DEMONSTRATIO MATHEMATICA
Vol. XXXV No 2 2002

Konstancja Bobecka, Katarzyna Danielak, Elzbieta Z. Ferenstein

ON OPTIMAL STOPPING
OF A DISCRETE TIME RISK PROCESS

Abstract. Optimal stopping time problem for a discrete time risk process Un =
u+cen—(Xj+...4+ Xn) is analyzed. At a random moment §, which is unobserved, there
is a change in common distribution of subsequent claim sizes X1, X»,.... In the case when
the mean of a new distribution of claim sizes is greater than the premium c there is a need
to stop the process to recalculate the premium. The existence of optimal stopping rule is
proved and the way to find it efficiently is described.

1. Introduction

The risk process in actuarial mathematically oriented literature has been
investigated heavily. The main task of research, apart from modelling the
insurer’s surplus (reserves) is devoted to ruin probability problems. So far
optimal stopping time problems have not gained much of interest. In this
paper we deal with a discrete time risk process for which an optimal stopping
time problem arises quite naturally, and finding an efficient form of the
optimal stopping rule seems to be a crucial goal from the insurer’s point
of view. The paper of Jensen (1997) in [5] has been our inspiration. Jensen
considers a continuous time risk process {U (t),t > 0} of the form U (t) =
u+ G (t) — S(t), where u > 0 is an initial capital of an insurer, the process
of accumulated premiums {G (¢),¢ > 0} is a Brownian motion with mean
ct, G(t) is the premium collected till time t. The process of aggregated
claims {S(t),t > 0} is a Markov modulated Poisson process, i.e. S(t) =
Xo+ X1+...+ Xy, where subsequent claim sizes X1, X»,.. .are iid r.v’s,
Xo =0,{N(t),t > 0} is a counting process with random intensity which is a
function of an unobserved Markovian environment state process. Depending
on its distribution law, the mean premium income may not cover mean losses
in which case there is a need to stop the process so as to recalculate the
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premium. In the classical continuous time model one assumes that G (t) =
ct, ¢ > 0, and that the number of subsequent claims till time ¢, £ > 0,
N (t) is modelled by a renewal process. Ferenstein and Sierociriski (1997) [3]
considered the optimal stopping time problem of the classical risk process
in which the insurer goal is to stop the process before the ruin time and to
maximize the mean reward function depending on the current state of the
risk process.

In this paper we consider a modified version of the classical discrete
time risk process which models random unobserved change in claim size
distribution. Distribution law of subsequent claim sizes is like in the disorder
problem investigated in Chow et al. (1971) 2], Shiryayev (1978) [6], Bojdecki
(1979) [1]. Subsequent claim sizes are assumed to be nonnegative iid r.v’s
till an unobserved random time. At that time the common distribution law
of claim sizes changes to another one which is unfavarouble for the insurer
since its mean excess the premium. In Section 2 we give precise model of
the risk process and state the problem. In Section 3 we find general form of
optimal stopping rule and derive the Bellman equation for the optimal mean
reward. Explicit form of optimal stopping time is found in Section 4 where
we formulate additional assumptions on the claim sizes distributions under
which the monotone case is fulfilled. Example with truncated exponential
losses is presented.

2. The model

Let (Q,F, P) be some fixed probability space on which all considered
random variables are determined. Suppose that

n
(2.1) Un=u+cn—-ZXi,
i=0

n€N={0,1,...}, Xo=0,u >0, ¢>0, is a discrete time risk process. We
assume that the distribution of the claim sequence X1, X5, ... depends on the
unobserved random time 6 similarly as in the disorder problem considered by
Shiryaev (1978) [6] and generalized by Bojdecki (1979) [1]. More precisely,
let 8, X1, X2,... have the distribution such that
po=P((#=0)=m,
m=P@=n)=01-7)1-p)" 'p, n>1,
where 7 € [0, 1], p € (0,1] are fixed and known and

X9 (w), if §(w)>n

Xn(w):{X}L(w), if 9(w)<n’
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where nonnegative r. v’s X7, X9, ... have the density fo, nonnegative r. v’s
X 11,X21, ... have the density f; and fy, fi are different functions with sup-
ports in R, U{0}. Moreover, the random variables 8, X9, X9 ..., X} X1, ...
are independent.

As we observe subsequent losses, the o-field of events observed at the
nth moment is 7, = o (X1,...,Xp) = o (Uh,...,Us), n > 1, and Fy =
{0,Q}. Let T and 7 be sets of stopping rules and Markov times, respectively,
adapted to the filtration F = {F, : n € N}. Hence 7 C 7, since for any
stopping time 7 we have P (7 < 00) = 1 while Markov times admit infinite

values. Let us denote, for u € (—00,00) and 7 € [0, 1] optimal mean rewards
in 7T and 7 , as

$(u,m) = supE(Uy), 3 (u,) = supE(Uy).
€T 7T

In what follows we will characterize the above mean rewards and we will
find an optimal stopping time 19 € 7, i.e.

s(u,m) =E(Ug).

3. Solution of the problem

Let, for any moment n, 7, denote the conditional probability that the
change in distribution of claim sizes has occurred not later than at n, given
observations till that moment, i.e.

mTm=PO@<n|F,).
Then, using Bayes’ formula we obtain (Shiryaev (1978) [6])

Tapl = anl(Xn+1) +(1— Wn)pfl(Xn+1) ,
Tnf1(Xn+1) + (1 = mo)pf1(Xnt+1) + (1 — m)(1 = p) fo(Xn+1)

a.s., which may be rewritten in more convenient form

1
T T h () A (Xng1)
where the functions h and A are defined as follows

py < A=) fola)

T+ (l-m)p fi(z)

Now, let us note that the sequence {(Un,n),n € N}, where (Up,m) =
(u,7), forms a homogenous Markov chain adapted to the filtration F since

(3.1) is satisfied and the conditional distribution of X, given 7, has the
density

(3'2) f7rﬂ =7Tnf1+(1_7rn)pfl+(1—7rn) (1—P)f0-

(3.1)
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Hence our optimal stopping time problem has been reduced to the problem
of optimal stopping of the homogenous Markov chain {(U,, 7,) : n € N} with
the reward function g (u,7) = u, u € (—o00,00), # € [0,1]. Thus, we may
apply a rich range of results as presented in Chow, Robbins and Siegmund
(1971) [2] and Shiryaev (1978) [6].
In what follows, we will use the denotations

+-o00
i = S zfi(z)dz, 1=0,1.

—00

pp = pp1 + (1 — p) po.

(3.3)

To prove theorems on existence and form of optimal stopping times we
need below Lemmas 1-4.

LEMMA 1. (o) If p1 > ¢, then E (Up) — —00 as n — oo.
(b) If ;1 < ¢, then E(U,) — 00 as n — oo.
(c) If p1 = ¢, then E(Uyn) — u — (o — p1) (E6 — 1) as n — oo.

Proof. Let [{4) be an indicator function of the set A. Then,

n n i—1 n
E(U,) =u+nc— E(H{o>n} ZX]Q + Zﬂ{oﬂ}(ZX? + ZX}» =
§=0 =0 7=0 J=i

—utne— (pon 30 it Sopiluoli— 1)+ p(n—i+ 1) =

i=n+1 i=0
[e o] n n o0
=u+n(c—p1)+ pn Z pi — (po — m)(zim - Zpi) — Hon Z Di-
i=n+1 i=0 i=0 i=nt1

Now let us note that

[ o]
n Z pi=n(l—m)(1—p)" tends to 0 as n — oo.
i=n+1
Hence, lim E (Un) = ¢ — p1 which completes the proof of (a) and (b). The

case (c) is obvious. =

According to Lemma 1 the most interesting case is 13 > ¢ > po which
means that the premium was established correctly for the distribution fy
and then after the change into f; the situation is unfavorable for the insurer
and there is an urgent need to recalculate the premium.

The following lemma is the simplified version of Theorem 4.13 in Chow,
Robbins and Siegmund (1971) [2].
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LEMMA 2. Let Y1,Ys, ... be a sequence of i.i.d. random variables with E (Y1)
2
=0 and E (Y1+) < 0o. Then, for any a > 0,

E(sup(f:l/} ——na)+> < 0.

neN * o
LEMMA 3. Assume that uy > ¢ and IE(X})2 < 00. Then,
E(sup U,}) < co.
neN

Proof. Let us denote S, = X1 + ... + X,,. We need to prove the following

E(sup(nc — Sp)t) < .
neN

Let us rewrite

o0
E(sup(nc — Sp)1) = Z E(I{g=i}E(sup(nc — S,)* | 8 = 1)).
neN =0 nEN

Now let us note that

E(sup(nc — S,)" |8 =1) =
neN

E(max{max(nc — S,)T,sup(nc — S,)*} |6 =1) <
n<i n>i
E(max(nc — Sp)t | 0 = 1) + E(sup(nc — Sp)* | 6 =1).
n<? n>q
The last inequality is the consequence of the obvious inequality holding for
any two nonnegative random variables X, Y, say, i.e.
E(max{X,Y}) < E(X) +E(Y).
We have
E(max(nc — Sp)* | 0 =4) < E(max(nc+ S,) | 0 =) <
n<i n<i

i-1 i-1
E( Y (nc+ Sa) |0=i) =Y Enc+Sn|0=1)=
n=0 n=0
Lt i(i — 1)
S (ne + npo) = (¢ + o)
n=0 2
Note that by our assumptions on X7, Xs,... we have
E(sup(nc — Sp)*|0 = 1) =

n>t

< 00.

i—1 n

= E(sup(nc— Y_ X — > _ Xx)T |0 =1) =

n2i k=0 k=i
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i—-1 n
E(sup((z—lc—ZXk-i— —i+1)c—ZXi1)+)§
n>t k=i
< Bo((i ~ 1)e ~ Si-1)* +Ea(sup(ne — 5n)*),

neN
where the expectations on the right hand side of the last inequality are
calculated with respect to the densities fp and f;, respectively.
It is easy to see that

Eo((i — 1)e~ Si—1)t < (1= 1)(po + ¢) < .

In order to see that E; (sup(nc — Sp)*) < 0o we use Lemma 2 since
neN

E1 (sup(nc — Sp) 1) = E(sup(Sy — na)™),
neN neN

-~ n
where we have introduced S, = > Y, Y; = pl—-Xil,i =12,...,a=pu;—c

i=1

Y1,Ys,...areiid. r. vs, E(Y1) = 0, E(Y;")2 < 00 and a > 0.

So finally we have
E(sup(nc — S,)*) <

neN

> i(i—1) +
<D B(lgp=iy{ (c+ po)=—— + (i = )(c+ o) + Ex (sup(ne = Sn)™)) ) <

i=0 ne

< K(E(6*) + E(6)) + B (sgg(nc ~Sn)T) < o0

where K is some positive constant. =

LeEMMA 4. If yuy > c, then nlerolo U, = —o0.

Proof.
(kAn)—-1
n—ZH{g xU —ZH{() k}(u+nc—- Z X; — Z X)
i=(kAn)
(kAn)—1
"ZH{G k}(u— Z X)-}-Z]I{g k}(nc— Z X)
i=(kAn)

Now let us analyze the limit behavior of U, as n — oo on {6 = k}, for
any fixed k. Then, for n sufficiently large, n > k we have

Z Xi
k-1 k n—k+1
UnH{0=k} = (u — ;1 Xi)ﬂ{ﬁzk} +njc— i=

. Iig=21-
n—k+1 7 {6=k}
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On the right hand side of the above the first term is tinite and the second

n
X
one tends to —oo, since by the strong law of large numbers 2_1:’:—_*_—% —
a.s., which completes the proof. =
THEOREM 1. Suppose that p3 > ¢ and E(X})? < co. Then,
a) s(u, ) = §(u, ),
b) s(u,n) = max{u, E(s(Uy,m)|Up = =)}, where
® 1
]E(S(U1,7r1)|U0:u,7r1=7r) (S)S(U+C ,W>fﬂ(fl})d$

¢) 1o = inf{n € N: Up = s(Un,mn)} is an optimal stopping time.

Proof. The cases a) and b) follow directly from Theorem 7 in Shiryaev

(1978) [6] since {(Up,7s) : n € N} is a homogenous Markov chain and by

Lemma 3 the condition E(sup(g(Un,m,))") < oo, where g(u, ) = u is sat-
n

isfied. Similarly, the case c) is a direct consequence of Theorem 8 in Shiryaev
(1978) [6] because Lemmas 3 and 4 assure the appropriate assumptions. =

4. The monotone case

In the so called monotone case under some assumptions one may effi-
ciently find the form of an optimal stopping time.

Let Ay = {E(Up41 — Up|Fn) <0}, neN.
We say that we are in the monotone case if

¢ o}
(M) ACAacC..; Ja=0

LEMMA 5. Let us assume that p1 > pg and the following inequality is
fulfilled

(4.1) T f > sup (ﬁgi;) —

Then, the condition (M) is satisfied.

Proof. Note that
IE(Un-i-l - Unlfn) =Cc— ]E(Xn+1 |]:n)
and, using the formulas (3.2) and (3.3), we have

E(Xn+11Fn) = p17n + tp(1 — mp).
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Hence, in order to show that A, C An+1 it is enough to prove that the
inequality

p1Tn + pp(l — ) > ¢
implies
p1Tnt1 + pp(l — Tny1) 2 ¢,
which is obvious if the sequence {m,,n > 1} is not decreasing. The latter is

true by the assumption (4.1).

THEOREM 2. Assume that the condition (M) is satisfied and Xij <K <o
a.s., fori>1, § =0,1 and some fized K. Then, the stopping time
(4.2) o =inf{n € N: E(Upn41 — Un|Fp) <0} =inf{n € N: m, > a},

—Fp , 18 optimal in the set C ={r € T : E(1) < oo}
P

c
where o =
H1—

Proof. First, we will show that ¢ € C. Put
p= P(m < a|mp—1 < ).
It is obvious that p < 1. From the homogenity of the Markov chain
{(Un,my) : n € N} we have

0o
—ZkP(ﬂ'l <Q...,Tpo1 < Q,m > @) =

B
-

M8 i MS

H (mj < alrj_1 <o) Plm <a) Plm,>a)=

k-p*2. P(m < ) - P(my > @) < o0.

Eo
I

1

Let us note that for 7 € C we have

(4.3) | U< | Kn< | Kr—o0
{r>n} {r>n} {r>n}
as n — 00. Moreover,
(4.4) lim inf | Ur=o0
{o>n}

because ]E(sup (nc—Sp)*) < oo
neN
Now, in the monotone case, (4.3) and (4.4) are assumptions of Theorem

3.3 in Chow, Robbins and Siegmund (1971) [2]. Hence, o is optimal in C. =
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EXAMPLE 1. Let Xij, 7 = 0,1, have exponential distribution truncated at
K, i.e. with the density

Aje% if 0<z<K
fi(z) = { e MK, if z=K
0, otherwise
with respect to the measure
u(4) = V(AN (0,K)) +14(K), A € B(R),

where v(-) is the Lesbegue measure.
1— e—z\jK
Aj
of the below cases (a)-(c) is satisfied:
(a) Ao < A1 < A%,
(b) Ap < A < Ay,
(C) A" < A < A,
where \* is the unique positive solution of the equation KA + 1 = e&?*.

folz) _ 1\9, while in the

flz) M

M), Hence, from Lemma 5, the condition (M)

Let us note that u; = . It is easy to show that pg < p1 iff one

Let us note that in the cases (a) and (b) sup
T
case (c) it is equal to e~ K(do—
A
is satisfied in the cases (a) and (b) for p > 1 — )‘—1 and in the case (c) for
0

p>1— e KQo=M) From Theorem 2 we know that o defined by (4.2):

1 —e KM 1 — e KXo
c-pr—— ~(1-p)
c=inf<{neN:m, > A1 Ag
N = 1—e KM 1 _¢ Kk
1— _
( p)( A Ao )

is an optimal stopping time in the class of stopping times with finite expec-
tations.
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