cn{Id{Qn) U 
{φι ~ φι}), where φ « ψ and φι « ψι are identities of type r and the last 
of them is the one variable identity. Indeed, let φ « φ be an identity of type 
r. So, it is equivalent to the identity of the form xj1 · . . . · x£s ss x^1 · . . . 
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xl
s
s, w h e r e k \ , . . . , k s , l i , . . . , l s E Zn a n d ki φ f o r s o m e i € { 1 , . . . , s } . 1 

T h e n , i t is o b v i o u s t h a t Cn(Id(Çn) U { χ * 1 · . . . · xk' « x^1 · . . . · i ' / } ) = 

Cn(Id(gn)U{x^~h·.. .-xk
s°-l° « x i - x i " 1 } ) . L e t d = ( h - h , . . . , k s - l s ) . T h e n 

Cn(Id(G ) U • . . . • xk>~l° « x i · x f 1 } ) = Cn{Id(gn) U { x f « X l - x ^ 1 } ) . 

B e c a u s e d = (ki — h , . . . , ks — l s ) t h e n t h e r e e x i s t pi,..-,ps G Zn s u c h t h a t 

(fci - h ) - P i + · · · + (ka - la) • ps = d a n d Cn(Id{Qn) U { χ * 1 · . . . · x * s « x^1 · . . . • 

xi5}) Ç Cn(Id(Çn) U { x £ 1 - í l · . . . · xk
s°-l° « χ ι · χ ] ; 1 } ) . S o Cn(Id(Qn) U { x j 1 • 

. . . · xk
s° « χ[' •... · χ ' / } ) Ç Cn(Id(Gn) U { x f ( f c l - M · . . . · x ^ * - 1 * ) « X l . ζ " 1 } ) 

a n d of c o u r s e Cn(Id(Gn) U { x ^ 1 " ' 1 · . . . · x ^ « x j · x ^ 1 } ) Ç Cn(Id{Qn) U 

{ x f « χ χ · χ Γ 1 } ) · 

F o r e a c h i € { 1 , . . . , s } w e h a v e t h a t d\(k{ — k ) , s o ( x f i _ i < ~ x¿ · x ^ 1 ) £ 

Cn(Id(Qn) U { x f « x i · x j 1 } ) . T h u s ( x f 1 - ' 1 · . . . · x ^ - ' * « x i · x ^ 1 ) e 

Cn(Id(G ) U { x f « x i · x ^ 1 } ) . 

T h e a l g o r i t h m p r e s e n t e d a b o v e n e g l e c t s t h e s t r u c t u r e of i d e n t i t i e s , a n d 

t h a t is w h y i t is u s e l e s s i n t h e c a s e of e x t e n s i o n s of t h e t h e o r y Ex(Qn). 
U s i n g t h e G a l o i s c o n n e c t i o n b e t w e e n a l g e b r a s a n d i d e n t i t i e s w e h a v e 

t h a t t h e l a t t i c e of a l l e q u a t i o n a l t h e o r i e s of t y p e τ is d u a l l y i s o m o r p h i c 
t o t h e l a t t i c e of a l l v a r i e t i e s of t h e s a m e t y p e . S o , if w e k n o w a l l t h e o r i e s 
Cn(Ex(Gn) U {φ ~ ψ}), w h e r e φ a n d ψ a r e t e r m s of t y p e r , w e c a n d e s c r i b e 
a l l s u b v a r i e t i e s of t h e v a r i e t y d e f i n e d b y a l l e x t e r n a l l y c o m p a t i b l e i d e n t i t i e s 
of t h e v a r i e t y Q n . 

2. The extension of the theory Ex(Qn) 

I n t h i s p a p e r , a s i n [3], b y x ° w e d e n o t e χ · χ - 1 . L e t u s c o n s i d e r t h e 

f o l l o w i n g i d e n t i t i e s : 

(1) Xi ~ Xji 

(2 ) χ ? - x j 1 · . . . - x k ° ss X j , 

(3) ( ( χ * · . . . · χ * · ) " 1 ) - 1 

ίά\ τ ° . τ ' 1 . . ~ τ·0 . . . X¿ X^ . . . X^ X]̂  X^ . . . Xg j 
(5) ((χ? • xi1 · . . . • xi·)"1)"1 « ((®i * • • • • • a ^ r 1 ) - 1 , 
(6 ) χ ? · χ ' 1

1 · . . . · χ ^ ( ( χ 5 · χ Ϊ 1 · . . . · χ ^ ) - 1 ) - 1 , 

w h e r e s > 2 , i , j G { 1 , . . . h, • • · Λ , · • · ,ks € { 0 , . . . , n - 1} . 

I t is p o s s i b l e t o p r o v e t h a t e v e r y t e r m of t y p e r of v a r i a b l e s χ χ , . . . , χ 3 

(s > 2 ) h a s o n e of t h e f o l l o w i n g c a n o n n i c a l f o r m s i n t h e v a r i e t y d e f i n e d 
b y t h e s e t Ex(Çn) : xjt x ? · χ * 1 · . . . · x k ' , ( ( χ * 1 • . . . · x * ' ) - 1 ) - 1 , w h e r e 
j G { 1 , . . . , s } , k i , . . . , ks £ { 0 , . . . , η — 1} . I t i m p l i e s t h a t e a c h i d e n t i t y of 
t y p e r is e q u i v a l e n t o n e of t h e i d e n t i t i e s ( l ) - ( 6 ) . 

1If fci = h y..., k, = Is, then it is obvious that Cn(Id(Qn) U {φ « ψ}) = Id(Çn). 
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Let us consider the identity (1). The following lemma is obvious. 
L e m m a 1. ( a ) I f i = j , then Cn{Ex{Çn) U { ( 1 ) } ) = Ex{Çn). 

(b) If i φ j , then Cn(Ex(Çn) U {(1)}) = Cn(Ex(Gn) U {x¿ « χ?}). -
Now, we study the identity (2). 

L e m m a 2 . ( a ) I f k j = 0 , then 

Cn(Ex(Gn) U {(2)}) = Cn(Ex(Çn) U {x° « Xj}). 

( b ) If kj = 1, = k2 = . . . = kj-i = kj+i = . . . = ks = 0 , then 

Cn(Ex(Gn) U {(2)}) = Cn{Ex(Çn) U {x° · xj « x j } ) . 

(c) I f k j = l,kl + . . . + Λ ? . ! + k]+1 + . . . + k2
s> 0 , then 

Cn(Ex(Gn) U {(2)}) = Cn{Ex{Qn) U { x j « x] · x*+1}), 

where d = ( k i , . . . , k j - i , k j + i , . . . , ks). 

( d ) If kj > 2 , then 

Cn(Ex(Gn) U {(2)}) = Cn(Ex(gn) U {x° · x j + 1 « x,·}), 
where d = (k\,..., k j - i , kj — 1, k j + i , . . . , ks). 

Proo f . Without losing generality we can assume that j = 1. Let S\ = 
Cn(Ex(Gn) U{(2)}). 

(a) Let S2 = Cn(Ex(Çn) U {x? « xi}). If we put Xj = x?, j = 2 , . . . , s we 
get S2Ç Si. From the fact that (x° w y°) G Ex(Qn) we get (x « y) G S2. 

From this we obtain immediately Si Ç S2-
(b) Let S2 = Cn(Ex(Qn) U {xi · x\ w xi}). Because ki - 1 = k2 = . . . = 

ks = 0 then Si = S2 is obvious. 
(c) Let S2 = Cn(Ex(Gn) U {χχ « · xf+ 1}). Putting Xj = χξ for j > 2 

in the identity (1) we get (χι « χχ · xj) G Si. Let the sequence p2,... ,ps 

of integers be a solution of the equation k2 · t2 + . . . + ks • ts — (k2,... ,ks). 

Putting Xj = x\' for j G {2, . . . , s} in the identity (1) we get, that (xi « 
Xi · g Si and thus (xi · x? « X l · x? · € S u so 
we have (χχ « ιξ · xf+1) G Si. Finally, we have S2 Ç Si. 

To prove the opposite inclusion let us note, that from the condition 
(χι « x? · x f + 1 ) G S2 it follows that (x° ~ x? · xf) G S2. The immediate 
consequence of these conditions is (χι « χξ • χχ) G S2. The definition of d 
implying that for each j from the set {2, . . . , s} a number d is a divisor of 
kj. Hence there exist e lementsp 2 , . . . ,p s in the set Zn such that kj = pj • d. 
As a result of the condition (x° « x° · xf ) G S2 we have that for each 
j e {2, . . . , s} the identity x° « x° · x^yd belongs to S2. From the fact that 
(®? « X? · x°2 • ... • x°) G S2, we obtain (z? « x? · · . . . · χΡ' ά ) G S2. 
Using earlier notation we get (x° « x° · x^2 · ... • x^') G S2 and of course 
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(χ ι · x° w Χι • χ ι • χ*2 " · · · ' x s ' ) e $2- Prom this and f rom the condition 

(x i « x\ • χ° ) 6 S2 we get ( χ ι « x ° · χι • x^ · · · · · χ*®) G ¿>2· It completes the 

proof. 

(d) Let 52 = C r a ( £ x ( £ n ) U { x i « x Ç - x Î + 1 } ) , where d = · · · , M -

From the fact tha t (χχ w x^-x^ 1· . . .·χ*«) G S i we get tha t (x? « χ ξ - χ * 1 - 1 · . . .· 

x¡°) G S i . It is obvious tha t (x° « x y x f ) € S i , where d = ( λ χ - Ι , ¿ 2 , . . . , ks). 
From the other hand we have t h a t (χχ « x° · x j 1 ) G S i (we get it putt ing 

Xj — Xj for j e { 2 , . . . , s } ) . From this we obtain (x° ~ x? · Χχ1 _ 1 ) G S i , and 

of course we get (χχ « x° · x i ) G S i . From this we get (x i « · x f + 1 ) G S i . 

So, we have proved tha t S2 Ç S\. 

Now, let we prove the opposite inclusion. Analogously to the proof of (c) 

we can show t h a t (χχ « x i -xÇ) G 52· From the fact t h a t (χ ι « χξ · χ ΐ + 1 ) G S2 

we obtain tha t (χξ ~ x? · x f ) G S2. The number d is a divisor of ki — 1 then 

there exists pi G Zn such tha t d • p\ = ki — 1. Put t ing χχ = χψ in the 

identity x° « χξ · xf we get (χξ « χξ • x î 1 - 1 ) G S2· From this we have 

(xi • χ® & χ ι • x^ 1 ) G 52- B y this and by the condition (χ ι « · χξ ) g S2 

we have that (χχ « χξ · x j 1 ) G S2. Now it is easy to ve r i fy t h a t (x i « 

2 • · • • • X g ) G ¿>2 (similarly as in proof of (c)). So we get the 

inclusion Si C S2· It completes the proof of L e m m a 2. • 

Now, let us regard the identity (3). 

LEMMA 3 . (a) If kj = 0 , then 

Cn(Ex(Gn) U {(3)}) = Cn(Ex(Qn) U { ( (χ? )" 1 ) ' 1 « *¿})· 

(b) If kj = 1, ki = k2 — • • • — kj-i = kj+i = ... = ks — 0, then 

Cn(Ex(Gn) U { ( 3 ) } ) = Cn(Ex{Çn) U { ( ( x j · Xj)'1)'1 « Xj})· 

(c) I f k j = l,k\ + ... + ΐή_Ύ + k]+1 + ... + k2s> 0, then 

Cn(Ex(Gn) U {(3)}) = Cn(Ex(gn) U { X j « ((x° · x f 1 ) " 1 ) " 1 } ) . 

where d = (ki,..., kj-1, kj+i,..., ks). 
(d) If kj > 2, then 

Cn(Ex(Çn) U {(3)}) = Cn(Ex(Gn) U {( (x j · x f" 1 )" 1 )" 1 ~ Xj}), 

where d = ( f c i , . . . , kj-1, kj — 1, kj+i,..., ks). 

P r o o f . The proof of this l emma is analogously to the proof of the Lem-

m a 2. • 

Let we s tudy the identi ty (4). 

LEMMA 4 . (a) If h = ki, • • ·, l s = ks, then 

Cn(Ex(Qn)U{(4)}) = Ex(gn). 
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(b) If l j φ kj for some j 6 {1, . . . , s}, then 

Cn(Ex(Gn) U {(4)}) = Cn{Ex(gn) U {x? « x° • χ?})), 
where d — (li — k\,... ,ls — ks). 

Proof . The proof of (a) is obvious. 
To prove (b) let us use some notation. Let Si = Cn(Ex(Gn) U {(4)}) 

and S2 = Cn(Ex(Gn) U {x? « x? · xf}). It is easy to check that (χξ « 
x\ · x ^ 1 . . .xr

s') € Si, where η — k — ki, if k > ki or r¿ = η — (Z¿ — kì) 
in opposite case. Prom this it follows directly that for each i from the set 
{1, . . . , s} it holds (x? « x î -z?) e Si, and thereby (xi « x?-x(

1
ri'""rs)) € Si-

We have proved that S2 Ç Sj. 
To prove the opposite inclusion let us observe that (τ·χ,..., r s) | r j for each 

i € {1, . . . , s}. Hence, for each i € {1, . . . , s} there exists pi € {0, . . . , η — 1} 
such that r¿ = Pi · ( r i , . . . ,rs). Putting xi = x^1 · . . . · χψ in the identity 
χ? « χ? · *< r i-" r ' ) we get (x\ « x? · x^1 · . . . • xr

s°) e S2. Prom the above it 
follows directly that the identity (4) belongs to the set S2, thus Si Ç S2· So, 
the lemma has been proved. • 

Now we consider the identity (5). 
LEMMA 5. (a) If h = ki, • • • ,ls = ks, then Cn(Ex(Gn) U {(5)}) = Ex(Gn). 

(b) If l j φ kj for some j € { l , . . . , s} , then Cn(Ex(Gn) U {(5)}) = 
Cn(Ex{Çn) U { x ? Μ χ ? · x f } ) , where d = (h - ki,..., ls - ks). 

Proof . The proof of this lemma is analogous to the proof of the last 
lemma. • 

Now, let us regard the identity (6). 
LEMMA 6 . ( a ) If k = = 0 for i e {1 , · · · , s } , then 

Cn(Ex(Gn) U {(6)}) = Cn(Ex(Gn) U {x? « ((χ?)-1)"1})· 
(b) If ki = li for each i € {1, . . . , s} and kj φ 0 for some j 6 {1,. . . s}, 

then 

Cn(Ex(Gn) U {(6)}) = Cn(Ex{Gn) U {x? · χ**1""M « ((x<fcl"-•fc'))-i)-i}. 
(c) If kj φ l j for some j 6 {1, . . . , s}, then 

Cn(£x(£ n)u{(6)} = Cn(Ex(Gn)li{xi « x0
1-x[kl-ll'--'k>-l°\x0

1-x<(1'--M 

« ((xp
1

l k í + - + p ' k ' ) - 1 ) - 1 } ) , 

where p i , . . . ,p3 satisfy the following condition ρι·1ι + .. .+ps-l3 = ( l \ , . . . ls), 

Pi,...,Ps € Zn. 

Proof , (a) The proof is obvious. 
(b) It is enough to observe that the equation ti • ki + . . . + ts • ks = 

(ki,... ks) has a solution in the set Zn. 
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(c) Let Si = Cn(Ex(Qn) U {(6)}) and S2 = Cn(Ex(Çn) U {x? κ x? · 
x[kl~h *·-'·>, « ( (x? l f c l + - + p - f c s ) - 1 ) - 1 }) , where pi,...,ps are 
defined above. 

In the identity (6) let us put x¿ = xf*. We get, that (x? · x ^ 1 ' « 
((xf1 ' f c l +-+ P s ' / C s)-1)-1) € Si. It is clear, that from the definition of the set 
Si it follows that for each i G {1 , . . . , s} the identity x¿ « belongs 
to S\. Analogously, as in the proof of Lemma 2 we get, that 
(x? « χ? · a/fc- ' i · - ·* '- ' · )) e Si. We have proved, that S2 C Sv 

To prove the opposite inclusion in the identity 

χ0 x(h,...,h) ^ ^xPi-k1+-+Ps-k sylj-l 

'l Is 
we put xi = x f 1 's ) · . . . · xi'1 I s ) . We get, that the identity 

(*) χΙ·χιί·....χιϊ 

(( Oi.'1·,̂ ) (pi fci+ - +p3 fcs) (lli','^)-(Pi-fci+-+P»-fc») K-1 
« • ... • xs ) ) 

belongs to S2. 
For each i G {1 , . . . , s} let us consider the equation hi · (/ci — li,..., k$ — 

+ + = ki. We show, that hi = -

( ^ . . „ ^ a ^ k - M - · · · - i s a s o l u t i o n o f t h i s 

equation. 
Because ( ¿1 , . . . , l s ) \ k and (ki — Ιχ,... ,ks — is)|(^r — 'r) for each r G 

{ l , . . . , s } then hi G Ζ. Hence hi -(hi-Ιχ,..., k s - l s ) = ( h ~ k ) - ^ ^ ^ { P i · 

{ki - h) +.. .+ps • (ks - ls)) &nd hi-(kx-lx,...,k3-ls) = (h ~k) - (¿J*^ · 

(pi · kx + . . . + ps • ks - px • Ιχ - ... - ps • ls) = (h - h) - · (pi • h + 

• · · · ks - (lx,...,ls)) = ki- (iu
l\:ls) • (pi • kx + ... +Ps • ks). 

Thus for each i € { l , . . . , s } the identity x? « χχ · χΜ*;ι-ΐι,·.·Λ.-ΐ*) 
belongs to S2· Hence, as a result of the fact, that the identity (*) belongs to 
i?2 we get, that the identity 

χ? · χ*!1 · . · x'; « ((x5 · . _ 

• Xs ' ) ) 

belongs to S2. So, we get that (x? · Χχ1 · . . . · xl
s
a « ((x£l • . . . · z j » ) - 1 ) - 1 ) e S2. 

It implies that Sx Ç S2. 
Finally, we have proved that Sx = S2. • 
From Lemmas 1-6 we obtain 
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THEOREM 1. If E is a finite set of identities of type τ then there exists a set 
Ει of one variable identities such that Cn(Ex(Gn)UE) = Cn{Ex(Qn)\JE{). 

B y G Ex w e d e n o t e t h e variety def ined by the set Ex{Gn). T h e conse-
quence of T h e o r e m 1 is the fol lowing theorem 

THEOREM 2. Let τ be a type of Abelian groups with the exponent η and let 
Λ be a free algebra in the variety Çgx with a one element set of generators. 
Then Id(A) = Id{Glx). 
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