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ON SOME SETS OF IDENTITIES
SATISFIED IN ABELIAN GROUPS

Abstract. The equational theories were studied in many works (see {4], [5], [6], [7]).
Let 7 be a type of Abelian groups. In this paper we consider the extentions of the equa-
tional theory Ez(G") defined by so called externally compatible identities of Abelian
groups and the identity ™ & y™. The equational base of this theory was found in [3]. We
prove that each equational theory Cn(Ez(G") U {¢ ~ '}), where ¢ = ¢ is an identity of
type 7, is equal to the extension of the equational theory Cn(Ez(G™) U E), where E is a
finite set of one variable identities of type 7.

The notation in this paper are the same as in [1].

1. Preliminaries

Let 7: {-, "'} — N be a type of Abelian groups where 7(:)=2, 7(71)=1.
By G™ we denote the class of all Abelian groups satisfying the identity
"=y, n> 2.

The identity of type 7 is externally compatible (see [2]) if it is one of
the form z = z or of the form ¢; - ¢g = 11 - 99, ¢1'1 = zpl_l for some terms
&1, P2, Y1, %2 of type 7. Let Ex(G™) be a set of all externally compatible
identities satisfied in G™. In [2] it was proved that Ez(G") is the equational
theory. Let Id(7) be a set of all identities of type 7. By Cn(X), where
¥ C Id(r), we denote the deductive closure of X.

It is well known fact, that the lattice of all equational theories extending
Id(G™) is dually isomorphic to the lattice of all natural divisors of n with
divisibility relation. It implies that Cn(Id(G") U {¢ = ¢}) = Cn(Id(G™) U
{¢1 = ¥1}), where ¢ = ¢ and ¢; = 1; are identities of type 7 and the last
of them is the one variable identity. Indeed, let ¢ = 1) be an identity of type
7. So, it is equivalent to the identity of the form z% . ... . zk ~ 2l . ...
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zls, where ky,..., ks, l1,...,1ls € Z, and k; # I; for some i € {1,...,s}.!
Then, it is obvious that Cn(Id(g") U {z® - ... . zk ~ 2 . . . 2b}) =
Cn(Id(GMu{zbr— . .ghe—ls ~ zy.271)). Let d = (k1i—ly,. .., ks—l,). Then
Cn(Id(GM)u{zh=h. . k° s o gy-27'}) = Cn(Id(G™)U{ad ~ z1-27*}).
Because d = (k1 — I3, . .. k —l,) then there exist p1,...,ps € Zp such that
(ki—l)-pr+.. .+(ks—l3)-ps = d and Cn(Id(g")U{:c'fl N SRV SO
zb}) C On(Id(G™) U {zF 1. . . ghe~ls m 2y . 2T1}). So Cn(Id(G™) U {z™
coake gt gb)) C Cn(Id(g")U{:c]l’l(kl—ll)-...-:c’ljs(ks_l’) ~z1-27'})
and of course Cn(Id(G™) U {z¥ =1 . .. ghs~ls m ;. 271}) C Cn(Id(G™) U
{2 = 21 - 271}).

For each i € {1,...,s} we have that d|(k; — ), so (zF % = z;- ;) €
Cn(Id(G™) U {z¢ ~ z; - z]'}). Thus (7. .. fS"“ ~ T-27Y) €
Cn(Id(G™) U {2$ ~ z; - 27*}).

The algorithm presented above neglects the structure of identities, and
that is why it is useless in the case of extensions of the theory Ez(G™).

Using the Galois connection between algebras and identities we have
that the lattice of all equational theories of type 7 is dually isomorphic
to the lattice of all varieties of the same type. So, if we know all theories
Cn(Ez(G")U{¢ =~ ¢}), where ¢ and 1 are terms of type 7, we can describe
all subvarieties of the variety defined by all externally compatible identities
of the variety G™.

2. The extension of the theory Ez(G")
In this paper, as in [3], by z° we denote z - 27}, Let us consider the
following identities:

(1) z; = =z,

(2) z(l":c’f‘-...-z’;s ~ zj,

® (e ety g

(4):1:(1)- zlsz:z;(l) 11“ - ks,

(5) ((w‘l’ w’f coag) ) A ((w? z'f‘ SRRER: 0 i

©) ol .. ol (@2t gbe) )
where s > 2, i,j€{1,...,s} L, -, ls,k1,..., ks € {0,...,n —1}.

It is possible to prove that every term of type 7 of variables zj,...,z;
(s 2 2) has one of the following ca,nonmcal forms in the varlety deﬁned
by the set Ex(G") : zj, 23 -« . ... 2k, (&5 - ... 2%)71)71) where

j€e{L,...,s} ki,...,ks € {0,...,n — 1} It implies that each identity of
type 7 is equivalent one of the identities (1)-(6).

Uf ky =U1,...,ks = s, then it is obvious that Cn(Id(G™) U {¢ = ¥}) = Id(G™).
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Let us consider the identity (1). The following lemma is obvious.
(

LEMMA 1. (a) If i = j, then Cn(Ez(G") U {(1)}) = Ez(G").
(b) If i # j, then Cn(Ez(G™) U {(1)}) = Cn(Ez(G™) U {z; =~ 20}). =

Now, we study the identity (2).
LEMMA 2. (a) If k; = 0, then
Cn(Ez(G™")U{(2)}) = Cn(Ez(G") U {:cg ~ z;}).
(b) Ifk; = Lki=ky=...=kj_y =kjp1 =...= ks =0, then
Cn(Ez(G™)U{(2)}) = Cn(Fz(G™) U {z? TR T}
© IFki=1kK+...+k_ +k3,+.. .+ k>0, then
Cn(Ez(G™) U{(2)}) = Cn(Ea(G") U {z; ~ 2} - z*'}),

where d = (ky, ..., kj—1,kj4+1,.- ., ks)-
(d) If k; > 2, then

Cn(Ez(G™)U{(2)}) = Cn(Ez(¢") U {a) - 20! = z;}),
where d = (ky, ..., kj—1,kj — 1, Kkj41,..., ks).

Proof. Without losing generality we can assume that j = 1. Let §; =
Cn(Ez(G") U {(2)}).

(a) Let Sy = Cn(Ez(G")U{zd m~ z1}). f we put z; = 29,5 = 2,...,s we
get S2 C S1. From the fact that (20 =~ y°) € Ex(G") we get (z = y) € S,.
From this we obtain immediately S; C Ss.

(b) Let Sy = Cn(Ez(G")U {z1 2] ~ z1}). Because k1 —1=ky = ... =
ks = 0 then S; = S, is obvious.

(c) Let Sz = Cn(Ez(G™) U {21 ~ 2§ - z71}). Putting z; = 29 for j > 2
in the identity (1) we get (z1 = z1 - xl) € S:1. Let the sequence ps,...,p;
of integers be a solution of the equation kg - ta + ...+ ks - t5 = (ko, ..., ks)-
Putting z; = z}’ for j € {2,...,s} in the identity (1) we get, that (z; =~
T -z’fz'p2+"'+k"p’) € S; and thus (z; - 20 ~ z; - 29 - mkz'p2+“'+ks'p’) € 54, so
we have (21 ~ z{ - d+1) € S;. Finally, we have S; C S;.

To prove the opposite inclusion let us note, that from the condition
(z1 = 2§ - 29%1) € S, it follows that (29 ~ z9 - :c‘f) € S,. The immediate
consequence of these conditions is (z; ~ 29 - z1) € S3. The definition of d
implying that for each j from the set {2,...,s} a number d is a divisor of
k;. Hence there exist elements pa, ..., ps in the set Z, such that k; = p; - d.
As a result of the condition (z§ ~ 29 -2%) € S, we have that for each

j €{2,...,s} the identity z? ~ z? . :c?j N belongs to S3. From the fact that

(29 ~ 2020 -...-20) € Sp, we obtain (z0 ~ 29 - £82%. ... 2P+ ) € G,

Using earlier notation we get (20 ~ z9-z52 ..... z5) € S, and of course
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(z1-29 ~ 29 -z, - 252 ..., . 2%) € S;. From this and from the condition
(21 = z1-29) € Sy we get (z1 ~ 20 z1 - 22 - ... zk*) € Sy. It completes the
proof.

(d) Let Sy = C’n(Em(g")U{m1~w1 4+11), where d = (k1 —1,kz, .. ,k ).
From the fact that (z1 ~ 20-2%-.. .z¥) € S we get that (zf ~ £.25 1. ..
z¥e) € Sp. It is obvious that (::31 ~ :r(l)‘x‘li) € 81, whered = (k1—1,k, ..., ks).
From the other hand we have that (z; ~ 9 - z¥') € §; (We get it puttlng
zj = z) for j € {2,...,s}). From this we obtain (z ~ 29 -z k1) € 61, and
of course we get (z1 ~ zJ - 71) € S1. From this we get (z1 ~ :c‘l] zdtt) € 8.

So, we have proved that Sy C 5.

Now, let we prove the opposite inclusion. Analogously to the proof of (c)
we can show that (z; ~ z;-2%) € S. From the fact that (z; ~ z9-2¢™!) € Sy
we obtain that (z§ =~ z§-2¢) € S,. The number d is a divisor of k; — 1 then
there exists p; € Z, such that d-p; = k; — 1. Putting z; = z’l’l in the
identity z9 ~ :c(l’ z¢ we get (29 ~ 29 - 271) € Sp. From this we have
(z1 - 29 ~ 20 - z¥) € S,. By thls and by the condition (z; = z; - z9) € S»
we have that (z; =~ a9 - %) € S,. Now it is easy to verify that (z; =~
z - zh . gk z¥s) € Sy (similarly as in proof of (c)). So we get the
inclusion S; C S». It completes the proof of Lemma 2. u

Now, let us regard the identity (3).
LEMMA 3. (a) If k; =0, then
Cn(Ez(G") U{(3)}) = Cn(B=z(¢") U{((2])™") " = z5}).
) Ifk;=Lki=hky=...=kj_y =kjy1=... =k, =0, then
Cn(Ez(G™)U{(3)}) = Cn(EI(g") U{((z} - z5)") 7! = z5)).
() I ks =L, k2 +...+ kg + k2, +. +k§ > 0, then
Cn(Ez(G™) U{(3)}) = Cn(Bx(G") U {z; = (] -=f*1) ™)'},
where d = (kl, ceey kj_l, kj+1, ceey ks).
(d) If k; > 2, then
Cn(Ez(G™) U{(3)}) = Cn(Bx(G™) U{((z} - 25t1) ™)' = z,}),
where d = (ky,...,kj—1,kj — 1, kjt1, ..., k).

Proof. The proof of this lemma is analogously to the proof of the Lem-
ma2. m

Let we study the identity (4).
LEMMA 4. (a) Ifly = ky,---,1ls = ks, then
Cn(Ez(G™) U{(4)}) = Ex(").
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(b) Ifl; # k; for some j € {1,...,s}, then
Cn(Bz(G™) U {(4)}) = Cn(Ez(G™) U {2 ~ 2¥ - 2f})),
where d = (I — ky,...,ls — ks).

Proof. The proof of (a) is obvious.

To prove (b) let us use some notation. Let S; = Cn(Ez(G") U {(4)})
and S; = Cn(Ez(G") U {z} ~ ¥ - 2¢}). It is easy to check that (z ~
2.2 ...27¢) € Sy, where r; = L, — ki, if i > ki or 1y = n— (; — k;)
in opposite case. From this it follows directly that for each ¢ from the set
{1,...,s} it holds (z9 =~ z9-27*) € S1, and thereby (z1 ~ 29 -z (”’ ’T’)) € S1.
We have proved that Sy C 5.

To prove the opposite inclusion let us observe that (ry,...,7,)|r; for each
i €{1,...,s}. Hence, for each i € {1,...,s} there exists p; € {0,...,n— 1}
such that r; = p; - (r1,...,7s)- Puttmg T = x1 -...-zPs in the identity
29 ~ 19 - :cgrl""’r’) we get (ml ~ 2l z] ... 27) € Sp. From the above it
follows directly that the identity (4) belongs to the set Sz, thus S; C S2. So,
the lemma has been proved. =

Now we consider the identity (5).

LEMMA 5. (a) Ifly = k1,---,ls = ks, then Cn(Ez(G™) U {(5)}) = Ez(G™).
(b) If I # k; for some j € {1,...,s}, then Cn(Ez(G"™) U {(5)}) =
Cn(Ez(G™)U {a:l ~ 1) - 1¢}), whered = (Iy — k1,...,ls — ks).

Proof. The proof of this lemma is analogous to the proof of the last
lemma. =
Now, let us regard the identity (6).

LEMMA 6. (a) Ifl; = k; =0 fori € {1,---,s}, then
Cn(Ez(G") U{(6)}) = Cn(Ex(G™) U {2} = ((z]) ™)'}

(b) If ki = l; for eachi € {1,...,s} and k; # 0 for some j € {1,... s},
then

Cn(Bz(G") U{(6)}) = Cr(Ba(G") U {af - aft*) m ((a{"))=1)71).

(c) If kj #1; for some j € {1,...,s}, then
Cn(Ez(G™)U{(6)} = Cn(Ez(¢™)U{zd ~ x?-x&kl_ll’""k’_l’),z(l’-z(lll""’l’)
ay ((Izln'k1+...+ps-ka)—1)—1}),

where p1, ..., ps satisfy the following condition py-li+.. .+ps-ls = (I3, ... 1),
P1y--+1Ds € Zn.
Proof. (a) The proof is obvious.

(b) It is enough to observe that the equation t; - k1 + ... + &5 - ks =
(k1,...ks) has a solution in the set Z,.
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(c) Let 1 = Cn(Ex(G™) U {(6)}) and Sz = Cn(Ez(G™) U {29 =~ z?
zgkl—ll,...,k,-ls)’ -’3(1) . mgll,...,l,) ~ ((z,l,l.kl+,..+p,.k,)_1)_1}), where D1, ..., Ds arTe
defined above.

In the identity (6) let us put z; = z¥*. We get, that (29 - zgll""’l") ~
((zBF1+-+Pokay-1)-1y ¢ &) Tt is clear, that from the definition of the set
Sy it follows that for each i € {1,..., s} the identity z0 = z) z(k ) belongs
to S1. Analogously, as in the proof of Lemma 2 we get, that
(29 ~ 9 - x&kl"l" ’k’_l"’)) € S1. We have proved, that Sy C 5.

To prove the opposite inclusion in the identity

1:(])_ . xgll,..-,ls) ~ (($1171'k1+...+ps'k3)—1)—1

we put T3 = :1:1 """ gt We get, that the identity

(x) - mlll-... ’;

belongs to Ss.

For each i € {1,..., s} let us consider the equation h; - (k; — l,..., ks —
kil

L)+ gty (pr-ku+ .+ py - ks) = ki. We show, that h; = g—fidi— -

p1-li(k1—l1) _ ps-li(ks—ls) . . .
(i) (k=T ke =13 S (PP T (T v ey B LB solution of this
equation.

Because (l1,...,05)|l; and (k1 — l1,..., ks — I5)|(kr — I,) for each r €
{1,...,8} then h; € Z. Hence hi'(kl—ll,...,ks—ls) = ( i~ ) r—'—j(pl

(ki =00)+. 4Py (ks —15)) and hy- (ky—l1, .., ks 1) = (ki —1s) = gbigy
(pr-ki+...4+ps-ks—p1-li—.. —Ps's)=(k"l) AR (p1 k1 +

A ps ke~ (I, 0) = ki~ gy (1 Rk ps K.

Thus for each i € {1,...,s} the identity 20 ~ z; - z" (b =lke =)

belongs to Sz. Hence, as a result of the fact, that the 1dent1ty (*) belongs to
So we get, that the identity

hi-(ki=l1,.. ks — ls)+(—1—5 (pr-k1+...+ps-ks)
0.1 I B A
I T R SN (€N
h'-! (kl—llr )k8~la)+z _____ j (Pl k1+ +Pa ka ) 1)__1
0.0, copls Ay ki ksy—1y-1
belongs to S. So, we get that (z7 -z ... -2y = ((z*-...-z¥)71)7") € Sa.

It implies that S; C S.
Finally, we have proved that S, = Ss. =
From Lemmas 1-6 we obtain
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THEOREM 1. If F is a finite set of identities of type T then there exists a set
E1 of one variable identities such that Cn(Ez(G")UE) = Cn(Ez(G™)UEY).

By G%, we denote the variety defined by the set Exz(G"). The conse-
quence of Theorem 1 is the following theorem

THEOREM 2. Let T be a type of Abelian groups with the exponent n and let
A be a free algebra in the variety G%, with a one element set of generators.
Then Id(A) = Id(Gg,)-
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