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ON OPTIMAL STOPPING 
OF A DISCRETE TIME RISK PROCESS 

Abstract. Optimal stopping time problem for a discrete time risk process Un = 
u + cn — {X\ + ... + Xn) is analyzed. At a random moment 0, which is unobserved, there 
is a change in common distribution of subsequent claim sizes X\, X^,-... In the case when 
the mean of a new distribution of claim sizes is greater than the premium c there is a need 
to stop the process to recalculate the premium. The existence of optimal stopping rule is 
proved and the way to find it efficiently is described. 

1. Introduction 
The risk process in actuarial mathematically oriented literature has been 

investigated heavily. The main task of research, apart from modelling the 
insurer's surplus (reserves) is devoted to ruin probability problems. So far 
optimal stopping time problems have not gained much of interest. In this 
paper we deal with a discrete time risk process for which an optimal stopping 
time problem arises quite naturally, and finding an efficient form of the 
optimal stopping rule seems to be a crucial goal from the insurer's point 
of view. The paper of Jensen (1997) in [5] has been our inspiration. Jensen 
considers a continuous time risk process {U (t) ,t> 0} of the form U (t) = 
u + G (t) — S (t), where u > 0 is an initial capital of an insurer, the process 
of accumulated premiums {G (t) ,t > 0} is a Brownian motion with mean 
ct, G(t) is the premium collected till time t. The process of aggregated 
claims {S (t) ,t > 0} is a Markov modulated Poisson process, i.e. S (t) — 
XQ + X\ + . . . + where subsequent claim sizes XI, X2, •. .are iid r.v's, 
X0 = 0, {N(t), t > 0} is a counting process with random intensity which is a 
function of an unobserved Markovian environment state process. Depending 
on its distribution law, the mean premium income may not cover mean losses 
in which case there is a need to stop the process so as to recalculate the 
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premium. In the classical continuous time model one assumes that G (t) = 
ct, c > 0, and that the number of subsequent claims till time t, t > 0, 
N (t) is modelled by a renewal process. Ferenstein and Sierociiiski (1997) [3] 
considered the optimal stopping time problem of the classical risk process 
in which the insurer goal is to stop the process before the ruin time and to 
maximize the mean reward function depending on the current state of the 
risk process. 

In this paper we consider a modified version of the classical discrete 
time risk process which models random unobserved change in claim size 
distribution. Distribution law of subsequent claim sizes is like in the disorder 
problem investigated in Chow et al. (1971) [2], Shiryayev (1978) [6], Bojdecki 
(1979) [1]. Subsequent claim sizes are assumed to be nonnegative iid r.v's 
till an unobserved random time. At that time the common distribution law 
of claim sizes changes to another one which is unfavarouble for the insurer 
since its mean excess the premium. In Section 2 we give precise model of 
the risk process and state the problem. In Section 3 we find general form of 
optimal stopping rule and derive the Bellman equation for the optimal mean 
reward. Explicit form of optimal stopping time is found in Section 4 where 
we formulate additional assumptions on the claim sizes distributions under 
which the monotone case is fulfilled. Example with truncated exponential 
losses is presented. 

2. The model 
Let P) be some fixed probability space on which all considered 

random variables are determined. Suppose that 

n G N = {0 ,1 , . . . } , -X"o = 0, u > 0, c > 0, is a discrete time risk process. We 
assume that the distribution of the claim sequence Xi , X2 , . . . depends on the 
unobserved random time 6 similarly as in the disorder problem considered by 
Shiryaev (1978) [6] and generalized by Bojdecki (1979) [1]. More precisely, 
let 6, Xi, X2,... have the distribution such that 

n 
(2 .1) 

PO = P(0 = 0) =7T, 

pn = P ( 0 = n) = ( l - 7 r ) ( l - p ) n - 1 p , 71 > 1, 

where 7r G [0,1], p € (0,1] are fixed and known and 

if e(u)>n 
^ - { x M , if * H < n ' 
X n (w) = 
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where nonnegative r. v's X®,... have the density /o, nonnegative r. v's 
X l , X l , • • • have the density f i and /o, / i are different functions with sup-
ports in R+ U{0}. Moreover, the random variables 6, X^, X®,. . . , X l , X2 , . . . 
are independent. 

As we observe subsequent losses, the cr-field of events observed at the 
nth moment is Tn — a (Xi,..., Xn) = a (Ui,..., Un), n > 1, and Tq = 
{0, fi}. Let T and T be sets of stopping rules and Markov times, respectively, 
adapted to the filtration F = {!Fn : n € N} . Hence T C T, since for any 
stopping time r we have P (r < 00) = 1 while Markov times admit infinite 
values. Let us denote, for u € (—00,00) and 7r € [0,1] optimal mean rewards 
in T and T , as 

s (u, 7r) = sup E (UT) , s (u, 7r) = sup E (UT). 
r£T r e f 

In what follows we will characterize the above mean rewards and we will 
find an optimal stopping time tq S T, i.e. 

S(U,TT) = E{UTO). 

3. Solution of the problem 
Let, for any moment n, 7rn denote the conditional probability that the 

change in distribution of claim sizes has occurred not later than at n, given 
observations till that moment, i.e. 

nn = P (6 <n \ Tn). 

Then, using Bayes' formula we obtain (Shiryaev (1978) [6]) 

Knfl(Xn+l) + (1 - Tn)pfl(Xn+l) 
Tn+1 = 

7Tn/l(^n+l) + (1 ~ ^n)pfl{Xn+l) + (1 - 7Tn)(l - p)f0(Xn+1) ' 
a.s., which may be rewritten in more convenient form 

( 3 ' 1 } ^ = 1 + h (7rn) A ( X n + i ) ' 
where the functions h and A are defined as follows 

( 1 - . H 1 - P ) X(x)=m 
Now, let us note that the sequence {{Un, nn), n e N} , where (Uq, tto) = 
(u, 7r), forms a homogenous Markov chain adapted to the filtration F since 
(3.1) is satisfied and the conditional distribution of Xn+\ given Tn has the 
density 
(3.2) fnn = Tr„/i + (1 - 7Tn)pfx + (1 - 7Tn) (1 - p ) f 0 . 
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Hence our optimal stopping time problem has been reduced to the problem 
of optimal stopping of the homogenous Markov chain {(Un, 7rn) : n € N} with 
the reward function g(u,7r) — u, u 6 ( — 0 0 , 0 0 ) , 7r 6 [0,1]. Thus, we may 
apply a rich range of results as presented in Chow, Robbins and Siegmund 
(1971) [2] and Shiryaev (1978) [6]. 

In what follows, we will use the denotations 
+00 

Mi — J x f i ix) dx, i = 0,1. 
—00 

Mp = m + (1 - p ) MO-

To prove theorems on existence and form of optimal stopping times we 
need below Lemmas 1-4. 

L e m m a 1. (a) If m > c, then E ( U n ) —• —00 as n —> 00. 

(b) If \i 1 < c, then E (Un) -> 00 as n —> 00. 
(c) If m = c, then E(Un) —> u — (no — /n) {Ed — 1) as n —> 00. 

Proo f . Let I^ ) be an indicator function of the set A. Then, 

Tl 7% j—J 
E (Un) — u + nc — E(l{e>n} + ¿ I{9=i}( ^ X9 + £ X } ) ) = 

j=0 ¿=0 j=0 j=i 
OO Tl 

= u + nc-(fi0n Y^ Pi + YLPiivoii-tf+Piin-i + l))) = 
i=n+1 ¿=0 

00 n n 00 
= u + n(c - /¿1) + fiin Y Pi~ {vo-^(^iPi-^Pi) ~ Von ^ pj. 

i=n+l i=0 ¿=0 i=n+1 
Now let us note that 

OO 
n pi = n (1 — 7r) (1 — p)n tends to 0 as n —• 00. 

i=n+1 
Hence, lim E (C/n) = c — n\ which completes the proof of (a) and (6). The 

71—>00 
case (c) is obvious. • 

According to Lemma 1 the most interesting case is /zi > c > ¿to which 
means that the premium was established correctly for the distribution /o 
and then after the change into f\ the situation is unfavorable for the insurer 
and there is an urgent need to recalculate the premium. 

The following lemma is the simplified version of Theorem 4.13 in Chow, 
Robbins and Siegmund (1971) [2]. 

3.3 
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LEMMA 2. Let Yi, Y^,... be a sequence of i.i.d. random variables with E (Yi) 

= 0 and E < oo. Then, for any a > 0, 

n 
E( sup ( Yi — na) ) < oo. 

v neN v ' ' 

LEMMA 3. Assume that ¡x\ > c and E(X})2 < oo. Then, 

E(sup < oo. 
neN 

Proo f . Let us denote Sn — Xi + ... + Xn. We need to prove the following 

E(sup(nc — S n ) + ) < oo. 

Let us rewrite 

E(sup(nc - Sn)+) = Y] E(l { (?=i }E(sup (ne - 5n )+ | 0 = »))• 
neN neN 

Now let us note that 

E(sup(nc - Sn)+ | 0 = i) = 
neN 

E(max{max(nc — Sn)+, sup(nc — Sn)+} | 9 — i) < 
n<i n>i 

E(max (nc - Sn)+ | 9 = i) + E(sup(nc - Sn)+ | 9 = i). 
n<i n>i 

The last inequality is the consequence of the obvious inequality holding for 
any two nonnegative random variables X, Y, say, i.e. 

E (max {X ,Y } ) < E(X) + E ( Y ) . 

We have 

E(max(nc - 5 i I ) + | 9 = i) < E(max(nc + Sn) | 9 = i) < 

n<i n<i 

¿-1 i-1 
E ( J 2 ( N C + S N ) I E = » ) = S E ( N C + 5 N I 0 = I ) = 

n=0 n=0 

^ ( n c + n/io) = (c + n ^ < oo. 
n=0 

Note that by our assumptions o n l i , X2,. . . we have 

E(sup ( n c - Sn)"1"^ = i) = 
n>i 

i—1 n 

= E(sup(nc ~ Y , X k - Y , X k ) + \ 9 = i) = 
k=0 k=i 
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i—1 n 
= E ( s u p ( ( i - l ) c - X ; x J g + ( n - t + l ) c - X ; x / ) ) < 

fc=0 k=i 

< Eo ((« - l )c - S^i)+ + Ex (sup(nc - Sn ) + ) , 
neN 

where the expectations on the right hand side of the last inequality are 
calculated with respect to the densities /o and /i, respectively. 

It is easy to see that 

Eo((t - 1 )c - Si-1)+ < { i - 1 )(no + c) < oo. 

In order to see that Ei(sup(nc — Sn)+) < oo we use Lemma 2 since 
n£N 

Ei(sup(nc - S n ) + ) = E(sup(5n - na)+), 
neN neN 

n 
where we have introduced Sn = X) = Mi ~ xl> i = 1,2, . . . , a = fii — c. 

i=l 
Yi,Y2, • • • are i.i.d. r. v's, E(Yi) = 0, E(yx+)2 < oo and a > 0. 

So finally we have 

E(sup(nc — Sn)+) < 
neN 

< V e ( I { n } f(c + +{i- l ) (c + (to) + Ei(sup(nc - Sn)+))) < 

< K(E{62) + E(0)) + Ei(sup(nc - Sn)+) < oo 
neN 

where K is some positive constant. • 

LEMMA 4. If u\ > c, then lim Un = —oo. n—• oo 

Proo f . 
oo oo (fcAn) —1 n 

Un=Yu I{9=k}Un = l{0=fc}(u + UC - Xi~ E Xi) = 

k=0 fc=0 

(fcAn)—1 

¿=0 i=(fcAn) 

= E I { « = f c } ( u - E x i ) + E I { * = f c } ( r i c - E 
fc=0 i=l fc=0 i=(fcAn) 

Now let us analyze the limit behavior of Un as n —> oo on {0 = k}, for 
any fixed k. Then, for n sufficiently large, n> k, we have 

( fc_1 
^nl{e=fc} = [u- E -X"» )I{e=fc} + 

j=i 
n 

/ ™ 
i ZXi 

i—k 
c — 

n-k + 1 

n-k + 1 

n 

\ 

\ 
I{e=fc}-
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On the right hand side of the above the first term is iinite and the second 

one tends to — oo, since by the strong law of large numbers — ^ — - — > fi\ 
n — k + 1 

a.s., which completes the proof. • 

Theo rem 1. Suppose that > c and E(X/)2 < oo. Then, 
a) s(u, 7r) = s(u, 7r), 
b) s(u,ir) = max{u,E(s(i7i,7ri)|i7o = = tt)}, where 

°° ( 1 A 
E(s(i7i,7ri)|t/0 = U,TTi = tt) = \ s[u + c-x )fv(x)dx, 

5 V 1 + h{ir)\(x)J 

c) ro = inf{n G N : Un = s(Un,irn)} is an optimal stopping time. 

P r o o f . The cases a) and 6) follow directly from Theorem 7 in Shiryaev 
(1978) [6] since {(Un,7rn) : n E N} is a homogenous Markov chain and by 
Lemma 3 the condition E(sup(^(i7n, 7rn))+) < oo, where g(u, 7r) = u is sat-

n 
isfied. Similarly, the case c) is a direct consequence of Theorem 8 in Shiryaev 
(1978) [6] because Lemmas 3 and 4 assure the appropriate assumptions. • 

4. The monotone case 
In the so called monotone case under some assumptions one may effi-

ciently find the form of an optimal stopping time. 
Let An = {E(Un+1 - Un\Tn) < 0}, n € N. 
We say that we are in the monotone case if 

oo 
(M) i o C i i C . . . ; | J An = a 

n=0 

Lemma 5. Let us assume that ¡j,\ > /xo and the following inequality is 
fulfilled 

fA i\ p >* f Mx)\ -i 
( 4 1 ) w - s x p [m)'L 

Then, the condition (M) is satisfied. 

P r o o f . Note that 

E({7n+i - Un\Tn) = c - E(X n + 1 \Tn) 

and, using the formulas (3.2) and (3.3), we have E(X n + i l^n) = fiinn + Hp{ 1 - T„). 
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Hence, in order to show that An C An+i it is enough to prove that the 
inequality 

Ml + 1 ~^n)>c 

implies 
MlTTn+l + Mp( 1 - 7Tn +l) > C, 

which is obvious if the sequence {7rn,n > 1} is not decreasing. The latter is 
true by the assumption (4.1). • 

THEOREM 2. Assume that the condition (M) is satisfied and < K < oo 
a.s., for i > 1, j = 0,1 and some fixed K. Then, the stopping time 

(4.2) a = inf{n € N : E(Un+1 - Un\Tn) < 0} = inf{n G N : 7rn > a}, 
Q M 

where a = —, is optimal in the set C = { r E T : E(r) < oo}. 

/¿i - /j,p 

Proof . First, we will show that a G C. Put 

P = < «kfc-l < «)• 
It is obvious that p < 1. From the homogenity of the Markov chain 

{(Un,TTn) : n 6 N} we have 
oo 

E(cr) = kP(TTi < a,..., 7Tfe_i < a, 7 r k > a ) = 
k=l 
oo k—1 

= s k n p f c < « k j - i < a ) • < a ) ' > a ) = 
k=1 3=2 
oo 

= pk~2 • P{-k\ < a) • P(7rjfc > a) < oo. 
fc=i 

Let us note that for r € C we have 

(4.3) j Un ^ J K n ^ i ^ 0 

{r>n} {r>n} 

as n —» oo. Moreover, 
(4.4) liminf 5 = 0 

{<r>n} 

because E(sup (nc — Sn)+) < oo. 
n£N 

Now, in the monotone case, (4.3) and (4.4) are assumptions of Theorem 
3.3 in Chow, Robbins and Siegmund (1971) [2]. Hence, a is optimal in C. m 
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E X A M P L E 1. Let X j , j = 0 , 1 , have exponential distribution truncated at 
K, i.e. with the density 

f j { x ) = e~ 

0 , 

' A i f 0 < x < K 

i ( x ) = e~xiK, if x = K 

otherwise 

of the below cases (a)-(c) is satisfied: 
(a) A0 < Ai < A*, 
(b) A0 < A* < Ax, 
(c) A* < Ax < A0, 

where A* is the unique positive solution of the equation KA + 1 = eKX. 
f fx) A 

Let us note that in the cases (a) and (b) sup = —, while in the 
x f i { x ) Ai 

case (c) it is equal to e~ K ( X o ~ X l \ Hence, from Lemma 5, the condition (M) 

is satisfied in the cases (a) and (b) for p > 1 — and in the case (c) for 
Ao 

p > 1 - From Theorem 2 we know that a defined by (4.2): 

is an optimal stopping time in the class of stopping times with finite expec-
tations. 
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